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ABSTRACT
The design of distributed approximation protocols is a rela-
tively new rapidly developing area of research. However, so
far little progress was done in the study of the hardness of
distributed approximation.

In this paper we initiate the systematic study of this
subject, and show strong unconditional lower bounds on
the time-approximation tradeoff of the distributed minimum
spanning tree problem, and some of its variants.

Categories and Subject Descriptors
F.2.3 [Analysis of Algorithms and Problem Complex-
ity]: Tradeoffs between Complexity Measures

General Terms
Theory

Keywords
Minimum Spanning Tree, Hardness of Approximation

1. INTRODUCTION

1.1 Distributed Computing
Consider a synchronous network of processors with un-

bounded computational power, modeled by an n-vertex graph.
The initial knowledge of the processors (henceforth, vertices)
is very limited. Specifically, each of them has its own local
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perspective of the network (henceforth, graph), which is con-
fined to its immediate neighborhood. The vertices, however,
have to compute some global function of the graph, such as
its minimum spanning tree (henceforth, MST ).

For this end distributed algorithms (henceforth, protocols)
are designed. There are several measures of efficiency of
protocols, but in this paper we restrict our attention to one
of them, called the running time, which is defined as the
number of rounds of distributed communication. On each
round of communication at most B bits can be sent through
each edge, and B is a parameter of the model. The running
time efficiency measure of protocols naturally gives rise to a
complexity measure of problems, called time complexity.

The design of efficient protocols for this model, as well
as proving lower bounds on their efficiency, is a vivid area
of study known as locality-sensitive distributed computing
(henceforth, distributed computing) (see [24] and the refer-
ences therein).

1.2 Distributed Approximation and Hardness
of Approximation

While traditionally the research in the area of distributed
computing concentrated on designing protocols that solve
the problem at hand exactly, some of the more recent re-
search focuses on providing approximate solutions for various
distributed problems. Most notably, several approximation
protocols were recently devised for the minimum dominating
set problem [18, 9, 21], and for the minimum edge-coloring
problem [26, 10, 17, 4]. Also, an approximation protocol for
the maximum matching problem was recently devised in [7].

However, the situation with lower bounds on approxima-
bility of distributed problems is by far less satisfactory. Specif-
ically, the existing results on hardness of distributed approx-
imation can be divided to two categories.

First, there are inapproximability results that are based
on lower bounds on the time required for exact solution of
certain problems, and on integrality of the objective func-
tions of these problems. For example, there is a classical
result due to Linial [22] saying that 3-coloring an n-vertex
ring requires Ω(log∗ n) time. In particular, it implies that
any 3/2-approximation protocol for vertex-coloring problem
requires Ω(log∗ n) time.

Second, there are inapproximability results that assume
that the vertices are computationally limited, e.g., are al-
lowed to perform at most polynomial in n number of oper-
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ations. Obviously, under this assumption any NP-hardness
inapproximability result immediately gives rise to an analo-
gous result in the distributed model.

Note, however, that neither of these inapproximability re-
sults sheds a new light on our understanding of the limita-
tions of distributed computing. Specifically, the results of
this sort are just somewhat different semantic interpreta-
tions of already known lower bounds. Additionally, we be-
lieve that imposing restrictions on the computational power
of the vertices is as unnatural as limiting the computational
power of the parties in the two-party communication com-
plexity model (see [19]). In both cases the abstraction of
computationally unbounded vertices or parties is necessary
to make possible the study of the role that communication
plays in computation (see also [22, 24]).

To summarize, while sophisticated distributed approxi-
mation protocols were developed for various problems, so
far no real progress was made in the study of the hard-
ness of distributed approximation. In this paper we initi-
ate the systematic study of this subject. Specifically, we
study the inapproximability of the distributed MST prob-
lem, and show strong unconditional lower bounds on the
time-approximation tradeoffs for this problem and some of
its variants.

1.3 Distributed MST Problem
The (distributed) MST problem is one of the most im-

portant problems in the area of distributed computing, and
was subject of extensive research [13, 8, 16, 1, 14, 20, 25,
23, 11].

The most time-efficient protocol known for this problem is
due to Elkin [11], and its running time is O(µ(G, ω) · log3 n+q

n log∗ n
B

log n), where µ(G, ω) stands for the MST-radius

of the weighted graph (G, ω). The definition of the MST -
radius µ(G, ω) is somewhat involved (see [11]), but for the
rest of this discussion it is sufficient to keep in mind that for
any graph (G, ω), µ(G, ω) ≤ Λ(G) ≤ n, where Λ(G) stands
for the unweighted diameter of the graph G.

On the negative side, Peleg and Rubinovich [25] have

shown a lower bound of Ω(
√
n
B

) on the time complexity of
the MST problem restricted to graphs of small diameter (at
most O(nδ) for arbitrarily small positive δ > 0).

In this paper we show that approximating1 theMST prob-
lem within a ratio H on graphs of small diameter requires
T = Ω(

p
n

H·B ) time. In other words, we derive an uncon-
ditional lower bound on the time-approximation tradeoff for
the MST problem, specifically, T 2 ·H = Ω( n

B
). Substituting

H = O(1) into this formula shows that approximating the
MST problem within any constant factor requires Ω(

p
n
B

)

time, improving the lower bound of [25] by a factor of
√

B
(recall that the lower bound of [25] applies only for the exact
solution of the MST problem).

Moreover, our lower bound implies that for any 0 < ε < 1,

approximating the MST problem within a factor of
�
n
B

�1−ε

requires Ω
��

n
B

�ε/2�
time. The latter means, in particular,

that the
�
n
B

�1−ε
-approximate MST problem is not a local

problem, i.e., cannot be solved in time polylogarithmic in n.
This lower bound, like all the other lower bounds that we
prove in this paper, applies even to randomized1 protocols.

We remark that lower bounds on time-approximation trade-
offs are rather rare even outside the area of distributed com-

puting. In the standard Turing machine model of com-
putation, a huge body of research on hardness of approx-
imation is being conducted (see, e.g., [3] and the references
therein). However, it seems that the only lower bounds on
time-approximation tradeoffs in this model are implicit. One
example is the maximum clique problem, where strengthen-
ing the complexity-theoretic assumptions leads to stronger
lower bounds [12]. Implicit lower bounds on
time-approximation tradeoffs were also shown by Chakrabarti
et al. [6] in the cell-probe model of computation for the
nearest-neighbor problem. Finally, in the context of prop-
erty testing such lower bounds are explicit, but it should be
noticed that in that context a different notion of approxi-
mation is employed.

