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Abstract. This paper presents a lower bound of Ω(D+
√
n/ logn) on the time required for the

distributed construction of a minimum-weight spanning tree (MST) in weighted n-vertex networks
of diameter D = Ω(logn), in the bounded message model. This establishes the asymptotic near-
optimality of existing time-efficient distributed algorithms for the problem, whose complexity is
O(D +

√
n log∗ n).
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1. Introduction. The study of distributed algorithms for minimum-weight span-
ning tree (MST) construction was initiated by the pioneering work of Gallager, Humb-
let, and Spira [GHS83], which introduced a basic distributed technique for the problem
and presented a message-optimal algorithm with time complexity O(n log n) on an n-
vertex network. This result was later improved to a message-optimal algorithm with
time complexity O(n) by Awerbuch [A87].

However, for many natural distributed network problems, the parameter con-
trolling the time complexity is not the number of vertices but rather the network’s
diameter D, namely, the maximum distance between any two vertices (measured in
hops). This holds, for example, for leader election and related problems [P90].

It is easy to verify that Ω(D) time is required for distributed MST construction in
the worst case. More formally, for every two integers n ≥ 2 and 1 ≤ D ≤ �n/2� there
exist weighted n-vertex networks of diameter D (say, based on a 2D-vertex ring with
n−2D vertices attached to it as leaves) on which any distributed MST algorithm will
require at least D time.

Hence, a natural question is whether O(D)-time algorithms exist for distributed
MST construction as well. More generally, the problem of devising o(n) (though possi-
bly not message-optimal) distributed algorithms for MST construction was introduced
in [GKP98].

Clearly, in the extreme model allowing the transmission of an unbounded-size
message on a link in a single time unit (cf. [L92]), the problem can be trivially solved
in time O(D) by collecting the entire graph’s topology and all the edge weights into
a central vertex, computing an MST locally and broadcasting the result throughout
the network. The problem thus becomes interesting in the more realistic, and rather
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common, B-bounded-message model (henceforth referred to simply as the B model),
in which message size is bounded by some value B (usually taken to be either constant
or O(log n)), and a vertex may send at most one message on each edge at each time
unit.

The algorithm presented in [GKP98] for distributed MST construction in this
model (with B = O(log n)-bit messages) has time complexity O(D + nε log∗ n) for
ε = ln 6/ ln 3 ≈ 0.613. This was later improved to O(D+

√
n log∗ n) in [KP98]. Similar

bounds were recently obtained by us using other algorithmic methods, but none of
those methods were able to break the

√
n-time barrier, indicating that distributed

MST might be harder than other distributed network problems such as leader election
or breadth-first search (BFS) tree construction.

It is important to mention that the algorithms of [GHS83, A87, GKP98, KP98]
discussed above were analyzed under the (natural) assumption that the weight of each
edge can be represented as an integer small enough to be included in a single message.
This assumption is adopted in the current paper.

The current paper concerns establishing the asymptotic near-optimality of the
algorithm of [KP98], by showing that Ω̃(

√
n) is a lower bound1 as well, even on low

diameter networks. Specifically, for any integers K,m ≥ 2, we construct a family of
O(m2K)-vertex networks of diameter D = O(Km) for which Ω(mK/(BK)) time is
required for constructing a minimum spanning tree in the B model. Fixing some posi-
tive integerm ≥ 2, we get that for every integer n ≥ 1 there exists a family of n-vertex
networks of diameter Θ(logn) for which MST construction requires Ω(

√
n/(B log n))

time in the B model.
While it is not clear that the Ω(logn) limitation on the diameters for which the

lower bound holds is essential, some limitation must apparently exist. This follows
from the observation that the n-vertex complete graph (D = 1) admits a simple
O(log n) time distributed MST construction algorithm.

Towards proving the lower bound on distributed MST construction, we first es-
tablish a lower bound on the time complexity of a problem referred to as the mailing
problem, which can be informally stated as follows. Given a particular type of graph
named FK

m , for integers m,K ≥ 2, and two vertices s and r in it, it is required to
deliver an mK-bit string X generated in s to r. The graph FK

m has n = O(m2K)
vertices and diameter O(Km), yet we show that the time required for mailing from
s to r on FK

m in the B model is considerably larger than the diameter, namely,
Ω(mK/(BK)) = Ω(

√
n/(BK)).

The rest of the paper is organized as follows. First, a definition of the model
and the mailing problem is given in section 2. Section 3 handles the mailing problem
for the case of K = 2. It defines the graphs F 2

m, having diameter D = O(m) =
O(n1/4) and shows a lower bound of O(m2) = O(

√
n) on the time complexity of the

mailing problem for m2-bit strings. This result is then used in section 4 to prove that
the same lower bound applies also to the time complexity of the MST problem on
weighted versions of the graphs F 2

m. The next two sections extend these two results,
respectively, to graphs FK

m , K ≥ 3 with diameters down to O(log n). Finally, section
7 discusses some open problems.

