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Abstract. The distributed complexity of computing a maximal inde-
pendent set in a graph is of both practical and theoretical importance.
While there exists an elegant O(log n) time randomized algorithm for
general graphs [20], no deterministic polylogarithmic algorithm is known.
In this paper, we study the problem in graphs with bounded growth, an
important family of graphs which includes the well-known unit disk graph
and many variants thereof. Particularly, we propose a deterministic algo-
rithm that computes a maximal independent set in time O(log ∆ · log∗n)
in graphs with bounded growth, where n and ∆ denote the number of
nodes and the maximal degree in G, respectively.

1 Introduction

The distributed complexity of computing a maximal independent set (MIS) in a
graph has been one of the tantalizing problems in distributed computing. While
there are well-known and elegant randomized algorithms that compute a MIS in
expected time O(log n) [20], the open problem formulated by Linial [19], whether
there exists a deterministic distributed algorithm that finds a MIS in a graph in
polylogarithmic time, is open.

If every node has a unique identifier, there is a trivial distributed MIS algo-
rithm which works as follows. Every node joins the MIS if it has the smallest
ID among its neighbors and if none of its neighbors has already joined the MIS.
Unfortunately, this algorithm can result in an entirely sequential execution and
linear running time because there may be only a single point of activity at any
time. While there exist algorithms that greatly outperform the trivial sequential
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algorithm, e.g., [22], the quest for a polylogarithmic algorithm has so far been
in vain.

The particular interest in the MIS problem stems on the one hand from its
practical importance in various application settings. Specifically, in a network
graph consisting of nodes representing processors, a MIS defines a set of pro-
cessors which can operate in parallel without interference. On the other hand,
the maximal independent set problem is also of outstanding theoretical interest,
because it prototypically captures the notion of symmetry breaking, one of the
central aspects in distributed computing, in a simple, well-defined way. While
it is easily conceivable that the symmetry between nodes can be broken using
randomization, doing so deterministically appears to be intrinsically difficult.

Recently, maximal independent sets have been granted particular attention
by the wireless networking community. In wireless ad hoc and sensor networks,
clustering is one of the foremost network organization techniques to enable ef-
ficient routing and to cope with failures and mobility. The clustering induced
by a MIS has been shown to exhibit particularly desirable properties [2]. Yet, in
spite of the multiplicity of papers written in the wireless networking literature,
not much is known about the fundamental principles governing the computation
of maximal independent sets in the kind of network graphs that have typically
been used to model wireless networks.

In wireless networking, the usually studied graphs are unit disk graphs (UDG)
in which all nodes are assumed to be located in the Euclidean plane and there
exists a communication edge between two nodes u and v iff the Euclidean dis-
tance d(u, v) is at most 1. In this paper, we study the distributed complexity of
computing a MIS in unit disk graphs. Specifically, we show that for unit disk
graphs, Linial’s question can be answered in the affirmative. In particular, we
present a novel deterministic distributed algorithm that computes a MIS in unit
disk graphs in time O(log ∆ · log∗n), where ∆ denotes the maximal degree in the
network graph.

Obtaining a MIS deterministically is easy if each node knows it exact location,
and the location of its neighbors. Moreover, if nodes can sense the distance
to their neighbors, a MIS can be computed deterministically in time O(log∗n)
as shown in [16]. Hence, it is an important aspect about our result that the
nodes do not require any position or distance information. That is, the only
information available at a node is the connectivity information to its neighbors.
In graph theoretical terms, this corresponds to a problem definition in which
the geometric representation of the graph is not given. Notice that even in the
case of centralized algorithms, the absence of a geometric representation of a
given unit disk graph renders many problems much harder. Particularly, given
a unit-disk graph, it is NP -hard to find its graphical representation or even an
approximation thereof [6, 14].

The absence of position or distance information implies that our algorithm
works for arbitrary graphs, even though it achieves the claimed O(log ∆ · log∗n)
running time only in graphs with bounded growth, such as the unit disk graph.
However, we establish our result not only for unit disk graphs, but for the more



general notion of growth-bounded graphs. This more general family of graphs
captures the intuitive notion that if many nodes are located close from each other,
many of them must be within mutual transmission range. In graph theoretical
terms, a graph is growth-bounded if the number of independent nodes in a node’s
r-neighborhood is bounded.