1.4 Additional Results
One direction of recent research on the distributed MST

problem was to refine the lower bound of Peleg and Ru-
binovich [25] that applies to the exact computation of the
MST on graphs G with diameter Λ(G) = O(nδ), 0 < δ <
1/2, and to prove similar lower bounds for the MST prob-
lem restricted to graphs of even smaller diameter. Specif-
ically, Peleg and Rubinovich themselves [25] have shown a

lower bound of Ω(
√
n

B·log n ) for the MST problem restricted

to graphs G of diameter Λ(G) = O(log n), and Lotker et

al. [23] have shown lower bounds of Ω(n
1/3

B
) (respectively,

Ω(n
1/4

B
)) for the MST problem restricted to graphs of diam-

eter Λ(G) ≤ 4 (resp., Λ(G) ≤ 3). Recall that all these lower
bounds apply only to the exact MST problem.

In addition to the lower bound on the time-approximation
tradeoff for the general variant of the MST problem, we also
show a lower bound on the time-approximation tradeoff for
the MST problem restricted to graphs of diameter Λ(G) ≤
Λ, for Λ = 3 and all even Λ in the range 4 ≤ Λ = O(log n).
Specifically, denoting the running time of an approximation
protocol by T , and its approximation ratio by H , we show

that T 2+ 2
Λ−2 · H = Ω( n

Λ·B ).
Note that this result improves all the previous lower bounds

for the exact computation of the MST . Specifically, it im-
proves the result of [25] for Λ = O(log n) by a factor of√

B · log n, and the results of [23] for Λ = 4 (resp., Λ = 3)

by a factor of B2/3 (resp., B3/4). Moreover, our result gives

rise to a lower bound of Ω(( n
B

)1/2−ε) for the exact compu-
tation (or even approximation within any constant factor)
of the MST on graphs of constant diameter O(1/ε), signifi-
cantly improving the previously best-known lower bound of

Ω(n
1/3

B
). Table 1 summarizes the previously known lower

bounds on the time complexity of the MST problem re-
stricted to graphs of diameter at most Λ, parameterized by
Λ, along with our improved lower bounds on this problem.

On the positive side, we devise an H-approximation pro-
tocol for the MST problem with running time O(Λ(G) +
ωmax
H−1

· log∗ n), where ωmax is the ratio between the maxi-
mal and the minimal weight of an edge in the input graph
(G, ω). It follows that the approximate MST problem be-
comes easy when ωmax is small (our lower bounds on the H-

approximate MST problem apply for ωmax = Ω(
√

n·H3/2)).

Structure of the paper: Our main result (the lower bound

1See Section 2 for the formal definitions of the notions of
approximation and randomization in this context.
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Λ Lower bound Our improved Our lower bound on
on the exact lower bound on the the time-approximation
computation exact computation tradeoff

nδ , Ω(
√
n
B

) Ω(
p

n
B

) T 2 · H = Ω( n
B

)
0 < δ < 1/2 [25]

Θ(log n) Ω(
√
n

B·log n ) [25] Ω(
q

n
B·log n ) T 2 · H = Ω( n

B·log n )

Constant Ω(n
1/3

B
) Ω(( n

B
)

1
2− 1

2Λ−2 ) T 2+ 2
Λ−2 · H = Ω( n

B·Λ )
(at least 3) [23]

4 Ω(n
1/3

B
) [23] Ω(( n

B
)1/3) T 3 · H = Ω( n

B
)

3 Ω(n
1/4

B
) [23] Ω(( n

B
)1/4) T 4 · H = Ω( n

B
)

Table 1: The summary of previously known and new lower bounds on the MST problem restricted to graphs
of diameter at most Λ.

of T 2 ·H = Ω( n
B

) on the time-approximation tradeoff for the
general variant of the MST problem) is proved in Section 3.
In Section 4 we describe our approximation protocol for the
MST problem.

2. PRELIMINARIES
For a graph G = (V, E), a spanning tree is an acyclic

connected subgraph τ = (V, E′), E′ ⊆ E. For a weighted
graph (G = (V, E), ω) with a non-negative weight function
ω : E → R, a minimum spanning tree (MST) is a spanning
tree τ = (V, E′) with minimum weight ω(τ ) =

P
e∈E′ ω(e).

An H-approximate MST τ for a graph (G, ω) is a spanning
tree of weight that is at most H times greater than the
weight of the MST of the graph (G, ω). A protocol Π is said
to be an H-approximation for the MST problem if for every
input graph (G, ω) it outputs an H-approximate MST τ .

Our lower bounds apply to randomized protocols with
bounded worst-case running time. In other words, these pro-
tocols necessarily terminate within specified time bounds,
but they are allowed to err with some constant probabil-
ity 0 < q < 1/2. Two possible types of error are allowed.
First, a protocol may produce a subgraph of the input graph
(G, ω) that is not an H-approximate MST of (G, ω). This
subgraph may contain cycles or multiple connectivity com-
ponents. Secondly, the protocol may return ⊥, indicating
that it failed to compute the correct answer.

For a pair of vertices u, w ∈ V , we denote by distG(u, w)
the unweighted distance between u and w in the graph G =
(V, E).

3. LOWER BOUNDS ON THE
TIME-APPROXIMATION TRADEOFFS

3.1 The CorruptedMail Problem
In this section we show a lower bound on the tradeoff be-

tween the possible approximation ratio for the MST prob-
lem and the running time of a distributed protocol that may
achieve this approximation ratio.

We start with describing the family of graphs that will be
used in the proof of our lower bounds.

For a sufficiently large positive integer n, let Γ, m and
p be positive integer parameters that satisfy p ≤ log n and

(m + 1)Γ + (m+1)1+1/p−1

(m+1)1/p−1
= n. Let d = (m + 1)1/p (assume

that d is integer; non-integrality issues affect only lower-
order terms of our results, and are, therefore, ignored).

Consider a family G of graphs that contains one unweighted
n-vertex graph Gn = (Vn, En) for infinitely many positive
integers n. The vertex set Vn is comprised of Γ vertex-
disjoint paths P1, P2, . . . , PΓ with m + 1 vertices each, and
a d-regular tree τ of depth p with its own vertex set V (τ )

(that is disjoint from
SΓ

i=1 V (Pi)). Observe that |V (τ )| =

1+d+ . . .+dp = dp+1−1
d−1

= (m+1)1+1/p−1

(m+1)1/p−1
. Let rt be the root

of τ , i.e., the only vertex that had degree d in τ ; all the other
vertices have either d children and a parent, or they have
only a parent. The latter vertices are called leaves of τ . Let
s = z0, z1, . . . , zm = r denote the leaves of τ . The edge set of
the graph Gn consists of the edge set E(τ ) of the tree τ , the

edge set
SΓ

j=1 E(Pj) of the Γ paths P1, P2, . . . , PΓ, and m+1

stars Si, i = 0, 1, . . . , m. Let Pj = (v
(0)
j , v

(1)
j , . . . , v

(m)
j ), j =

1, 2, . . . , Γ, denote the vertices of the path Pj , j = 1, 2, . . . , Γ.
Then the edge set of the star Si, for i = 0, 1, . . . , m, is the

set {(zi, v
(i)
j ) | j = 1, 2, . . . , Γ} of edges. (See Figure 1.)