2. Preliminaries.

2.1. The model. A point-to-point communication network is modeled as an
undirected graph G(V,E), where the vertices of V represent the network processors

1Ω̃ is a relaxed variant of the Ω notation that ignores polylog factors.
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and the edges of E represent the communication links connecting them. Vertices are
allowed to have unique identifiers. The vertices do not know the topology or the edge
weights of the entire network, but they may know the IDs of their neighbors and the
weights of the corresponding edges.

A weight function ω : E → R
+ associated with the graph assigns a nonnegative

integer weight ω(e) to each edge e = (u, v) ∈ E. The weight ω(e) is known to
the adjacent vertices, u and v. The vertices can communicate only by sending and
receiving messages over the communication links. Communication is carried out in a
synchronous manner; i.e., all the vertices are driven by a global clock. Messages are
sent at the beginning of each round and are received at the end of the round. (Clearly,
our lower bounds hold for asynchronous networks as well.) At most one B-bit message
can be sent on each link in one direction on every round. It is assumed that B is large
enough to allow the transmission of an edge weight in a single message. The model
also allows vertices to detect the absence of a message on a link at a given round,
which can be used to convey information. Hence at each communication round, a link
can be at one of 2B + 1 possible states, i.e., it can either transmit any of 2B possible
messages or remain silent.

The length of a path p in the network is the number of edges it contains. The
distance between two vertices u and v is defined as the length of the shortest path
connecting them in G. The diameter of G, denoted D, is the maximum distance
between any two vertices of G.

2.2. The mailing problem. The mailing problem is defined in the following
situation. We are given a graph G with two distinguished vertices s and r, referred
to as the sender and the receiver , respectively. Both the sender s and the receiver
r store b boolean variables each, Xs

1 , . . . , X
s
b and Xr

1 , . . . , X
r
b , respectively, for some

integer b ≥ 1. An instance of the problem consists of an initial assignment X = {xi |
1 ≤ i ≤ b}, where xi ∈ {0, 1}, to the variables of s, such that Xs

i = xi. Given such
an instance, the mailing problem requires s to deliver the string X to the receiver
r, i.e., upon termination, the variables of r should contain the output Xr

i = xi for
every 1 ≤ i ≤ b. Henceforth, we refer to this problem as Mail(G, s, r, b). Throughout
sections 3 and 4, we consider this problem on graphs F 2

m with b = m2 for some integer
m ≥ 2. In sections 5 and 6, we deal with the problem on graphs FK

m with b = mK for
K ≥ 3.

2.3. The distributed MST problem. Formally, the minimum spanning tree
(MST) problem can be stated as follows. Given a graph G(V,E) and a weight function
ω on the edges, it is required to find a spanning treeMST (G) ⊆ E whose total weight,
ω(MST (G)) =

∑
e∈MST (G) ω(e), is minimal. In the distributed model, the input

and output of the MST problem are represented as follows. Each vertex knows the
ID’s of its closest neighbors and the weights of the corresponding edges. A degree-
d vertex v ∈ V with neighbors u1, . . . , ud has d weight variables W v

1 , . . . ,W
v
d , with

W v
i containing the weight of the edge connecting v to ui, i.e., W

v
i = ω(v, ui). The

output of the MST problem at each vertex v is an assignment to the (boolean) output
variables Y v

1 , . . . , Y
v
d , assigning

Y v
i =

{
1, (ui, v) ∈MST (G),
0 otherwise.
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3. A lower bound for the mailing problem on F 2
m.

3.1. The graphs F 2
m. Let us now define the collection of graphs denoted F 2

m

for m ≥ 2. The two basic units in the construction are the ordinary path P on m2 +1
vertices,

V (P) = {v0, . . . , vm2} and E(P) = {(vi, vi+1) | 0 ≤ i ≤ m2 − 1},
and the highway H on m+ 1 vertices,

V (H) = {him | 0 ≤ i ≤ m} and E(H) = {(him, h(i+1)m) | 0 ≤ i ≤ m− 1}.
Each highway vertex him is connected to the corresponding path vertex vim by a

spoke edge (him, vim), as in Figure 1.

h(m-1)m r = h
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Fig. 1. The connections between the path and the highway.

The graph F 2
m is constructed by taking m2 copies of the ordinary path P, denoted

P1, . . . ,Pm2

, and connecting all of them to the same highway H. The vertex h0 is
the intended sender s, and the vertex hm2 is the intended receiver r. (See Figure 2.)

1P

H

2P

P

S

2m

m10S S

mhr = 0hs = 2

Fig. 2. The graph F 2
m.