As we show in this paper, the notion of growth-bounded graphs is closely
related to unit ball graphs (UBG) introduced in [16]. As opposed to the two-
dimensional Euclidean metric in UDGs, we assume the points to be located in
an arbitrary metric space. Two nodes can communicate with one another if their
mutual distance is at most 1. Our deterministic algorithm works for any metric
space, but its running time depends on the doubling dimension of the underlying
metric. A metric’s doubling dimension is the smallest ρ such that every ball can
be covered by at most 2ρ balls of half the radius. Specifically, our algorithm
terminates in time O(log ∆ · log∗n) if the underlying metric is doubling, that is,
its doubling dimension ρ is constant. In this case, the resulting unit ball graph
is polynomially growth-bounded.

Clearly, our claim for unit disk graphs then follows directly as a special case
of this more general result, because a UDG is growth-bounded and a UBG with
constant doubling dimension. Intriguingly, this result shows that in graphs with
bounded growth, our deterministic algorithm outperforms Luby’s randomized
algorithm which requires O(log n) expected time.

Besides being of theoretical interest of its own, the reason for studying more
general growth-bounded graphs instead of merely unit disk graphs are twofold.
First, it is well known that unit disk graphs, while generally being respected as
a first modelling step, do in many ways not capture the reality experienced in
wireless networks closely. Secondly, it has been argued that the distance metric
induced by Internet latencies is growth-bounded and incudes a doubling metric.

The remainder of the paper is organized as follows. We give an overview over
related work in Section 2. Section 3 formally introduces our model of computa-
tion and necessary notation. The algorithm is then presented and analyzed in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

The distributed (randomized and deterministic) complexity of computing a MIS
has been of fundamental interest to the distributed computing community for
various reasons [20, 7, 4, 18]. A major breakthrough in the understanding of the
distributed computational complexity of MIS was the elegant randomized algo-
rithm by Luby [20] that has a running time of O(log n) (see also [1, 11]). The
distributed computation of maximal independent sets have also been studied
in the context of backbone construction in wireless networks [2, 8] and in radio
network models [21]. However, all these algorithms either have linear running
time [2] or are probabilistic [8, 21].

The fastest known deterministic distributed algorithms are based on the
notion of network decompositions introduced in [4]. A (d(n), c(n))-network de-



composition of a graph G = (V, E) is a partition of V into disjoint clusters, such
that the subgraph induced by each cluster is connected, the diameter of each
cluster is in d(n), and the chromatic number of the resulting cluster graph is
in c(n), where the cluster graph is obtained by contracting each cluster into a
single node. Given a (d(n), c(n))-decomposition a MIS can easily be computed
in time d(n) · c(n). First all clusters of the first color compute a MIS in paral-
lel in time d(n). Subsequently, clusters of the next colors iteratively add their
contributions to the MIS. In [4] authors present a deterministic O(f(n)c) time
algorithm for computing an (f(n)c, f(n)c)-decomposition, where c is a constant,
and f(n) = n

√
log log n/ log n, yielding a deterministic O(f(n)c) MIS algorithm.

The fastest currently known deterministic MIS algorithm was given in [22]. Based
on a (g(n)d, g(n))-decomposition in time O(g(n)d), where g(n) = n

√
1/ log n and

d is a constant, the authors obtain a deterministic O(g(n)d) MIS algorithm.
On the other hand, the first lower bound given for the distributed com-

putation of maximal independent sets has been given by Linial in [18]. This
lower bound says that even on a ring topology, at least time Ω(log∗n) is re-
quired to compute a maximal independent set. Subsequently, it was shown in
[15] that in general graphs, every (possibly randomized) algorithm requires at
least Ω(

√
log n/ log log n) or Ω(log ∆/ log log ∆) communication rounds for com-

puting a MIS.
While all of the above results hold for general graphs, much less is known

about the complexity in unit disk graphs or growth-bounded graphs. In fact, if
distances are unknown, the fastest deterministic algorithm to compute a MIS in
unit disk graphs is the algorithm given in [22] for general graphs.