Family Gω of weighted graphs contains 2Γ n-vertex graphs
for each n such that Gn ∈ G. Each of these 2Γ graphs has
the vertex set Vn and the edge set En, but the weights of
edges are different for at least one edge in any two distinct n-
vertex graphs of Gω. The edges of the paths P1, P2, . . . , PΓ,
as well as the edges of the tree τ , are all of weight zero in all
2Γ graphs. The edges of the stars Si for i = 1, 2, . . . , m − 1
are all of weight infinity in all 2Γ graphs. All the edges of
the star Sm have unit weight in all 2Γ graphs. Each of the
Γ edges of the star S0 may have weight zero or infinity.

The family G of unweighted graphs generalizes the family
(that we refer to as G′′) of unweighted graphs that was used

in [23] to prove a lower bound of Ω(n1/3/B) on the number
of rounds that are required for a distributed protocol to
compute exact MST on graphs of diameter 4. However, the
choice of weights above is inherently different from the one
used in [23], and this difference will be discussed below.

Consider the MST problem restricted to the family Gω

of graphs. We will show that for any 1 ≤ H = o(n), any
distributed protocol that given a graph G ∈ Gω constructs

an H-approximateMST for G requires Ω(( n
p·B·H )

1
2− 1

2(2p+1) )
rounds.

This proof is done by a reduction from a problem of dis-
tributed delivery of information throughout the graphs of
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Figure 1: The family G. The edges of the tree τ and of the paths P1, . . . , PΓ have weight zero. The edges of the “internal” stars
S1, . . . , Sm−1 have infinite weights. The edges of the right-most star Sm have unit weights, and the edges of the left-most star S0

have weights zero or infinity, depending on the particular graph.

family G. The problem, referred by us as CorruptedMail
problem, generalizes the mailing problem of [25, 23] in two
senses. First, the family G of graphs is somewhat more gen-
eral than the corresponding families G′ and G′′ in [25, 23],
and this enables us to get lower bounds that are parame-
terized on the diameter. Secondly, the mailing problem of
[25, 23] requires exact delivery of all the input bits, whereas
our CorruptedMail problem allows the protocol to make a
restricted number of one-sided errors (i.e., some zero input
bits might be delivered as ones, but not vice versa). This
modification is geared to capture the situation when the (or-
acle) protocol for theMST problem (its existence is assumed
by the reduction) does not compute the exact MST , as it
is assumed in [25, 23], but rather provides to the reduction
some (possibly very loose) approximation of it.

Let α and β, 0 < α < β < 1, be two additional parameters
of the construction that will be fixed later. For a bit string
χ ∈ {0, 1}Γ and an index j = 1, 2, . . . , Γ, let χj denote the
jth bit of χ. The Hamming weight of χ, denoted hwt(χ),
is the number of indices j = 1, 2, . . . , Γ such that χj = 1.
For two bit strings χ, χ′ ∈ {0, 1}Γ, the string χ′ is said to
dominate χ if for each j = 1, 2, . . . , Γ, χj = 1 implies χ′

j = 1.

Consider some mapping φ : {0, 1}Γ → {0, 1}Γ, and suppose
φ(χ) = χ′. The mapping φ is said to make an error of the
the first (respectively, second) type in the j’th position, if
χj = 0 and χ′

j = 1 (resp., χj = 1 and χ′
j = 0).

CorruptedMail(α, β) problem is defined on unweighted
graphs Gn ∈ G. Recall that for each graph G ∈ G, there
are two designated vertices s and r, s, r ∈ Vn. The input
to this problem is a bit string χ ∈ {0, 1}Γ of length Γ with
Hamming weight hwt(χ) = αΓ. The input is provided to
the vertex s only. The output, returned by the vertex r, is a
string χ′ ∈ {0, 1}Γ of Hamming weight at most βΓ, and it is
required that the output string χ′ will dominate the input
string χ. As the parameters α and β are fixed throughout
this section, we will refer to CorruptedMail(α, β) problem
as CorruptedMail problem.

CorruptedMail problem is a generalization of Mail prob-

lem. Mail problem was introduced in [25], and used later
on in [23]. It was defined on graphs of families G′ and G′′

(in [25] and [23], respectively), and each graph G ∈ G′ ∪ G′′

has a pair of designated vertices, s and r (like each graph in
the family G has). The input to this problem is also a bit
string χ ∈ {0, 1}Γ, and the input is provided to the vertex
s only. However, in Mail problem χ may be an arbitrary
bit string of length Γ, and it is not required to have a Ham-
ming weight of αΓ. More importantly, the output of Mail
problem, returned by the vertex r (as in CorruptedMail
problem), should be the bit string χ (in other words, the
output bit string χ′ is required to be equal to the input bit
string χ). This condition is far more restrictive then the
condition that we introduced in CorruptedMail problem,
specifically, that χ′ should dominate χ and have Hamming
weight at most βΓ.

Observe, however, that the restriction that χ′ should dom-
inate χ guarantees that the errors that are done throughout
the delivery of the bit string χ are one-sided (i.e., all the
errors are of the first type). This is in contrast to the usual
setting of error-correcting codes, where two-sided error is al-
lowed. One of the crucial properties required for a reduction
from CorruptedMail problem to approximate MST prob-
lem to work is that approximating theMST with sufficiently
small factor causes only one-sided errors in the delivery of
the bit string χ. In our reduction, the latter is ensured by an
appropriate choice of the weights of the edges in Gω. This
is the essential difference between our choice of weights of
edges for Gω, and choices of weights of edges in analogous
families of graphs in [25] and [23].

We remark that enabling a symmetric two-sided error er-
ror in CorruptedMail problem, and using error-correcting
codes (with possible list-decoding) directly would also lead
to a proof of hardness of distributed approximation of the
MST problem within some small constant factor (smaller
than 2, to the best of our knowledge). The bottleneck in
this case is the fact that corrupting a bit string χ that has
Hamming weight αΓ in at least αΓ arbitrary positions in
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an arbitrary way may make the string almost indistinguish-
able from a string that is drawn out of the uniform dis-
tribution over all the strings of Hamming weight at most
2αΓ, even from information-theoretic point of view. How-
ever, this is not the case when only one-sided error is al-
lowed. Then, as we will show, one can allow (β − α)Γ cor-
rupted positions for 1 > β � α > 0, and still the corrupted
string χ′ will carry on a significant amount of information
(roughly, Γ · α · log(1/β) bits for sufficiently small positive
α > 0; note that the amount of information carried by χ is
Γ · Entropy(α) = Γ · (α log(1/α) + (1 − α) log(1/(1 − α)))).
This way, we are able to prove a hardness of distributed ap-
proximation of theMST problem within a factor of, roughly,
1/α, for arbitrarily small α > 0.