Visualizing the graph F 2
m as organized in a cylindrical shape, the spoke edges can

be grouped into m+1 stars Si, 0 ≤ i ≤ m, where each star Si consists of the highway
vertex him and the m2 vertices v1im, . . . , v

m2

im connected to it by spoke edges. Hence

V (Si) = {him} ∪ {v1im, . . . , vm
2

im } and E(Si) = {(vjim, him) | 1 ≤ j ≤ m2}.
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The vertex and edge sets of the graph F 2
m are thus

V (F 2
m) = V (H) ∪

m2⋃
j=1

V (Pj) and E(F 2
m) =

m⋃
i=0

E(Si) ∪
m2⋃
j=1

E(Pj) ∪ E(H).

Fact 3.1. The graph F 2
m consists of n = Θ(m4) vertices, and its diameter is

Θ(m).

3.2. The lower bound. We would now like to prove that solving the mailing
problem on the graph F 2

m with a b = m2-bit string X requires Ω(m2/B) time in the
B model. Intuitively, this happens because routing the string X from s to r along
ordinary paths would be too slow; hence our only hope is to route the string along the
highway, or at least use interleaved paths, mixing highway segments with segments of
ordinary paths. However, F 2

m does not have sufficient capacity for routing all m2 bits
from s to r along such short (or “relatively short”) paths.

This intuition yields a rather simple proof of the claim if we limit ourselves to a
restricted class of algorithms, referred to as explicit delivery algorithms. These are
algorithms in which the input bits are required to be delivered in an explicit way,
namely, each bit xi must be shipped from s to t along some path pi. (Naturally,
the paths of different bits may be identical or partly overlap.) However, we would
like the lower bound to apply also to arbitrary algorithms, in which the information
can be conveyed from s to r in arbitrary ways. This may include applying arbitrary
functions to the bits at s and sending the resulting values, possibly modifying and
“recombining” these values in intermediate nodes along the way, in a way that will
allow r to extract the original bits from the messages it receives. For handling such a
general class of algorithms, the proof must be formalized in a more careful way.

Let us start with an outline of the proof. Consider the set of possible states a
vertex v may be in at any given stage t of the execution of a mailing algorithm on
some m2-bit input X . (The state of a vertex consists of all its local data; hence
it is affected by its input, topological knowledge, and history, namely, all incoming
messages.) As the computation progresses, the tree of possible executions grows, and
thus the set of possible states of v becomes larger. In particular, when the execution
starts at round 0, each of the vertices is in one specific initial local state, except for
the sender s, which may be in any one of 2m

2

states, determined by the value of the
input string X . Upon termination, the string X should be known to the receiver r,
meaning that r should be in one of 2m

2

states. Our argument is based on analyzing
the growth process of the sets of possible states, and showing that this process is slow,
forcing the algorithm to spend at least Ω(m2/B) time until the set of possible states

of r is of size 2m
2

.

We now continue with a more detailed and formal proof. Consider some arbitrary
algorithm Amail, and let ϕX denote the execution of Amail on an m2-bit input X in
the graph F 2

m. For 1 ≤ i ≤ m, define the tail set of the graph F 2
m, denoted Ti, as

follows. For every 1 ≤ j ≤ m2, define the tail of the path Pj as

Ti(Pj) = {vjl | i ≤ l ≤ m2}.

Let β(i) denote the least integer δ such that δm ≥ i, and define the tail of H as

Ti(H) = {hjm | β(i) ≤ j ≤ m}.
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Now, the tail set of F 2
m is the union of those tails,

Ti = Ti(H) ∪
⋃
j

Ti(Pj).

(See Figure 3.) For i = 0, the definition is slightly different, letting

T0 = V \ {h0}.

P

P

2

mhs = 0
h

1

2r = (i) mβ

iT

h

i

i

2m

1P

H

v

v

2
i

v

m2

Fig. 3. The tail set Ti in the graph F 2
m.

Denote the state of the vertex v at the beginning of round t during the execution
ϕX on the input X by σ(v, t,X ). In two different executions ϕX and ϕX ′ , a vertex
reaches the same state at time t, i.e., σ(v, t,X ) = σ(v, t,X ′), iff it receives the same
sequence of messages on each of its incoming links; for different sequences, the states
are distinguishable.

For a given set of vertices U = {v1, . . . , vl} ⊆ V , a configuration

C(U, t,X ) = 〈σ(v1, t,X ), . . . , σ(vl, t,X )〉

is a vector of the states of the vertices of U at the beginning of round t of the execution
ϕX . Denote by C[U, t] the collection of all possible configurations of the subset U ⊆ V
at time t over all executions ϕX of algorithm Amail (i.e., on all legal inputs X ), and
let ρ[U, t] = |C[U, t]|.

Prior to the beginning of the execution (i.e., at the beginning of round t = 0), the
input string X is known only to the sender s. The rest of the vertices are found in some
initial state, described by the configuration Cinit = C(T0, 0,X ), which is independent

of X . Thus, in particular, ρ[T0, 0] = 1. (Note, however, that ρ[V, 0] = 2m
2

.)