Bounded growth metrics in general and doubling metrics in particular have
found quite a lot of attention recently [10, 12, 13, 24, 25]. It is proposed that la-
tencies of many real networks such as peer-to-peer networks or the Internet are
doubling. The network-related problems which are solved include metric embed-
dings [10, 12], distance labeling and compact routing [25], and nearest neighbor
search [13]. The doubling dimension has been introduced in [10], however, a
similar notion has already been used in [3].

The notion of a unit ball graph (UBG) has been introduced in [16] in which
the authors prove that if the underlying metric space exhibits constant doubling
dimension, it is possible to construct a (O(1), O(1))-network decomposition in
O(log∗n) communication rounds, which is asymptotically optimal. As shown
above, this implies a O(log∗n) time algorithm for computing a MIS in UBGs.
However, in contrast to our paper, [16] assumes that nodes can sense the dis-
tances to their neighboring nodes. That is, nodes know about the underlying
metric space, whereas in this paper, nodes must base their decision merely on
the connectivity information induced by the UBG.

3 Model and Definitions

For our algorithms, we use the standard message passing model. The network
is modelled as an undirected graph G = (V, E). Two nodes u, v ∈ V of the



network are connected by an edge (u, v) ∈ E whenever there is a direct bidi-
rectional communication channel connecting u and v. For simplicity, we assume
a synchronous communication model where time is divided in rounds. In each
round, every node can send a message of size O(log n) to each of its neighbors
in G. The time complexity of an algorithm is the number of rounds it needs to
complete. Note that at the cost of higher message complexity, every synchronous
message passing algorithm can turned into an asynchronous algorithm with the
same time complexity.

As discussed, finding a fast deterministic algorithm for computing a MIS on
a general network graph is a hard problem. We therefore restrict our attention
to an important class of graphs which we call growth-bounded graphs and which
are defined as follows.

Definition 1. (Growth-Bounded Graph) We call a graph G f -growth-boun-
ded if there is a function f(r) such that every r-neighborhood in G contains at
most f(r) independent nodes.

Note that f(r) does not depend on the number of nodes n or any other
property of G. Hence, for constant r, the number of independent nodes in an
r-neighborhood is constant.

The class of growth-bounded graphs seems to cover the class of graphs which
can occur in wireless networks quite well. In wireless networks, nodes have some
geographic position. Nearby nodes tend to hear each other, far-away nodes can-
not communicate because with the available power, radio signals can only be
transmitted up to some distance. In particular the class of growth-bounded
graphs covers the widely used unit disk graphs as well as UDG variants (e.g.
[5, 17]). In [16], the unit disk graph model has been extended to general metric
spaces resulting in so-called unit ball graphs (UBG). The nodes of a UBG are
the points of a metric space; two nodes are connected if and only if their distance
is at most 1. The following lemma shows that if the underlying metric space of
a UBG G has constant doubling dimension, G is polynomially growth-bounded

Lemma 1. Let G be a unit ball graph and let ρ be the doubling dimension of
the underlying metric space. Every r-neighborhood of G contains at most (2r)ρ

independent nodes.

Proof. By the definition of a UBG, the r-neighborhood of node v in G is com-
pletely covered by the ball Br(v) with radius r around v. By the definition of
the doubling dimenstion ρ, Br(v) can be covered by at most 2ρ(1+log2 r) balls of
radius 1/2. By the triangle inequality, two nodes inside a ball of radius 1/2 have
distance at most 1, that is, the nodes inside a ball of radius 1/2 form a clique in
G. The number of independent nodes in the r-neighborhood of v, therefore is at
most 2ρ(1+log2 r) = 2ρrρ.

For the description and analysis of our MIS algorithm, we need a formal
notion for the density of an independent set. To do so, we use the following
definition from [23]. Let S ⊆ V be a subset of the nodes of a graph G = (V, E).



S is called r-ruling if for each node u ∈ V \ S, the distance to the closest node
in S is at most r.

If the set S in the above definition is an independent set, we speak of an
r-ruling independent set. Note that a MIS is a 1-ruling independent set.

Throughout the paper, we will make use of node neighborhoods of particular
radii. By Γr(v) we denote the set of nodes u 6= v which have distance at most r
from v. We further define

Γ+
r (v) := Γr(v) ∪ {v} and Γ (v) := Γ1(v).