As we mentioned, to ensure one-sided error of the reduc-
tion, an appropriate setting of the weights of edges of graphs
in Gω is required. The setting that we described has, how-
ever, the drawback of huge ratio, denoted ωmax, between the
biggest weight of an edge and the smallest one. Specifically,
it is ∞

0
. It is easy to see, however, that this ratio can be re-

duced to O(n2). However, if one wants to get an even smaller
ωmax, it is no longer possible to guarantee a one-sided error
in the delivery of the bit string χ in the reduction. Never-
theless, it can be shown that controlling the ratio between
n2 and ωmax controls also the number of errors of the second
type. In this case we get to a situation when the delivery
may suffer an asymmetric two-sided error, with a huge pos-
sible number of errors of the first type (specifically, (β−α)Γ
for some 1 > β � α > 0), and a reasonably small number of
errors of the second type (specifically, some constant fraction
of αΓ). This way one can achieve the same lower bound on
time-approximation tradeoff as in the case that ωmax = ∞

0

(that is, T 2 · H = Ω(n/B)), but with ωmax =
√

n · H3/2,
which is significantly smaller than n2 for most values of H .
The details of this argument are omitted from this extended
abstract.

For 0 < α < β < 1, let

l(α, β) = (β − α) log(β − α) (1)

− (1 − α) log(1 − α) − β log β .

Lemma 3.1. For any deterministic protocol Π for the
CorruptedMail(α, β) problem, its set of all possible out-
puts {Π(χ) | χ ∈ {0, 1}Γ, hwt(χ) = αΓ} contains at least
Ω(2l(α,β)Γ) elements.

Proof. Let A = {χ ∈ {0, 1}Γ | hwt(χ) = α · Γ} be the
set of all possible bit strings that may serve as input for
the vertex s. Let Υ = {χ′ ∈ {0, 1}Γ | hwt(χ′) ≤ β · Γ} be
the set of all possible bit strings that may be returned by
the vertex r. Consider the bipartite graph (A, Υ, E(A, Υ))
with A serving as the set of left-hand vertices, Υ serving
as the set of right-hand vertices, and E(A, Υ) = {(χ, χ′) |
χ ∈ A, χ′ ∈ Υ s.t. χ′ dominates χ}. Observe that |A| =�

Γ
αΓ

�
= Γ!

(αΓ)!((1−α)Γ)!
. Consider some bit string χ′ ∈ Υ. The

number of the bit strings χ ∈ A that are dominated by χ′

is at most D =
�
βΓ
αΓ

�
= (βΓ)!

((β−α)Γ)!(αΓ)!
.

A subset Υ′ ⊆ Υ is said to dominate the set A, if for
each bit string χ ∈ A there exists a bit string χ′ ∈ Υ′ that
dominates χ. As each bit string χ′ ∈ Υ may dominate at
most D bit strings of A, it follows that any subset Υ′ ⊆ Υ

that dominates A has cardinality at least

|Υ′| ≥ |A|
D

=
Γ!((β − α)Γ)!

((1 − α)Γ)!(βΓ)!
.

Using Stirling formula to approximate the factorials, we get

|Υ′| ≥
�

(β − α)β−α

(1 − α)1−αββ

�Γ

·
s

β − α

(1 − α)β
· (1 − o(1)) .

For β and α such that β − α > 0 is at least some constant

it follows that |Υ′| = Ω(
�

(β−α)β−α

(1−α)1−αββ

�Γ

).

Let h(α, β) = (β−α)β−α

(1−α)1−αββ , and note that

l(α, β) = log h(α, β). It follows that |Υ′| = Ω(2l(α,β)Γ), for
any subset Υ′ ⊆ Υ of bit strings that dominate A.

We next show that for any protocol Π with worst-case
running time at most t for t in certain range, its set of pos-
sible outputs (over all possible inputs) is small, namely, at
most exponential in t. (To argue this we use determinism of
the protocol, and that the vertex r that returns the output
could not get too much information about the input.) It
will follow that the running time t of a protocol Π cannot
be too small, unless the protocol Π is incorrect. To prove
an upper bound on the size of the set of possible outputs
of any correct protocol, we show that the set of all possible
configurations of the vertex r is small as function of t.

For some fixed sufficiently large n, consider again the
graph G = (V, E) = Gn ∈ G that was described in the
beginning of the section. Intuitively, we next argue that in-
formation can be delivered through Gn from s to r in quite a
slow rate. Similar statement was proven in [25, 23] regarding
somewhat different families of graphs G′ and G′′.

Our proof has a similar structure to that of [25], but as
the structure of the family G is somewhat more complicated
than that of G′ or G′′, the proof requires more delicate ar-
gument. Basicly, all the three proofs (due to [25], [23], and
ours) construct a sequence of low-capacity cuts, and argue
that each bit has to cross all these cuts. As the cuts have low
capacities, no cut can be crossed by “many” bits simultane-
ously, implying a lower bound on the number of rounds of
distributed computation. However, while the choice of the
cuts and the proof that they have low capacity are rather
straightforward in [25, 23], it is somewhat more involved in
our case.

The lower bounds in [23] on the exact computation of the
MST on graphs with constant diameter (specifically, 3 and

4) are no bigger than Ω(n1/3/B). Our construction enables

to get a lower bound of Ω((n/B)1/2−ε) for any ε > 0 for
graphs with constant diameter (equal to O(1/ε)) on approx-
imate computation of the MST . For the specific case of
diameter 3 and 4 our construction improves
the lower bounds of [23] by factors B3/4 and B2/3, respec-
tively.

We remark that one could use the family of graphs of
[25] to prove a somewhat weaker lower bound on the time-
approximation tradeoff of the MST problem restricted to
graphs with diameter at most polynomial in n, and the fam-
ily G in our proof is required to prove such a tradeoff for
this problem restricted to graphs of constant diameter, and
obtaining a stronger lower bound for the general problem.
This simpler version of our result (that uses the family G′

of [25] and does not introduce the family G) could actually
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be proved by defining appropriate weights for the edges of
the graphs of the family G′, and proving the lower bound
on distributed complexity of the CorruptedMail problem
on G′. (However, the different choice of weights is crucial to
ensure the one-sided error, as was already discussed.)