Our main lemma is the following.

Lemma 3.2. For every 0 ≤ t < m2,

ρ[Tt+1, t+ 1] ≤ (2B + 1) · ρ[Tt, t].
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Proof. The lemma is proved by showing that in round t+1 of the algorithm, each
configuration in C[Tt, t] branches off into at most 2B + 1 different configurations of
C[Tt+1, t+ 1].

Fix a configuration Ĉ ∈ C[Tt, t], and let δ = β(t+1). The tail set Tt+1 is connected
to the rest of the graph by the highway edge fδ−1 = (h(δ−1)m, hδm) and by the m2

path edges ejt = (vjt , v
j
t+1), 1 ≤ j ≤ m2. (See Figure 4.)

Fig. 4. The edges entering the tail set Tt+1.

Let us count the number of different configurations in C[Tt+1, t + 1] that may
result from the configuration Ĉ. Starting from the configuration Ĉ, each vertex vjt is
restricted to a single state, and hence it sends a single (well determined) message over
the edge ejt to vjt+1, thus not introducing any divergence in the execution. The same
applies to all the edges internal to Tt+1. As for the highway edge fδ−1, the vertex
h(δ−1)m is not in the set Tt; hence it may be in any one of many possible states, and
the value passed over this edge into the set Tt+1 is not determined by the configuration
Ĉ. However, due to the restriction of the B-bounded-message model, at most 2B + 1
different behaviors of fδ−1 can be observed by hδm. Thus altogether, the configuration
Ĉ branches off into at most 2B+1 possible configurations Ĉ1, . . . , Ĉ2B+1 ∈ C[Tt+1, t+
1], differing only by the state σ(hδm, t+ 1,X ). The lemma follows.

Applying Lemma 3.2 and the fact that ρ[T0, 0] = 1, we get the following result.

Corollary 3.3. For every 0 ≤ t < m2,

ρ[Tt, t] ≤ (2B + 1)t.

Let tend denote the time it takes algorithm Amail to complete the mailing. As
argued earlier, at that time, the receiver r may be in at least 2m

2

different states, hence
necessarily ρ[Ttend

, tend] ≥ 2m
2

. Applying Corollary 3.3, we get that (2B + 1)tend ≥
2m

2

, implying the following.

Lemma 3.4. For every m ≥ 1, solving the mailing problem Mail(F 2
m, h0, hm2 ,m2)

in the B model requires Ω(m2/B) time.
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4. A lower bound for the MST problem on J 2
m. In this section, we use the

results achieved in the previous sections and show that in the B model for B ≥ 3, the
distributed MST problem cannot be solved faster than Ω(m2/B) on weighted versions
of the graphs F 2

m. In order to prove this lower bound, we define in subsection 4.1 a
family of weighted graphs J 2

m, based on F 2
m but differing in their weight assignments.

Then in subsection 4.2, we show that any algorithm solving the MST problem on the
graphs of J 2

m can also be used to solve the mailing problem on F 2
m with the same time

complexity. Subsequently, the lower bound for the distributed MST problem follows
from the lower bound given in the previous section for the mailing problem in F 2

m.

4.1. The graph family J 2
m. The graphs F 2

m defined earlier were unweighted.
In this subsection, we define for every graph F 2

m a family of weighted graphs

J 2
m = {J2

m,γ = (F 2
m, ωγ) | 1 ≤ γ ≤ 2m

2},

where ωγ is an edge weight function.

Recall that in the graph F 2
m there are three types of edges, namely, highway edges,

edges of paths Pj , and star spokes. In all the weight functions ωγ , all the edges of
the highway H and the paths Pj are assigned the weight 0. The spokes of all stars
except S0 and Sm are assigned the weight 4. The spokes of the star Sm are assigned
the weight 2.

The only differences between different weight functions ωγ occur on them2 spokes
of the star S0. Specifically, each of these m2 spokes is assigned a weight of either 1 or
3; thus there are 2m

2

possible combinations of weight assignments. (See Figure 5.)

0hs = 2mhr = 

2

0 00 0

2

2

0 0

1

SS

1

3

00

0 m

0 0

4

444

444

4 4

Fig. 5. The edge weights assigned to J2m,γ .

Since discarding all spoke edges of weight 4 from the graph J2
m,γ leaves it con-

nected, and since every spoke edges of weight 4 is the heaviest edge on some cycle in
the graph, the following is clear.
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Lemma 4.1. No spoke edge of weight 4 belongs to the MST of J2
m,γ for every

1 ≤ γ ≤ 2m
2

.

Let us pair the spoke edges of S0 and Sm, denoting the jth pair (for 1 ≤ j ≤
m2) by

PEj = {(s, vj0), (r, vjm2)}.