4 Distibuted MIS Construction

In this section, we describe and analyze our distributed deterministic MIS con-
struction for growth-bounded graphs. The algorithm consists of three phases. In
the first phase, in time O(log ∆ · log∗ n), an O(log ∆)-ruling independent set S
of the network graph G is computed. The second phase transforms the sparse
set S in to a dense independent set S′ such that each node v of G has a node
u ∈ S′ at distance at most 3, that is, S′ is 3-ruling. For growth-bounded graphs,
such a dense independent set induces an (O(1), O(1))-decomposition which can
be used to finally extend S′ to a maximal independent set in the third phase.

4.1 Constructing a Sparse Independent Set

The first phase of our MIS construction is a distributed algorithm which
locally computes an O(log ∆)-ruling independent set S for a given undirected
growth-bounded graph G = (V, E) in time O(log ∆ log∗ n). A detailed descrip-
tion of the first phase is given by Algorithm 1. Before analyzing the algorithm,
we give an informal description of the code.

At the beginning, S is empty and all nodes are active (denoted by the vari-
ables b(v) for v ∈ V ). Nodes are active as long as they have not decided whether
to join the independent set S. As soon as a node becomes passive, it has either
joined S in line 20 or it has decided not to join S. From a general perspective, Al-
gorithm 1 tries to eliminate active vertices from the network until single, locally
independent nodes are left. It does so with the help of edge-induced subgraphs of
bounded degree. In each iteration of the while loop, a constant-degree graph G
consisting of active nodes and edges of G is computed. On G, we can construct
a MIS in time O(log∗ n) [7, 9, 18]. Only the nodes of the MIS of G stay active
after the iteration of the while loop. This way, the number of active nodes is
reduced by at least a constant factor in every while loop iteration. As soon as
an active node v has no active neighbors, v joins the independent set S (line
20). The graph G is constructed as follows. First, each active node v chooses
an active neighbor d(v). Then, each active node u which has been chosen by at
least one neighbor v, selectes a neighbor p(u) for which d(p(u)) = u. The edge
set of V consists of all edges of the form (u, p(u)). Because a node u can only
be connected to d(u) and p(u), G has at most degree 2. Now, consider a single
execution of the while loop (lines 3–22, Figure 1).



Algorithm 1 Computing an IS (code for vertex v)
1: S := ∅;
2: b(v) := act;
3: while b(v) = act do
4: if ∃u ∈ Γ (v) | b(u) = act then
5: d(v) := min{u ∈ Γ (v) | b(u) = act};
6: inform neighbor d(v);
7: Av := {u ∈ Γ (v) | d(u) = v};
8: if Av 6= ∅ then
9: p(v) := min Av;

10: inform neighbor p(v)
11: fi;
12: Bv := {u ∈ Γ (v) | p(u) = v};
13: if (Av = ∅) ∧ (Bv = ∅) then
14: b(v) := pass
15: else
16: construct MIS I on graph G = (V , E) with V := {u ∈ V | b(u) = act} and

E := {(u, p(u)) | u ∈ V ∧Au 6= ∅};
17: if v 6∈ I then b(v) := pass fi
18: fi
19: else
20: S := S ∪ {v}; b(v) := pass
21: fi
22: od

Lemma 2. In the graph G = (V , E), every vertex has degree at most 2.

Proof. Consider v ∈ V , then there are at most two vertices adjacent to v by an
edge in E, namely d(v) if p(d(v)) = v, and p(v).

Note that due to this lemma, line 16 of the algorithm, that is, the local construc-
tion of a MIS I on G, can be completed in O(log∗ n) rounds using methodes
described in [7, 9, 18].

Lemma 3. Let VA denote the set of active nodes. After k iterations of the while
loop, S ∪ VA is a 2k-ruling set of G.

Proof. We prove the lemma by induction over the number k of while loop iter-
ations. Initially all nodes are active, thus the lemma is satisfied for k = 0. For
the induction step, we show that if a node v becomes passive in an iteration of
the while loop, either v joins S or there is an active node at distance at most 2
from v which remains active for until the next while loop iteration. Node v can
become passive in lines 14, 17, or 20. If v becomes passive in line 20, it joins S
and therefore the condition of the lemma is satisfied. In line 17, v is a node of
G and has a neighbor u of v which is in the MIS I of G. Thus, node u remains
active.

