
Optimal Distributed Algorithms for Minimum
Weight Spanning Tree, Counting, Leader Election

and related problems

(Detailed Summary)

Bm-uch Awerbuch +

Department of Mathematics and

Laboratory for Computer Science,

MIT, Cambridge, MA 02139

Abstract

This paper develops linear time d’etributed algo-
rithms for a class of problems in an asynchronous commun-
ication network. Those problems include Minimum-Weight
Spanning Tree (MST), Leader Election, counting the
number of network nodes, and computing a senaitive
decomposable function (e.g. majority, parity, maximum,
OR, AND).

The main problem considered is ,the problem of
finding the MST. This problem, which has been known for
at least 9 years, is one of the most fundamental and the
most studied problems in the field of distributed network
algorithms.

Any algorithm for any one of the problems ,above
requires at least n(E-tVlogV) communication and and
n(V) time in the genera1 network. In this paper, we
present new algorithms, which achieve those lower bounds.
The best previous algorithm requires 8(E+ Vlog V) in com-
munication and e(V.log’ V) in time.

Our result enables to improve algo:rithms for many
other problems in distributed computing, achieving lower
bounds on their communication and time complexities,

t Supported by Chaim Weizmann Postdoctoral Fellowship
and Air Force contract TNDGAFOSR-860078.

Permission to copy without fee all or part of tlhis material is granted
provided that the copies are not made or ‘distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1987 ACM 0-89791-221-7/87/000&0230 75t

1. Introduction and Summary

1.1. Motivation

The problem of finding a distributed algorithm
for a minimum weight spanning tree is a fundamental

problem in the field of distributed network algo-

rithms. Trees are an essential structure in various

communication protocols, e.g. network synchroniza-

tion [A-851), Breadth-First-Search [AG-851, and
Deadlock R.esoIution [AM-861. For the purpose of
disseminating information in the network, it is
advantageous to broadcast it over a minimum-weight
spanning tree [DM-781, [AE-861, since information
will be delivered to every node with small communi-

cation cost.

The problem of finding a leader is reducible to
the problem. of finding a spanning tree. In turn, leader
election is an important tool for breaking symmetry
in a distributed system. It allows application of

highly centralized protocols in a completely decentral-

ized environment, thus providing higher degree of
control over the operation of the network. Among

other systems applications, leader election is used in
order to replace a malfunctioning central lock-

coordinator in a distributed data-base [MMP-781, for
finding a primary site in a replicated distributed file

systems [AD-761, etc.

There are other problems, which are very
closely related to the problems of finding a spanning
tree or finding a leader. Counting the number of net-
work nodes is one of them. There exists a class of

230

functions, referred to as sensitive decomposable func-

tions; such functions are sensitive to every input, but

the influence of a set of arguments can be represented

by a string whose size is not much bigger than the

size of a string needed to represent just one argument.

Examples of such functions are maximum, sum, par-

ity, majority, OR, AND. As shown in this paper,

complexity of finding a spanning tree, complexity of

counting the number of network nodes and complex-

ity of computing distributively any sensitive decom-

posable function are all within a constant factor of

each other.

To summarize, construction of a spanning tree

or finding a leader appears as a building block essen-

tially in every complex network protocol, and is

closely related to many problems in distributed com-

puting.

1.2. Existing Results

The problem of finding a Minimum Spanning

Tree (MST) in a distributed network has been studied

since 1977. Dozens papers have been written on the

subject, from [S-77],[K-78],[GHS-831 to [CT-85],[G-

851. A truly pioneering work of Gallager, Humblet

and Spira [GHS-831 presented an algorithm which

requires O(E+ Vlog V) messages and Q(Vlog V) time,

introducing very fundamental ideas and concepts into

the field of distributed network algorithms. Some

researchers investigated lower and upper bounds for

leader election algorithms in special network models,

like ring, complete network, and grid. Among the

numerous papers, let us mention [Afek-851, [FL-841,

[KM&8-I], [B-80). Until now, all existing algorithms

for counting, leader election, etc. used the MST as a

major building block and thus are dominated by its

complexity.

As observed already in [GHS-831, and made pre-

cise in [AGV-871, n(E) messages are necessary in

order to construct a spanning tree. As proved in [B-

801 and [FL-841, n(Vlog V) messages are needed in

order to find a leader on a ring. It follows that

n(E+ Vlog V) messages are necessary to construct a

spanning tree in a general network. It is also obvious

that in a network having O(V) diameter, any distri-

buted algorithm must take at least a(V) time, since

this time is required just to traverse the network.