For a rooted tree (τ ′, rt ′), let the ancestor-descendent (resp.,
parent-child) relation, denotedAD(τ ′, rt ′) (resp., PC (τ ′, rt ′)),
be the set of pairs of vertices (u, w) ∈ V (τ ′)2 such that the
vertex u is an ancestor (resp., parent) of the vertex w in
the tree (τ ′, rt ′). For a vertex u ∈ V (τ ′), let par (τ ′,rt′)(u)

denote the parent of u in the rooted tree (τ ′, rt ′).
Recall that the graph G = Gn contains as a subgraph the

d-regular rooted tree (τ, rt) of height p, with m + 1 leaves
s = z0, z1, . . . , zm = r. For i = 0, 1, 2, . . . , m, let τ (i) de-
note the connected subtree of τ with minimal number of
vertices, such that its set of leaves, Leaves(τ (i)), is equal to
{zi, zi+1, . . . , zm}. Let the root of τ (i), denoted rt(τ (i)), be
the closest vertex of τ (i) to the root rt of the tree τ .

Observe that for any pair of vertices (x, y) ∈ AD(τ, rt)
such that x, y ∈ V (τ (i)) for some i = 0, 1, . . . , m, (x, y) ∈
AD(τ (i), rt(τ (i))). Also, AD(τ (i), rt(τ (i))) ⊆ AD(τ, rt), for
each i = 0, 1, . . . , m. Note that both statements are true for
the parent-child relation PC as well.

We define the tail sets, T0, T1, . . . , Tm as follows. The
tail set T0 contains the entire vertex set V of G except the
vertex s, i.e., T0 = V \ {s}. For i = 1, 2, . . . , m, Ti =

{v(i′)
j | j = 1, 2, . . . , Γ, i′ = i, i + 1, . . . , m} ∪ V (τ (i)). Fix

also some arbitrary total order ψ on on the vertex set V ,
and let 3Ti = ψ(Ti) denote the ordered sequence of elements
of Ti, for i = 0, 1, . . . , m.

Consider some protocol Π for the CorruptedMail prob-
lem, and consider an execution ϕχ of this protocol on some
input bit string χ. Let the state of the vertex v at the begin-
ning of round t during the execution ϕχ of the protocol Π,
denoted σ(v, t, χ), be the deg(v)-tuple of sequences of mes-
sages that the vertex v received on its incoming links. For
the vertex s, the state of s also includes the input string
χ. (Other vertices receive no input in the CorruptedMail
problem.)

For some subset U ⊆ V of vertices, such that
3U = (u1, u2, . . . , u�), let configuration of U in the execution
ϕχ at the beginning of round t, denoted C(U, t, χ), be the se-
quence of states (σ(u1, t, χ), σ(u2, t, χ), . . . , σ(u�, t, χ)). Let
C(U, t) denote the collection of all possible configurations of
the subset U at the beginning of round t over all possible
executions ϕχ (i.e., for all possible legal input bit strings χ;
given a bit string, the execution ϕχ is fixed). Let ρ(U, t)
denote the cardinality of C(U, t).

In what follows let us assume that the rounds are indexed
starting from 0 and not from 1. Obviously, this may affect
the lower bounds by at most an additive term of 1. At
the beginning of round t = 0, i.e., at the beginning of the
execution of the protocol, all the vertices except s are in
some fixed initial state, that is independent of the input bit
string χ. Hence, ρ(T0, 0) = ρ(V \{s}, 0) = 1. We next prove
an upper bound on the number of configurations of the tail
set Tt, after relatively small number of rounds t ≤ m − 1.

Lemma 3.2. For t = 0, 1, . . . , m − 1, ρ(Tt, t) ≤ (2B+1 −
1)t·p·d.

Proof. The proof is by induction on t. The induction
base was argued above. We next prove the induction step.

Observe that T0 ⊇ T1 ⊇ . . . ⊇ Tm. Suppose we are given
a configuration C ∈ C(Ti, i). Note that C uniquely deter-
mines the messages that are sent at round i by vertices of
Ti. Therefore, the only messages that may cause multi-
ple configurations of Ti+1 are those that are sent by the
vertices of V \ Ti to the vertices of Ti+1. Denote this set
of edges by Ei,i+1. Observe that the edges of the paths
P1, P2, . . . , PΓ do not belong to

Sm−1
i=0 Ei,i+1. It follows that

Ei,i+1 ⊆ E(τ ), for i = 0, 1, . . . , m − 1. For i = 0, clearly,
E0,1 = {(z0, par (τ,rt)(z0))}. More generally, Ei,i+1 is a sub-
set of edges of E(τ ) that are incident both to V (τ (i + 1))
and to V \ V (τ (i)), i = 0, 1, . . . , m − 1. See Figure 2 for
illustration.

Let Cut i denote the subset of edges of E(τ ) that are in the
cut between V (τ (i)) and the rest of V (τ ), for i = 1, 2, . . . , m.
It follows that Ei,i+1 ⊆ Cut i+1, for i = 0, 1, . . . , m − 1. We
next argue that the size of this cut is never greater than p ·d.

Lemma 3.3. For i = 1, 2, . . . , m, |Cut i| ≤ p · d.

Proof. Observe that for any edge (u, w) ∈ Cuti, ei-
ther u is a parent of w in the tree τ or vice versa. For a
fixed i = 1, 2, . . . , m, let Lj = {(u, w) ∈ Cuti ∩ AD(τ, rt) |
distτ (rt, u) = j}, for j = 0, 1, . . . , p − 1, be the jth layer of
the edge set Cut i. Note that Cut i =

Sp−1
j=0 Lj . It remains

to argue that |Lj | ≤ d, for j = 0, 1, . . . , p − 1.
To this end, we will show that for any pair of edges e1 =

(u1, w1), e2 = (u2, w2) ∈ Lj (assume, without loss of gen-
erality, that u1 = par (τ,rt)(w1) and u2 = par (τ,rt)(w2)), u1

is equal to u2. It will follow that all the edges of Lj share
a common endpoint, and, furthermore, this endpoint is a
parent of all the other endpoints of these edges. As every
vertex has at most d children in the tree τ , this would imply
|Lj | ≤ d.

Consider a pair of edges e1, e2 as above. First, suppose
u1 �∈ V (τ (i)), w1 ∈ V (τ (i)). As the parent-child relation in
τ (i) is a subset of the parent-child relation in τ , it follows
that w1 = rt(τ (i)).

As distτ (rt , w1) = j+1, it follows that w1 may be incident
to at most one edge of Lj , that is, e1. For any other vertex
v ∈ V (τ (i)) \ {w1}, distτ (rt , v) > distτ (rt , w1) ≥ j + 1.
I.e., distτ (rt , v) ≥ j + 2. But for any edge of Lj , both its
endpoints are at distance at most j + 1 from the root rt of
τ . Hence, no edge of Lj is incident to a vertex v ∈ V (τ (i))\
{w1}, proving that in this case |Lj | = 1 (and e1 = e2).