The last remaining case is that v decides to become passive in line 14. By the
condition in line 4, we can assume that v has at least one active neighbor at the



Fig. 1. One iteration of Algorithm 1. The dashed nodes are passive at the outset of the
iteration. The dashed arrows between active nodes denote the links d(v). The graph
G is induced by the links p(v) which are denoted by the solid, bended arrows. Finally,
the algorithm computes a MIS on G, leaving only the black nodes active for the next
iteration.

beginning of the while loop iteration. Therefore, v can choose a node u = d(v)
in line 5. Since Au 6= ∅, u chooses a node p(u) and therefore u is a node of G.
Because all nodes of the MIS I of G remain active, either u or a neighbor w of
u is still active after completing the while loop iteration. Since distG(v, w) = 2,
this completes the proof.

The following two lemmas are used to give bounds on the number of rounds
needed by Algorithm 1 to complete, and to explain the resulting structure in G
for general graphs and for growth-bounded graphs, respectively.

Lemma 4. After O(log n) consecutive executions of the while loop, Algorithm
1 terminates with a O(log n)-ruling independent set S on any graph G.

Proof. Let nact be the number of active nodes at the beginning of an iteration of
the while loop. We prove that in one while loop iteration, at least nact/3 nodes
become passive. The claim then follows by Lemma 3.

Let n ≤ nact be the number of nodes of G of some particular iteration of the
while loop. All nodes which are not part of G become passive in lines 14 or 20.
It therefore suffices to prove that at least one third of the nodes of G become
passive. However, G is constructed such that it does not contain isolated nodes,
that is, all nodes of G have at least degree 1. Note that G is an edge-induced
subgraph of G. Because the maximum degree of a node in G is 2 (Lemma 2), the
MIS I consists of at most 2n/3 nodes. Hence, at least n/3 nodes become passive
in line 17.

The following lemma shows that for growth bounded graphs, the run time can
even be reduced to O(log ∆) executions of the while loop where ∆ denotes the
maximum degree of the network graph G.



v1

v2

v6
v5

v4

v3

v7

Fig. 2. The cluster with the edges in G. Black nodes will remain active in the next
iteration. The nodes v1, v2, and v3 are in Ci. Nodes v4, v5, and v6 are connected only
to nodes outside of the cluster and hence, are in set Co. Finally, v6 ∈ Cp.

Lemma 5. If the network graph G is growth-bounded, after O(log ∆) consecu-
tive execution of the while loop, Algorithm 1 terminates with an O(log ∆)-ruling
independent set S.

Proof. Let M be a maximal independent set of G. The set M defines a clustering
of G as follows. We associate a cluster Cu with each node u ∈ M . Each node
v 6∈ M is assigned to the cluster of an adjacent node u ∈ M . Note that each
cluster contains at most ∆ + 1 nodes. Let us define the cluster graph GC as
follows. The nodes of GC are the clusters Cu. Two nodes Cu and Cv are connected
if there is an edge connecting the respective clusters. Because we assume that G
is growth bounded, there is a function f such that there are at most f(3) = O(1)
independent nodes at distance at most 3 from a node u. Therefore, the maximum
degree of GC is bounded by d := f(3).

In the following, we show that the maximum number of active nodes per
cluster is reduced by a factor 2 in a constant number of while loop iterations.
For convenience, we define a unit of time to be one iteration of the while loop.
Let α be the maximum number of active nodes per cluster at some time t. We
will show that there is a constant k such that at time t+ k each cluster contains
at most α/2 active nodes. Note that this implies the lemma because we have
α ≤ ∆ + 1 at time t = 0. Let Cu be a cluster with c > α/2 active nodes. Let
us look at a single iteration of the while loop of Algorithm 1. We partition the
c active nodes of Cu into three groups according to their neighbors in G (Figure
2). We denote the set of nodes v which become passive in line 6 because there
is no node w for which d(w) = u by Cp. The set of nodes which have a neighbor
inside Cu and which are only connected to nodes outside Cu are called Ci and
Co, respectively. Clearly, we have |Cp|+ |Ci|+ |Co| = c. Because the maximum
degree of G is 2, during the construction of the MIS in line 10 at least one third
of the nodes in Ci become passive. The nodes in Co can be divided into the
nodes Cp

o which become passive and the nodes Ca
o which stay active. Each node

outside Cu is connected to at most 2 nodes in Ca
o . Therefore, at least |Ca

o |/2
nodes outside Cu become passive. Let ci := |Cp| + |Ci| + |Cp

o | and co := |Ca
o |.