Lemma 4.2. For every 1 ≤ γ ≤ 2m
2

and 1 ≤ j ≤ m2, exactly one of the two
edges of PEj belongs to the MST of J2

m,γ , namely, the lighter one.

Proof. Since the MST must be connected, at least one of the two edges of PEj

must belong to it, as otherwise the path Pj is completely disconnected from the rest
of the graph, by Lemma 4.1. It remains to show that the MST cannot contain both
edges of PEj .

The proof is by contradiction. Consider the cycle in J2
m,γ consisting of the edges

of H, PEj , and Pj , and suppose that both edges of PEj are in the MST. In order for
the MST to be cycle-free, at least one edge e of either the highway H or the path Pj

must not belong to the MST. Since the edges ofH and Pj have zero weight, ωγ(e) = 0.
Hence deleting the heavier edge of the pair PEj and adding the edge e instead leaves
us with a lighter tree than the original one, leading us to contradiction.

Lemma 4.3. For every m ≥ 2 and 1 ≤ γ ≤ 2m
2

, all the edges of the highway H
and the paths Pj, for 1 ≤ j ≤ m2, belong to the MST of J2

m,γ .

Figure 6 illustrates the remaining candidate edges to join the MST. Bold edges
belong to the MST under any edge weight function. Of the remaining edges, exactly
one of each pair will join the MST, depending on the particular weight assignment to
the spoke edges of the star S0.

mhr = 

1

1

2

2

2

2

0hs = 

3

m0S S

Fig. 6. The remaining candidate edges to join the MST of J2m,γ . Bold edges belong to the MST
under any edge weight function.
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4.2. The lower bound.
Lemma 4.4. Any distributed algorithm for constructing an MST on the graphs

of the class J 2
m can be used to solve the Mail(F 2

m, h0, hm2 ,m2) problem on F 2
m with

the same time complexity.
Proof. Consider an algorithm Amst for the MST problem, and suppose that we

are given an instance of the Mail(F 2
m, h0, hm2 ,m2) problem with input string X . We

use the algorithm Amst to solve this instance of the mailing problem as follows. The
sender s = h0 initiates the construction of an instance of the MST by turning F 2

m

into a weighted graph from J 2
m, setting the edge weights as follows: for each xi ∈ X ,

1 ≤ i ≤ m2, it sets the weight variableW s
i corresponding to the spoke edge ei ∈ E(S0)

to be

W s
i =

{
3, xi = 1,
1, xi = 0.

The rest of the graph edges are assigned fixed weights as specified in subsection 4.1.
Note that the weights for all the edges except those connecting s to its immediate
neighbors in S0 do not depend on the particular input instance at hand. Hence a
single round of communication between s and its S0 neighbors suffices for performing
this assignment; s assigns its edges weights according to its input string X , and needs
to send at most one message to each of its neighbors on S0, to notify it about the
weight of the spoke connecting them.

Every vertex v in the network, upon receiving the first message of algorithm Amst,
assigns the values defined by the edge weight function ωγ to its variables W v

i . (As
discussed earlier, this does not require v to know γ, as its assignment is identical
under all weight functions ωγ , 1 ≤ γ ≤ 2m

2

.) From this point on, v may proceed with
executing algorithm Amst for the MST problem.

Once algorithm Amst terminates, the receiver vertex r determines its output for
the mailing problem, by setting Xr

i ← Y r
i for 1 ≤ i ≤ m2.

By Lemma 4.2, the lighter edge of each pair PEj , for 1 ≤ j ≤ m2, belongs to the
MST; thus in the set of variables Y r

1 , . . . , Y
r
m2 obtained by the vertex r as a result of

solving the MST problem, Y r
j = 1 corresponds to the assignment of ω(h0, v

j
0) = 3 to

the jth edge of S0, while Y
r
j = 0 corresponds to the assignment of 1 to that edge;

hence for every j, Y r
j equals xj , the jth bit of X . Hence the resulting algorithm has

correctly solved the given instance of the mailing problem.
Combined with Lemma 3.4, we now have the following theorem.
Theorem 4.5. For every m ≥ 1, any distributed algorithm for constructing an

MST on the graphs of the family J 2
m in the B model for B ≥ 3 requires Ω(m2/B)

time.
Corollary 4.6. Any distributed algorithm for the MST problem in the B model

for B ≥ 3 requires Ω(
√
n/B) time on some n-vertex graphs of diameter O(n1/4).

5. A lower bound on the mailing problem on F K
m . This section generalizes

the results of the previous section to the graphs FK
m for K ≥ 3, thus establishing the

desired lower bound.