Thus, the communication achieved in (GHS-831 is

optimum and the time is within @(logV) factor of the

optimum.

For the general network model, the best algo-

rithm currently known both for Spanning Tree and

Minimum Weight Spanning Tree has been given by

Chin and Ting (CT-851, and Gafni [G-85]. The time

complexity of their algorithm is 0(T/log’ V), i.e.
slightly better than [GHS-831, while the communica-

tion complexity of the algorithm is still

8(E+VlogV). The algorithm is almost optimal,

except for 0(log’V) factor in time. [CT-851 show

that their time bound is tight by giving an example

of a network, on which the the algorithm runs for

O(Vlog’ V) time. The cause of O(log’V) factor in

time complexity in [G-85],[CT-851 is the fact that

small trees sometimes wait for big trees. As a result,

the waiting relations between trees has a complex

combinatorial structure which is extremely hard to

analyze.

The time complexity is a very meaningful meas-

ure for evaluating performance of a spanning tree

algorithm, because of the nature of its applications,

e.g. control and coordination of various network

processes. Thus, from the theoretical point of view, it

is challenging to reduce the time complexity of span-

ning tree algorithms to its optimum value.

1.3. Our Results

The mission of finding the ultimate algorithms

for the Minimum Spanning Tree, Counting, Leader

Election, and other related problems is accomplished

in the current paper. We present here a new MST

algorithm, that requires 0 (E + Vlog V) messages and

O(V) time, i.e. is optimal both in communication

and time.

Besides Spanning Tree and Minimum Spanning

Tree, our result yields an @(log’ V) improvement in

time complexity of other algorithms, which use Span-

ning Tree as a subroutine. Those include Leader

Election [FL-841, Deadlock Resolution [AM-861,

Counting the number of network nodes, and compu-

tation of any decomposables sensitive function. As a

result, the algorithms for those problems reach the

lower bounds in both time and communication com-

plexities. Another example of a problem whose solu-

tion is improved is the Network Partitioning problem

[A-85] which arises in the context of network syn-

chronization.

Additional contribution is the following

theorem, whose proof will be given in the full paper.

Completeness Theorem: The communication and

time complexities of the problems of computing dis-

tributively a sensitive decomposable function, count-

ing the number of network nodes and finding a span-

771
ning tree are within constant factor of each other.

Coroilary: Any improvement in the comp;ie:sity

of the spanning tree algorithm leadis to the same

improvement in complexities of counting and of com-

puting a sensitive decomposable function.

The improved performance of our MST algo-

rithm is due to two new techniques. The first tech-

nique enables to estimate distributed time of a com-

munication procedure in an asynchronous network.

This technique has been adopted in the Acyclic Parti-

tion algorithm of [AM-861, reducing it;s time complex-

ity to linear (even though it does not use Spanning

tree as subroutine). The second technique has been

adopted in [AP-86] for estimating the size of a

dynamically growing tree.

Our MST algorithm consists of two stages. The

first stage, referred to as Counting stage, finds some

spanning tree and computes the number of nodes in

the network. The second stage, referred to as the

MST stage, receives as an input the number of nodes

in the network and, using this inform.ation, finds the

Minimum Weight Spanning Tree. Both stages

require O(E+ VlogV) messages and O(V) time, i.e.

are optimal both in communication and time. It is

worth mentioning that while the two stages use simi-

lar techniques for reducing the complexities, the algo-

rithmic approaches taken are radically different.

The main idea of our improvement is to avoid

situations in which small tree waits for big tree. This

simplifies the structure of the waiting relations
significantly, reduces the time complexity to linear,

and simplifies enormously the analysis. The Count-

ing stage first finds some spanning tree and elects a

leader in the network. Then, the number of nodes is

computed easily. It uses different algoril;hmic

approach compared to [G-85],[CT-851 which is

enabled by the fact that we do not insist that the

produced spanning tree is necessarily minimum

weight. Thus, it is relatively “easy” to guarantee

that smaI1 trees never wait for big trees.

The rest of this paper is organized as follows.

Section 2 describes the model, the complexity meas-

ures, and the problem of finding the MST. Section 3

presents stage 2 of the algorithm (MST), while section

4 presents stage 1 (Counting).

2. The problem

2.1. The model and the the com.plexity meas-

ures

We consider here the standard model of static
asynchronous network IA-85],[AG85]. This is a

232

point-to-point communication network, described by

an undirected communication graph (YE) where the

set of nodes V represents processors of the network

and the set of edges E represents bidirectional non-

interfering communication channels operating
between neighboring nodes. No common memory is

shared by thLe node’s processors. All the processors

have distinct identities. However, a node does not

know identity of its neighbors. We confine ourselves

only to event-driven algorithms, which do not use

time-outs, i.e. nodes cannot access a global clock in

order to decide what to do. This is a common model

for static communication networks [G’HS-831, [A-

851, [AG-851.