It remains to consider the case when u1, u2 ∈ V (τ (i)) and
w1, w2 ∈ V (τ ) \ V (τ (i)). Suppose also that e1 �= e2, as
otherwise they share a common endpoint u1, and we are
done. By definition of τ (i), as u1, u2 ∈ V (τ (i)), there exist
indices a, b ∈ {i, i + 1, . . . , m}, such that (u1, za), (u2, zb) ∈
AD(τ (i), rt(τ (i))). Note that as τ (i) is acyclic, a �= b. As-
sume, without loss of generality, that i ≤ a < b. Con-
sider a descendent zc of w2. Note that for any two vertices
u1 and u2 such that neither (u1, u2) nor (u2, u1) belong to
the ancestor-descendent relation of the rooted tree (τ, rt), if
some leaf-descendent of u1 has smaller index than some leaf-
descendent of u2, then any leaf-descendent of u1 has smaller
index than any leaf-descendent of u2. As distτ (rt , u1) =
distτ (rt , u2) = j, it follows that
(u1, u2) �∈ AD(τ, rt), (u2, u1) �∈ AD(τ, rt). Hence, a < b and
(u1, za), (u2, zb), (u2, zc) ∈ AD(τ, rt) imply that c > a ≥ i.
By definition of τ (i), it follows that zc ∈ V (τ (i)). Recall
that u2 ∈ V (τ (i)) as well. As τ (i) is a connected subtree of
τ , the entire path that connects u2 to zc in τ belongs to τ (i).
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Figure 2: The sets V (τ )\V (τ (i)) and V (τ (i+1)) are depicted by ellipses El1 and El2, respectively. Edges of Ei,i+1 are depicted
by thick solid lines. Note that the edge (zi, w) does not belong to Ei,i+1, because zi ∈ V (τ (i)).

I.e., in particular, w2 ∈ V (τ (i)), contradiction. This proves
that u1 = u2. Hence, |Lj | ≤ d, implying |Cut i| ≤ p · d.

We conclude that |Ei,i+1| ≤ p · d for i = 0, 1, . . . , m − 1.
In other words, for i = 0, 1, . . . , m − 1, there are at most
p · d edges that are incident to the tail set Ti+1, such that
given a configuration C in C(Ti, i) of the vertices of Ti at the
beginning of round i, the messages that are sent over these
edges at round i are not determined by this configuration.

Recall that at most B bits can be delivered through an
edge in each round. Therefore, the number of possible mes-
sages that may be sent through an edge in a given direc-
tion in one round is at most

PB
�=0 2� = 2B+1 − 1. Ob-

serve that there is only one relevant direction of sending
messages in our case, that is, towards the vertices of the
tail set Ti+1. Hence, the number of possible messages that
may be sent through at most p · d edges in one round is at
most (2B+1 − 1)p·d. It follows that for i = 0, 1, . . . , m − 1,
ρ(Ti+1, i + 1) ≤ (2B+1 − 1)p·d · ρ(Ti, i). This proves Lemma
3.2.

Lemma 3.4. The deterministic complexity of
CorruptedMail problem is Ω(min{m, Γ

p·B·m1/p ·α·log(1/β)}).

Proof. Consider a protocol Π for the CorruptedMail
problem, and let t denote its worst-case running time on
inputs of fixed size Γ. By Lemma 3.2, it follows that if
t ≤ m − 1 then ρ(Tt, t) ≤ (2B+1 − 1)t·p·d. On the other
hand, observe that the number of possible configurations
of the vertex r upon the termination of the protocol Π is
at least the cardinality of some subset Υ′ ⊆ Υ of a subset
of bit strings that dominates A. By Lemma 3.1, |Υ′| =

Ω(2l(α,β)Γ). It follows that the (worst-case) running time t
of the protocol Π for the CorruptedMail problem is either at
least t ≥ m rounds, or it satisfies the the following inequality

Ω(2l(α,β)Γ) = |Υ′| ≤ ρ({r}, t) ≤ ρ(Tt, t) ≤ (2B+1 − 1)t·p·d .
(2)

(The inequality ρ({r}, t) ≤ ρ(Tt, t) follows from the fact that
r ∈ Tt for t = 0, 1, . . . , m.) Hence, Ω(l(α, β)Γ) − O(1) ≤
t · p · d ·B. I.e., t = Ω(l(α, β) · Γ/(p · d · B)). In other words,
in both cases t = Ω(min{m, (l(α, β) · Γ)/(p · d · B)}). Recall

that n = O(Γm), and d = m1/p. Hence,

t = Ω(min{m, l(α, β)
n

p · m1+1/p · B }) . (3)

Recall that l(α, β) is given by (1). For small α > 0,

l(α, β) = α · log(1/β) + o(α) . (4)

(When α does not tend to 0 when n grows to infinity, the in-
equality (4) may no longer hold, but the inequality l(α, β) =
Ω(α log(1/β)) obviously holds, as both sides are independent
of n.) Set β to be a constant between 0 and 1. For α either
constant or tending to 0 when n grows, we get
t = Ω(min{m, n·α

p·m1+1/p·B }).

Set m =
�
n·α
p·B

�1/2− 1
2(2p+1)

. It follows that any deter-

ministic protocol Π that solves the CorruptedMail problem

on every input bit string χ requires Ω

��
n·α
p·B

�1/2− 1
2(2p+1)

�
rounds in the worst-case.

Henceforth, the term “randomized protocol” will be used
as a shortcut for “randomized protocol that succeeds with
at least some constant probability on every input”.

Lemma 3.5. Any randomized protocol Π for the

CorruptedMail problem requires Ω

��
n·α
p·B

�1/2− 1
2(2p+1)

�
rounds.

Proof. Consider a deterministic protocol Π′ that accepts
as input the uniform distribution over the input bit strings χ
of Hamming weight αΓ. For such a protocol to succeed with
at least a constant probability q in t ≤ m − 1 rounds, the
number of configurations of the vertex r at the end of the
protocol has to be at least the size of a subset Υ′′ ⊆ Υ that
dominates at least a fraction q of the set A. However, by the
same considerations as above, such a subset Υ′′ must have
cardinality at least q|A|/D. In other words, for protocol Π′,
ρ(Tt, t) ≥ ρ({r}, t) ≥ q|A|/D = Ω(2l(α,β)Γ). In other words,
up to lower-order terms, the same lower bound applies also
to a protocol Π′ as above. By Yao’s Minimax theorem, any
randomized protocol that succeeds with probability at least
q on every input of the CorruptedMail problem requires at
least as many rounds as requires a deterministic protocol
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Π′ that succeeds with the same probability on the uniform
distribution of inputs. Hence, the lower bound applies to
randomized protocols as well.

3.2 Reduction to the Approximate
MST Problem

In this section we describe the reduction from the
CorruptedMail(α, β) problem on the family G of unweighted
graphs to the β

α
-approximate MST problem on the family

Gω of weighted graphs (see the beginning of Section 3.1 for
the definition of this family).