5.1. The graphs F K
m . Given two integer parameters m,K ≥ 2, construct the

graph FK
m as follows. The two basic units are still the path and the highway, with the

following changes. The basic path P now has mK + 1 vertices, i.e.,

V (P) = {v0, . . . , vmK} and E(P) = {(vi, vi+1) | 0 ≤ i ≤ mK − 1}.
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There are K − 1 highways, denoted H1, . . . ,HK−1. The level-2 highway H� consists
of m� + 1 vertices, i.e.,

V (H�) = {h�imK−� | 0 ≤ i ≤ m�} and

E(H�) = {(h�imK−� , h
�
(i+1)mK−�) | 0 ≤ i ≤ m� − 1}.

Each highway vertex h�imK−� is connected to the corresponding path vertex vj
imK−�

by a spoke edge. Figure 7 depicts these connections for the case of m = K = 3.

1H

2H

P

h 2h

9
1h

2
0 h6 12 15 21 24 27

2
3

27
1hr = 18

2h

hh2h9
2h2 2 2h2h18

2h

1
0hs = 

Fig. 7. The connections between the path P and the highways H1 and H2 for m = K = 3.

The graph FK
m is constructed by taking mK copies of the path P, denoted

P1, . . . ,PmK

, and connecting them all to the same level-2 highway H�, for each
1 ≤ 2 ≤ K − 1. The vertex h1

0 is the intended sender s, and the vertex h1
mK is

the intended receiver r. (See Figure 8, showing the graph F 3
3 .)

ivm
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3
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2

β (i) m
2

3

v1

m

h1

h2

r = 

P 1

H1

H2

2

P

P

i

β1
(i) m

T

Fig. 8. The graph F 3
m (here also m = 3).
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The following two facts are easily verified.
Lemma 5.1. The cardinality of FK

m is n = Θ(m2K) and its diameter is Θ(Km).

5.2. The lower bound. The lower bound for the mailing problem can be ex-
tended from F 2

m to FK
m forK ≥ 3 in a natural way. Consider some arbitrary algorithm

Amail, and let ϕX denote the execution of Amail on the input X in the graph FK
m . The

notion of a tail set is generalized to FK
m for K ≥ 3 as follows. For every 1 ≤ j ≤ m,

define the tail of the path Pj as before, i.e.,

Ti(Pj) = {vjl | i ≤ l ≤ mK}.
Let β�(i) denote the least integer δ such that δmK−� ≥ i, and define the tail of H� as

Ti(H�) = {h�jmK−� | β�(i) ≤ j ≤ m�}.

The tail set of FK
m is the union of those tails,

Ti = Ti(H) ∪
⋃
j

Ti(Pj).

(See Figure 8.) Again, for i = 0 the definition is T0 = V \ {h1
0}.

The main lemma becomes the natural extension of Lemma 3.2, and its proof is
similar. The notions of configuration, collection of configurations, and absolute size ρ
of collections of possible configurations are defined in the same way as in section 3.2.

Lemma 5.2. For any 0 ≤ t < mK ,

ρ[Tt+1, t+ 1] ≤ (2B + 1)K−1 · ρ[Tt, t].
Proof. The lemma is proved by showing that in round t+1 of the algorithm, each

configuration in C[Tt, t] branches off into at most (2B +1)K−1 different configurations
of C[Tt+1, t+ 1].

Fix a configuration Ĉ ∈ C[Tt, t]. The tail set Tt+1 is connected to the rest of the
graph by the highway edges f �β�(t+1)−1 = (h�(β�(t+1)−1)mK−� , h

�
β�(t+1)mK−�), for every

1 ≤ 2 ≤ K − 1, and by the mK path edges ejt = (vjt , v
j
t+1), 1 ≤ j ≤ mK .

Consider the number of different configurations in C[Tt+1, t + 1] that may result
from Ĉ. Starting from the configuration Ĉ, each vertex vjt is restricted to a single
state, and hence it sends a single (well determined) message over the edge ejt to vjt+1,
thus not introducing any divergence in the execution. The same applies to all the
edges internal to Tt+1.

The situation with highway edges f �β�(t+1)−1 is different as there are K possible

cases. When β�(t+1) = β�(t) for 1 ≤ 2 ≤ K−1, the vertices h�(β�(t)−1)mK−� are not in

the set Tt; hence their state is not defined by the choice of Ĉ. The value passed over
the edge f �β�(t)−1 into the set Tt+1 is thus unknown. However, due to the restriction of

the B-bounded-message model, at most 2B +1 different behaviors of can be observed
by each vertex h�β�(t)mK−� , resulting in 2B + 1 possible states for each such node.

Considering the entire set {h�β�(t)mK−� | 1 ≤ 2 ≤ K − 1}, the single state Ĉ results

in (2B + 1)K−1 states of the tail set Tt+1 at time t+ 1.
In the rest of the cases, β�(t+ 1) = β�(t) + 1 for at least one 2, when passing to

the next tail set causes the exclusion of the highway point h�β�(t)mK−� from the tail

set. Here, a well defined message is sent over f �β�(t+1)−1 since the state of h�β�(t)mK−�
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is defined by the configuration Ĉ. It follows that in these cases the number of possible
states of Tt+1 is less than (2B + 1)K−1.