We have ci + co = c. In each iteration of the while loop at least ci/3 nodes in



Algorithm 2 Computes a dense IS
Input: t-ruling independent set S
Output: 3-ruling independent set S
1: S′ := S;
2: while S′ is not 3-ruling do
3: for each u ∈ S′ do
4: compute Ŝu ⊂ Γ+

4 (u) such that S′∪Ŝu is an IS and ∀v ∈ Γ+
3 (u), ∃w ∈ S′∪Ŝu :

{v, w} ∈ E;
5: G is the graph induced by

⋃
u∈S′ Ŝu;

6: S′ := S′ ∪MIS(G);
7: od;
8: od

Cu and at least co/2 nodes of clusters which are adjacent to Cu become passive.
Assume that after k iterations of the while loop, there are still α/2 active nodes
in Cu. Let c(j), c

(j)
i , and c

(j)
o be the values of c, ci, and co of the jth iteration,

respectively. Because there are at most α nodes at the beginning, we have

1
3
·

k∑

j=1

c
(j)
i ≤ α

2
(1)

because otherwise at least α/2 nodes of Cu would have become passive. Therefore,
the number of nodes in the neighbor clusters of Cu which have become passive
is at least

1
2
·

k∑

j=1

c(j)
o =

1
2
·

k∑

j=1

c(j) − c
(j)
i ≥ kα

4
− 1

2
·

k∑

j=1

c
(j)
i .

Because of Equation (1), this is at least (k − 3)α/4. Because there are at most
dα active nodes in neighbor clusters of Cu at the beginning, after O(d) = O(1)
iterations of the while loop there are no active nodes in the neighborhood of Cu

left. From then on, at least one third of the nodes in Cu becomes passive in every
further iteration.

Summarizing the Lemmas 2–5, we obtain the following theorem.

Theorem 1. Algorithm 1 is a local, distributed algorithm which computes an
O(log ∆)-ruling independent set in O(log ∆·log∗ n) rounds for any growth-bounded
graph G = (V, E).

For general graphs, the Algorithm terminates in O(log n · log∗ n) rounds pro-
ducing an O(log n)-ruling independent set. All messages are of size O(log n).

4.2 Making the Independent Set Dense

In the following, we show how the relatively sparse independent set which
we constructed so far can be made dense enough to obtain an (O(1), O(1))-
decomposition for growth-bounded graphs. Specifically, we show how on growth-
bounded graphs, a t-ruling independent set can be transformed into a 3-ruling



independent set in O(t log∗ n) rounds using messages of size O(log n). Algorithm
2 describes the basic method to achieve this. The idea is to enlarge the inde-
pendent set in small steps such that it gets denser in each step. Before coming
to a detailed analysis, we give a rough overview. In line 3, each node of the
independent set adds new nodes to the independent set such that each neigh-
bor in distance at most 3 has a neighbor in the extended set. Because every
independent set node adds new nodes, it is not guaranteed that the additional
nodes generated by different independent set nodes are independent. Therefore,
in lines 4 and 5, the independence of the extended independent set is restored by
computing a MIS on the new nodes (see Lemma 7). The following lemma shows
that in each iteration of the while loop, the maximum distance of any node to
the next node of S′ decreases by at least 1.

Lemma 6. Let S′ be a t-ruling independent set for t > 3. After one iteration
of the while loop of Algorithm 2, S′ is a (t− 1)-ruling independent set.

Proof. We first prove that S′ remains an independent set throughout the algo-
rithm. The sets Ŝu are constructed such that nodes in S′ and nodes in Ŝu are
independent. We therefore only have to prove that all the new nodes form an
independent set. However, this is clearly guaranteed because in line 6, a maximal
independent set of the graph induced by all the new nodes is computed.