The protocol ΠCorr for the CorruptedMail(α, β) problem
proceeds in the following way. Given an instance (G, χ),
G ∈ G, χ ∈ A, of the CorruptedMail problem, the vertex s

computes the weights of edges (s, v
(0)
j ), j = 1, 2, . . . , Γ, in the

following way. If χj = 0 then the weight of the edge (s, v
(0)
j )

is set to zero, otherwise it is to infinity. All the other weights
of edges are set by their endpoints to the values that are
determined by the definition of the family Gω. This setting
of weights is performed locally by every vertex, and requires
no distributed computation.

Next, the vertices invoke β
α

-approximation protocol Π for
the obtained instance G(χ) of the MST problem. Upon
the termination of the protocol, each vertex v knows which
edges among the edges that are incident to v belong to the
approximate MST tree τ0 for G(χ), that was constructed
by the protocol. The vertex r calculates the output bit
string χ′ ∈ {0, 1}Γ in the following way. For each index

j = 1, 2, . . . , Γ, if the edge (r, v
(m)
j ) belongs to the tree τ0,

the vertex r sets χ′
j = 1. Otherwise, it sets χ′

j = 0. Finally,
the vertex r returns the bit string χ′.

Observe that whenever the construction of the approxi-
mate MST tree τ0 is completed, the computation of the bit
string χ′ is performed locally by the vertex r, and requires
no distributed computation. It follows that the running time
of the obtained protocol ΠCorr for the CorruptedMail(α, β)
problem is precisely equal to the running time of the β

α
-

approximation protocol Π for the MST problem.

Lemma 3.6. For each χ ∈ A, if τ0 is a
β
α
-approximate

MST for G(χ), then the bit string χ′, that is returned by the
protocol ΠCorr, has Hamming weight at most β · Γ, and, in
addition, the bit string χ′ dominates the input bit string χ.

Proof. Consider a bit string χ ∈ {0, 1}Γ of Hamming
weight hwt(χ) = αΓ. By construction, precisely αΓ edges
of the star S0 have weight ∞ in G(χ). Therefore, the ex-
act MST contains all the edges of the paths P1, P2, . . . , PΓ

and of the tree τ , as all of them have weight zero, and it
contains (1 − α)Γ edges of weight zero that belong to the
star S0. In addition, for each index j = 1, 2, . . . , Γ such

that ω((s, v
(0)
j ) = ∞, it contains the edge (r, v

(m)
j ). Re-

call that the latter edge has unit weight. Also, note that

ω((s, v
(0)
j ) = ∞ implies that χj = 1. As hwt(χ) = αΓ, it

follows that exactly αΓ edges of the star S0 have weight ∞.
Hence, exactly αΓ edges of the star Sm belong to the MST ,
implying that its weight is αΓ.

Consider a β
α

-approximate MST τ0. By definition of ap-
proximate MST , its weight is at most βΓ. Hence, in partic-
ular, it contains at most βΓ edges of the star Sm, implying
that hwt(χ′) ≤ βΓ. Consider an index j = 1, 2, . . . , Γ such

that χj = 1. It follows that the weight of the edge (s, v
(0)
j )

in G(χ) is ∞. As no edge with infinite weight may belong
to τ0 (as its weight is at most βΓ), it follows that neither

(s, v
(0)
j ) nor (zi, v

(i)
j ) for some i = 1, 2, . . . , m−1 may belong

to the tree τ0. It follows that the edge (r, v
(m)
j ) belongs to

τ0, as otherwise the vertex s would not be connected in τ0

to the vertices of the path Pj . The latter would imply that
τ0 is not a spanning tree of the graph G(χ), contradicting
the assumption that it is an approximate MST for G(χ).

Hence, the edge (r, v
(m)
j ) belongs to the tree τ0. Hence, the

bit χ′
j is set to 1 by the reduction. It follows that the out-

put bit string χ′ dominates the input bit string χ, and that
hwt(χ′) ≤ βΓ.

Therefore, if Π is a β
α

-approximation protocol for MST
on the family Gω of weighted graphs, then ΠCorr is a pro-
tocol for the CorruptedMail(α, β) problem on the family
G of unweighted graphs, with the same running time. Re-
call that any (deterministic or randomized) protocol for the
CorruptedMail(α, β) problem on the family G of graphs re-

quires t = Ω

��
n·α
p·B

�1/2− 1
2(2p+1)

�
rounds. Observe that all

the graphs in the family Gω have the same unweighted di-
ameter 2p + 2. The next theorem follows.

Theorem 3.7. Any randomized H-approximation proto-
col for the MST problem on graphs of diameter at most Λ for

Λ = 4, 6, 8, . . . requires T = Ω
��

n
H·Λ·B

�1/2− 1
2(Λ−1)

�
rounds

of distributed computation. I.e., T 2+ 2
Λ−2 · H = Ω

�
n

Λ·B
�

.

In particular, for any ε > 0, approximation of MST on
graphs with constant diameter Λ ≥ 4 within a factor of�
n
B

�1−ε
requires at least Ω(

�
n
B

�ε(1/2− 1
2Λ−2 )

) rounds of dis-
tributed computation.

4. AN UPPER BOUND
In this section we devise a distributed protocol for the ap-

proximateMST problem. Our protocol runs in O(Λ(G)+nε·
log∗ n) rounds and constructs O(ωmax

nε )-approximate MST ,
where ωmax is the ratio between the weights of the heaviest
and the lightest edges in the graph G. This result applies
for any 0 < ε < 1.

Throughout this section we assume that B = log n. Hence
the protocol can be used whenever B = Ω(log n), and its
running time will be the same. Also, obviously it can be
adapted to the case B = o(log n) incurring an overhead of
O( log n

B
) = O(log n). Also, we assume that the weights of

edges are scaled between 1 and ωmax.
Consider an MST τ0 of the graph G. A connected subtree

of τ0 is called a fragment of τ0. A k-MST forest F of a graph
G = (V, E) is a collection of vertex-disjoint trees that satisfy

1.
S

T∈F V (T ) = V ,
S

T∈F E(T ) ⊆ E.

2. |V (T )| = Ω(k), Λ(T ) = O(k).

3. There exists an MST τ0 for the graph G, such that
each tree T ∈ F is its fragment.

The notion of k-MST forest is related to the notion of
(σ, ρ) spanning forest of [20]. Trees T ∈ F of a (σ, ρ) span-
ning forest F have to satisfy properties (1) and (2) with
|V (T )| ≥ σ and Λ(T ) ≤ ρ, but may not satisfy property
(3). It was demonstrated in [20] that a k-MST forest of an
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n-vertex graph G can be constructed in O(k · log∗ n) rounds
of distributed computation.