Altogether, the configuration Ĉ branches off into at most (2B+1)K−1 possible con-
figurations Ĉ1, . . . , Ĉ(2B+1)K−1 ∈ C[Tt+1, t+1], differing by the states σ(h�β�(t+1)mK−� , t+

1,X ). The lemma follows.
Corollary 5.3. For any 0 ≤ t < mK ,

ρ[Tt, t] ≤ (2B + 1)(K−1)t.

Letting tend denote the time it takes algorithm Amail to complete the mailing, we
derive, similar to the proof for K = 2, that necessarily

(2B + 1)(K−1)tend ≥ ρ[Ttend
, tend] ≥ 2m

K

,

implying the following.
Lemma 5.4. For every K,m ≥ 2, solving the mailing problem Mail(FK

m , h
1
0, h

1
mK ,

mK) in the B model requires Ω(mK/(BK)) time.

6. A generalized lower bound on the MST on J K
m . Finally, we show the

lower bound for the MST problem on the weighted versions of the graphs FK
m .

6.1. The graph families J K
m . Let us define the families of weighted graphs

JK
m . For every two integers m,K ≥ 2, let

JK
m = {JKm,γ = (FK

m , ω
K
γ ) | 1 ≤ γ ≤ 2m

K},

where ωKγ is the weight function defined as follows. All the edges of the highways H�

for 1 ≤ 2 ≤ K − 1 and the paths Pj for 1 ≤ j ≤ mK are assigned zero weight. It
remains to assign the weights to the spoke edges.

Consider a subgraph of FK
m , consisting of all the available paths Pj , 1 ≤ j ≤ mK ,

a single highway H� and all the connections of this highway to the paths. Consider a

single node h�imK−� of the highwayH� and the set of all its connections to P1, . . . ,PmK

.

Following the terminology of the caseK = 2, this is termed the level-2 star SK,�
m,i . There

are m� such stars at level 2.
Consider the collection of the stars SK,�

m,i for 1 ≤ i ≤ m� , 2 ≤ 2 ≤ K − 1
(excluding the first star of each level 2). The spokes of these stars are assigned the

weight 4. The spokes of the first star of each level, SK,�
m,0, are assigned as follows. The

spokes connecting the star centers h�0, 1 ≤ 2 ≤ K − 1 to the extreme vertex v10 of the
path P1 are assigned zero weight. The rest of the spokes are assigned the weight 4.

For the collection of the level-1 stars, SK,1
m,i , the assignment is as follows. The

spokes of all the stars except the two extreme ones, SK,1
m,0 and SK,1

m,m, are assigned

the weight 4. The spokes of the last star SK,1
m,m are assigned weight 2. The weight

assignment to the mK spokes of the star SK,1
m,0 depends on the particular function ωKγ ,

with each spoke assigned a value of either 1 or 3, as in section 4.2.
Lemma 6.1. No spoke edge of weight 4 belongs to the MST of JKm,γ for every

1 ≤ γ ≤ mK .
Proof. Following the proof of Lemma 4.1, it can be shown that the elimination

of all spoke edges of weight 4 from the graph JKm,γ leaves the graph connected. Since
all the edges of all the highways and basic paths have zero weight, none of their
edges is eliminated. Consider the connectivity of the highway H1 and the basic paths
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P1, . . . ,PmK

. By construction, the spokes of two stars, namely, SK,1
m,0 and SK,1

m,m, have
edges of weight at most 3, which guarantees that every basic path is connected to H1.
The rest of the highways H�, for 2 ≤ 2 ≤ K − 1, are connected to the node v10 of the
basic path P1 by their nodes h�0 via a zero-weight edge. Thus all the highways are
connected to the path P1 and through it to the highway H1 and all the other basic
paths.

Hence every spoke edge of weight 4 occurs as the heaviest edge on some cycle in
the graph, implying the lemma.

Lemma 6.2. For every 2 ≤ 2 ≤ K − 1, the edge (h�0, v
1
0) belongs to the MST.

Proof. By Lemma 6.1, no spoke edge of weight 4 belongs to the MST. By con-
struction, each of the highways H� for 2 ≤ 2 ≤ K − 1 is connected to the rest of
the graph by spokes of weight 4 and by a single zero-weight spoke of the star SK,�

m,0

connecting it to P1. Thus in order for the MST to be connected, the zero-weight edge
must belong to the MST.

Let us pair the spoke edges of SK,1
m,0 and SK,1

m,m connectingH1 to Pj for 1 ≤ j ≤ mK ,

denoting the jth pair (for 1 ≤ j ≤ mK) by

PEj = {(s, vj0), (r, vjmK )}.

By a proof similar to that of Lemma 4.2, we get the following lemma.