To prove that the maximum distance from a node to the next independent
set node decreases, we consider a node v ∈ V for which the distance to the
nearest node u ∈ S′ is t > 3. We prove that after an iteration of the while loop,
the distance between v and the closest node in S′ is at most t− 1. The set Ŝu is
constructed such that every node w in the 3-neighborhood Γ+

3 (u) has a neighbor
in S′∪ Ŝu. On a shortest path (of length t) connecting u and v, let x be the node
which is at distance exactly 3 from u. There must be a neighbor y of x for which
y ∈ Ŝu. After computing the MIS in line 6, either y or a neighbor z of y join
the independent set S′. The distance between v and y is t− 1 and the distance
between v and z is t− 1 which concludes the proof.

It remains to show that Algorithm 2 can indeed be implemented by an ef-
ficient distributed algorithm. Lemma 7 gives exact bounds on the distributed
complexity of the Algorithm 2.

Lemma 7. Let G be a growth bounded graph. On G, Algorithm 2 can be executed
by a distributed algorithm with time complexity O(t log∗ n) using messages of size
O(log n).

Proof. By Lemma 6, Algorithm 2 terminates after at most t iterations of the
while loop. We therefore have to prove that each while loop iteration can be
exectuted in time O(log∗ n) using messages of size O(log n). Let us first look at
the construction of Ŝu for some node u ∈ S′. A node v ∈ Γ+

4 (u) can potentially
join Ŝu if it has neighbor in S′∪Ŝu and if it has an uncovered neighbor w ∈ Γ+

3 (u),
that is, w has no neighbor in S′ ∪ Ŝu. We call such a node v candidate. We add
a candidate v to Ŝu if it has a lower ID than all adjacent candidates. Finding



out whether a node is a candidate and whether it has the lowest ID among
its neighbor candidates can be done in 3 rounds. First, all nodes of S′ ∪ Ŝu

inform their neighbors that they are in the independent set. Then, all covered
nodes in Γ+

3 (u) inform their neighbors which can now decide whether they are
candidates. Finally, the candidates exchange their IDs. We call those 3 rounds a
step. In each step, at least the candidate with the highest ID joins Ŝu. Because
we assume that G is a growth bounded graph, there can be at most f(4) = O(1)
independent nodes in Γ+

u (u) for some function f . Hence, the number of nodes in
Ŝu and therefore the number of steps needed to construct Ŝu is constant. Note
that if there was no restriction on the message size, u could collect the complete
4-neighborhood, locally compute Ŝu, and inform the nodes in Ŝu in 8 rounds.

It now remains to prove that the construction of the MIS in line 6 of Algo-
rithm 2 can be computed in O(log∗ n) rounds. Let us therefore have a look at
the structure of the graph G which is induced by the union of the sets Ŝu for all
u ∈ S′. Consider a node v of G, that is, v ∈ Ŝu for some u ∈ S′. Further, let w be
a neighbor of v in G. The node w is in Ŝu′ for some node u′ ∈ S′ \ {u}. Because
Ŝu′ consists of nodes of Γ+

4 (u′), the distance between v and u′ is at most 5. Since
G is a growth bounded graph, there exists a function f such that there are at
most f(5) independent nodes at distance at most 5 from v. Thus, there are at
most f(5) possible nodes u′ ∈ S′ which can cause neighbors w for v. Because all
nodes in Ŝu′ are independent, the number of neighbors of w in Ŝu′ is at most
f(1). Therefore, the maximum degree of the graph G can be upper bounded by
f(5) · f(1) = O(1). It is well-known that on a constant-degree graph, a MIS can
be constructed in O(log∗ n) rounds using messages of size O(log n) [7, 9, 18].

Combining Lemmas 6 and 7 we obtain the next theorem.

Theorem 2. On a growth-bounded graph, a t-ruling independent set can be
transformed into a 3-ruling independent set in O(t log∗ n) rounds using messages
of size O(log n).

4.3 Computing the MIS

We will now describe the last phase of our algorithm, turning the 3-ruling inde-
pendent set S′ from Algorithm 2 into a MIS. Set S′ induces a natural clustering
of the nodes of G. For each node u ∈ S′, we define the cluster Cu to be the set of
all nodes v ∈ V for which u is the nearest node of S′, ties are broken arbitrarily.
The cluster graph GS′ induced by S′ is then defined as follows. The node set of
GS′ is the set of clusters {Cu|u ∈ S′}. The clusters Cu and Cv are connected by an
edge in GS′ if and only if there are nodes u′ ∈ Cu and v′ ∈ Cv which are neighbors
in the network graph G. Because S′ is a 3-ruling set, the distance between the
centers u and v of two neighboring clusters Cu and Cv can be at most 7. The
degree of GS′ is therefore bounded by f(7) = O(1) if G is f -growth-bounded.
The first step of the third phase of our MIS algorithm is to compute GS′ and
to color GS′ with f(7) + 1 colors, resulting in a (O(1), O(1))-decomposition of
G. Applying algorithms from [7, 9, 18], this can be achieved in O(log∗ n) rounds
using messages of size O(log n).