The first step of our nε-approximation protocol for the
MST problem is to construct an nε-MST forest F . This re-
quires O(nε · log∗ n) rounds. The second step is to construct
a BFS tree τ of the entire graph, rooted at some arbitrary
vertex rt = rt(τ ). This requires O(Λ(G)) rounds. After the
construction of the tree τ , each vertex v in the graph knows
its unweighted distance to the root rt , distτ (rt , v). At the
third step of the protocol, convergecasts are conducted in
parallel over the spanning trees of the fragments T ∈ F of
the nε-MST forest F . Throughout the convergecast over a
fragment T , the root of the fragment T learns the identity of
the vertex v ∈ V (T ) that is closest in τ to the root rt of τ .
The draws are broken arbitrarily. The fourth step involves
broadcasts over the spanning trees of the fragments of the
identities of these chosen vertices. Both convergecasts and
broadcasts are done in parallel (recall that the fragments are
vertex-disjoint), and require O(max{Λ(T ) | T ∈ F}) rounds.
As F is an nε-MST forest, it follows that Λ(T ) = O(nε) for
every tree T ∈ F . Hence, these steps require O(nε) rounds.
After the broadcasts are over, the fifth step occurs. On
the fifth step in each fragment T ∈ F , the chosen vertex
v ∈ V (T ) inserts the edge ev = (par (τ,rt(τ))(v), v) into the
tree τ0, that the protocol constructs. It also informs his par-
ent in τ , par (τ,rt(τ))(v), that it was chosen, and the parent
inserts the edge ev into τ0 as well. In addition, each vertex
w in the graph inserts into the tree τ0 the edges of the k-
MST forest F that are incident to w. Observe that the fifth
step requires only one round of distributed computation (for
sending the messages by the chosen vertices to their parents
in τ ).

This completes the description of the protocol. It fol-
lows from our discussion that its running time is O(Λ(G) +
nε · log∗ n). We next argue that it is indeed an O(ωmax

nε )-
approximation protocol for the MST problem.

Lemma 4.1. The subgraph τ0, that is constructed by the
protocol, is acyclic.

Proof. Suppose for contradiction that there is a cycle
((u0, w0), P0, (u1, w1), P1, . . . , (ut−1, wt−1), Pt−1)), where Pi

is a path in some fragment Ti between wi and u((i+1) (mod t)),
and (ui, wi) ∈ E(τ ), i = 0, 1, . . . , t − 1 (where τ is the BFS
spanning tree of the graph). Fragments may appear more
than once. (Observe that the cycle cannot be contained en-
tirely in one fragment, because for each fragment T ∈ F , the
edges of τ0 with both endpoints in T all belong to the span-
ning tree of T .) It follows that |distτ (rt , ui)−distτ (rt , wi)| =
1 for i = 0, 1, . . . , t − 1.

Assume, without loss of generality, that distτ (rt , w0) −
distτ (rt , u0) = 1. I.e., u0 = par (τ,rt)(w0). Then u1 =
par (τ,rt)(w1), because otherwise both edges (u0, w0), (u1, w1)
connect vertices of the same fragment (the vertices w0 and
u1) to their parents in the BFS tree τ . However, at most
one such an edge is inserted into the tree τ0 for each frag-
ment in the approximation protocol. It follows that ui =
par (τ,rt)(wi) for i = 0, 1, . . . , t − 1. Hence,

distτ (rt , u0) > distτ (rt , w0) ≥ distτ (rt , u1) >

. . . ≥ . . . > distτ (rt , wt−1) ≥ distτ (rt , u0) .

This is a contradiction, implying that the subgraph τ0 is
acyclic.

Lemma 4.2. The subgraph τ0 is connected, and it is span-
ning all the vertices of the graph G.

Proof. The second assertion follows directly from the
observation that the edge set of the tree τ0 contains the
edge set of the nε-MST forest F , and from the definition of
a k-MST forest.

For the first assertion, consider some pair of vertices u
and w in V . Let Tu and Tw be the pair of fragments of the
nε-MST forest F such that u ∈ Tu, w ∈ Tw. If Tu = Tw

then u and w are connected in τ0, because the subgraph τ0

contains a spanning tree of each fragment T of the nε-MST
forest F , and, in particular, of Tu = Tw. Otherwise, let
u0 ∈ Tu (resp., w0 ∈ Tw) be the closest vertex in Tu (resp.,
Tw) to rt = rt(τ ) (in terms of the unweighted distance). To
prove that there is a path between u and w in τ0, it suffices
to prove that there is a path between u0 and w0. We prove
this by induction on distτ (rt , u0) + distτ (rt , w0).

The induction base is the case when the sum is 0, i.e.,
u0 = w0 = rt , and then the assertion is obvious.

For the induction step, consider the parent v = par (τ,rt)(u0)
of the vertex u0 in the BFS tree τ . Observe that distτ (rt , v) =
distτ (rt , u0)−1 < distτ (rt , u0), and that the edge e = (u0, v)
belongs to τ0. Thus, it suffices to prove that there is a path
between v and w0 in τ0. Let Tv be the fragment of F that
contains the vertex v, and let v0 be the vertex that was cho-
sen by the convergecast on this fragment. It follows that
distτ (rt , v0) ≤ distτ (rt , v) < distτ (rt , u0), and, thus, the in-
duction hypothesis is applicable to the pair of vertices, v0

and w0. As the fragment Tv is connected, the lemma follows.

It follows from Lemmas 4.1 and 4.2 that τ0 is a spanning
tree of the graph G.

Lemma 4.3. The tree τ0 is a (1 + O(ωmax
nε ))-approximate

MST of the graph G.

Proof. Let ω : E → R+ denote the weight function that
is associated with the graph G, and let ω(MST ) denote the
weight of the MST . Observe that the weight of the nε-
MST forest F is at most ω(MST ), and that the convergecast
and broadcast procedures insert into τ0 at most O(n1−ε)
additional edges. Hence, ω(τ0) = O(n1−ε ·ωmax)+ω(MST).
Thus,

ω(τ0)

ω(MST )
= 1 + O

�
n1−ε · ωmax

ω(MST )

�
.

Recall that by our assumption, all the weights are scaled
between 1 and ωmax. Hence, ω(MST ) ≥ n − 1. It follows
that ω(τ0)/ω(MST ) = O(ωmax/nε).

To conclude,

Theorem 4.4. For any 0 < ε < 1, there exists a proto-
col that constructs an H-approximate MST for an n-vertex
weighted graph (G, ω) in O(Λ(G) + nε · log∗ n) rounds with
H = 1 + O(ωmax

nε ). Let T = nε · log∗ n. Then T · H =
O(ωmax · log∗ n).

Note that for graphs with small ωmax (e.g., constant, or
polylogarithmic in n) this protocol provides an approxima-
tion ratio that is arbitrarily close to 1, and the running time
of the protocol is arbitrarily close to O(Λ(G)).
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