Lemma 6.3. For every 1 ≤ j ≤ mK , exactly one of the two edges of PEj belongs
to the MST of JKm,γ , namely, the lighter one.

6.2. The generalized lower bound on distributed MST. We obtained an
instance of the MST problem, in which the membership of edges in the MST is
predetermined for all but the mK edge pairs PEj . Following the proof method of
Lemma 4.4, we show that any algorithm solving the distributed MST problem on JK

m

can be used for solving the mailing problem in the same time complexity, implying
the following.

Theorem 6.4. For every m,K ≥ 2, any distributed algorithm for constructing an
MST on the graphs of the family JK

m in the B model for B ≥ 3 requires Ω(mK/(BK))
time.

Proof. Consider an algorithm Amst for the MST problem, and suppose that we
are given an instance of the Mail(FK

m , h
1
0, h

1
mK ,m

K) problem with input string X .
We use the algorithm Amst to solve this instance of the mailing problem as follows.
The sender s = h1

0 initiates the construction of an instance of the MST by turning
FK
m into a weighted graph from JK

m , setting the edge weights as follows: for each
xi ∈ X , 1 ≤ i ≤ mK , it sets the weight variable W s

i corresponding to the spoke edge

ei ∈ E(SK,1
m,0) (the first 1-level star), to be as in the proof of Lemma 4.4. The rest of the

graph edges are assigned fixed weights as specified in section 6.1. Note that again, the
weights for all the vertices except s and its immediate neighbors in SK,1

m,0 do not depend
on the particular input instance at hand; hence a single round of communication
between s and its SK,1

m,0 neighbors suffices for performing this assignment.

From this point on, we may proceed with executing algorithm Amst for the MST
problem. Once algorithm Amst terminates, the receiver r determines its output for
the mailing problem, by setting Xr

i ← Y r
i for 1 ≤ i ≤ mK .

The fact that the resulting algorithm has correctly solved the given instance of
the mailing problem is established as in the proof of Lemma 4.4, relying on Lemma
6.3. The theorem now follows from Lemma 5.4.
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Corollary 6.5. For every K ≥ 2, there exists a family of n-vertex graphs of
diameter O(Kn1/(2K), ) such that any distributed algorithm for the MST problem in
the B model for B ≥ 3 requires Ω(

√
n/(BK)) time on some of those graphs.

Corollary 6.6. For every n ≥ 2, there exists a family of n-vertex graphs of
diameter O(log n) such that any distributed algorithm for the MST problem in the B
model for B ≥ 3 requires Ω(

√
n/(B log n)) time on some of those graphs.

Finally, let us comment that it has recently been shown that using Yao’s method
[Yao77] it is possible to extend the lower bound of Lemma 5.4 on the mailing problem
into a lower bound on the expected time complexity of any randomized (Las Vegas)
distributed algorithm for the mailing problem (see [P00, Chapter 24, Exercise 9]).
This, in turn, yields the following lower bound on the time complexity of randomized
algorithms for distributed construction: For every n ≥ 2, there exists a family of
n-vertex graphs of diameter O(log n) such that any randomized Las Vegas distributed
algorithm for the MST problem in the B model requires Ω(

√
n/(B log n)) expected

time on some of those graphs.

7. Open problems. Several interesting problems can be considered for future
research. The first direction concerns the limitations of the presented lower bound.
To begin with, the lower bound does not seem to extend to diameters lower than
O(log n). As graphs with D = 1 admit an O(log n) distributed algorithm for MST
construction, one may expect an interesting interdependence between the time to
construct an MST and the network’s diameter.

Second, one may consider a model allowing L-bit edge weights for L > B. While
our lower bound still holds, stronger bounds may apply. Note that the transmission
of an edge weight can be carried out in this model by sending Θ(L/B) separate
messages. Hence each of the existing algorithms for distributed MST can be adapted
to this model with a multiplicative slowdown of L/B. The algorithm of [KP98], for
instance, will have time complexity O((D+

√
n log∗ n)L/B). However, it is less clear

whether this slowdown is necessary or if it can be avoided. It seems easy to verify
(say, by considering a ring with two diametrically opposing edges having the extreme
weights) that Ω(L/B) is indeed a lower bound on the time complexity of the problem
in this model. However, it is plausible that the algorithm of [KP98] can be modified
using pipelining ideas to yield a time complexity close to O(D +

√
n log∗ n+ L/B).

Another research direction is to try to reduce the communication complexity of
the nearly time optimal algorithm of [KP98] from O(|E| + n3/2) towards the lower
bound of O(|E|+ n log n).

Finally, one may consider the possibility of devising faster algorithms that con-
struct an approximation to the MST, namely, a spanning tree whose total weight is
near-minimum. To the best of our knowledge, nothing nontrivial is currently known
about this problem, and little is known about distributed approximation algorithms
in general, but this direction may well deserve further study.
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