Having computed this decomposition, we can now compute a MIS M of G by
sequentially computing the contributions from each color of the coloring of GS′ .
For each node v, let xv be the color of v’s cluster. Using the cluster colors and
the node identifiers, we define a lexicographic order ≺ on the set V such that
for u, v ∈ V , u ≺ v if and only if xu < xv or if xu = xv ∧ ID(u) < ID(v). Each
node now proceeds as follows. Initially, we set M = S′. All nodes v of S′ inform
their neighbors about the joining of M by sending a JOIN(v) message. If a node
u receives a JOIN(v) message from a neighbor v, it cannot join the MIS any
more and therefore sends a COVERED(u) message to all neighbors. If a node v
has not received a JOIN(u) message but has received a COVERED(u) from all
u ∈ Γ (v) for which u ≺ v, it can safely join M . Note that all neigbors w ∈ Γ (v)
with w Â v, would need to receive a COVERED(v) message from v before joining
M . If a node v joins M , it informs its neighbors by sending a JOIN(v) message.
As shown by the next lemma, the described algorithm computes a MIS M in
time O(1).

Lemma 8. On f -growth-bounded graphs the above algorithm computes a MIS
M in time 2f(7)f(3).

Proof. We first show that M indeed is an independent set of G. For the sake of
contradiction, assume that there are two adjacent nodes u and v which both join
M . W.l.o.g., we assume that u ≺ v. Assuming that v joins M means that v must
have received a COVERED(u) message from u. However, this is a contradition
to the assumption that u joins M . To see that M is a MIS, observe that as long
as M is not maximal, there is a smallest node u (with respect to ≺) which is not
covered.

It remains to prove the time complexity of the above algorithm. First note
that because the radius of each cluster is at most 3, there can be at most f(3)
MIS nodes per cluster. Let us now look at a single cluster Cu of the smallest
color 1. Because with respect to the order ≺, the nodes of Cu are smaller than all
nodes of neighboring clusters, the smallest uncovered node of Cu is always free
to join M . When a node v joins M , it takes two rounds until the neighbors of v
have forwarded the information that they have been covered. Because there are
at most f(3) nodes of Cu which join M , it takes at most 2f(3) rounds until all
nodes of color 1 are covered or have joined M . As soon as there is no uncovered
node of a color i, the above argument holds for color i + 1. Therefore, after at
most f(7) · 2f(3) rounds, all nodes are either covered or have joined M .

Combining Theorems 1, and 2 and Lemma 8, we obtain the main theorem
of this paper.

Theorem 3. Let G be a growth-bounded network graph. There is a deterministic
distributed algorithm which constructs a maximal independent set on G in time
O(log ∆ · log∗ n).



5 Conclusions

In this paper, we have given a deterministic distributed algorithm which com-
putes a maximal independent set in time O(log ∆ · log∗n) in unit ball graphs if
the underlying metric has constant doubling dimension. This includes the prac-
tically important special case of unit disk graphs. Our algorithms does not rely
on any representation of the underlying metric space, i.e., nodes do not need to
know about the distances to their neighbors.

The MIS problem being of fundamental nature, our result sheds new light
into the intriguing question of the possibilities and limitations of different models
in distributed computing. It is therefore interesting to compare our solution with
MIS algorithms in other models. In the radio network model, where collisions
between neighboring senders may occur, the fastest known algorithm for unit
disk graph runs in time O(log2n) and requires randomization [21]. In the message
passing model, the fastest known algorithm for general graphs is randomized
and runs in time O(log n) [20]. Finally, [16] showed that if nodes know the
distances to their neighbors, there exists a deterministic O(log∗n) time algorithm
in graphs with bounded growth. The last comparison particularly highlights the
importance of distance information, which appears to render the MIS problem
much simpler.
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