The following complexity measures are used to

evaluate pertormance for distributed algorithms. The

Communicutrion Complexity, C, is the worst case total

number of elementary messages sent during the algo-

rithm, where an elementary message contains at most

O(logV) bits. The Time Complexity, T, is the max-

imum possible number of time units from start, to t.he

completion of the algorithm, assuming that the

inter-message delay and the propagation delay of an

edge is at most one time unit of some global clock.

This assumption is used only for the purpose of

evaluating the performance of the algorithm, but can-

not be used to prove its correctness, since the algo-

rithm is event-driven.

2.2. The problem of finding the MST

In a distributed algorithm for the Minimum

Spanning Tree problem, each node has a copy of a

node algorithm determining the response of the node

to messages received at that node. Namely, the algo-

rithm specifies which computations should be per-

formed and which messages should be sent. The

algorithm is started independently by all the nodes,

perhaps at different times. At the start time, each

node is ignorant of the global

except for its own edges. Upon the

algorithm, every node knows its

minimum spanning tree.

network topology

termination of the

neighbors in the

Without loss of generality, we assume that all

the links are assigned distinct weights with a total

ordering defined on the domain of the weights. This

condition guarantees uniqueness of the minimum

spanning tree. It is easy to achieve this, as observed

in [GHS-831, by simply assigning the weight of each

link (i,i) as the tuple [max(i,j),min(i,j)], and compar-

ing these tuples lexicographically.

Similarly, one can define the problems of

finding some spanning tree, electing a leader, counting

the number of network nodes, and computing a sensi-
tive decomposable function.

3. Stage 2: Minimum Spanning Tree

3.1. Background

Most distributed and parallel MST algorithms

operate according to the following scheme. The algo-

rithm maintains a spanning forest of rooted trees,

each tree being a sub-tree of the MST. Initially, every

tree consists of a single node. Upon termination of

the algorithm, there will be a single tree spanning the

whole network. For any node, its father is the next

node on the path to the root; root has no father. The

tree is represented by “father” pointers, leading from

each non-root node to its father. The best edge of a

tree is the minimum weight edge among all edges

leading from it to other trees. Since edge weights are

unique, the best edge must be in the MST. In the

course of the algorithm, every tree finds its best edge

and hooks itself (gets “absorbed” in terminology of

[GHS-831) onto the tree on the other side of that

edge, becoming a sub-tree in bigger tree. This hook-

ing is represented by the following manipulation of

the father pointers. First, the root of the tree is
moved to the internal endpoint of the best edge,

changing father pointers accordingly. Second, the

external end of the best edge becomes the father of

the root. Note that two trees can hook onto each

other if they both have the same best edge. Such

edge is called the core edge [GHS-83); its endpoints

are roots in corresponding trees. This creates a cycle

of length two in the pointer graph. To break such

cycle, the hooking of the root with bigger identity is

canceled; it becomes the root of the combined tree.

Now, all nodes in the combined tree are informed

about the name of their new root and requested to

look for the best edge.

The communication and time complexity of

election of the best edge and updating father pointers

is linear in the size of the tree. Thus, a naive distri-

buted implementation of that algorithm would

reqtiire O(p) messages and time, since a tree of size
V V

T
could be hooked onto other trees T times, each

hooking requiring linear work. A classical idea, which

is well known for sequential algorithms, e.g. Union-

Find, is that in order to merge two trees, it is advan-

tageous to hook the smaller tree onto the bigger one,

thus updating only the pointers of the smaller tree.

Thus, each time a pointer of a node is changed, the

size of the combined tree is at least doubled; it fol-

lows that the number of pointer changes at each node
is at most logzV . To achieve this, one must

somehow ensure that the best edge of a tree always

leads to a bigger or equal tree, then it would achieve

communication complexity of 0 (E + Vlog V) and

time complexity of VlogV. The problem is that in

distributed systems, it is hard to estimate the size of

a tree; counting in a naive way would by itself require

O(p) messages and time.

The first solution of that problem was achieved

in [GHS-831 using the technique of levels. The level

of a tree containing one node is 0. If two trees of the

same level create a core, then the level of the com-

bined tree is increased by 1. Level is a lower bound on

the logarithm of the cardinality of the tree and thus

the maximum achievable level is logZV/. The algo-

rithm guarantees that the best edge of a tree leads to

a tree of bigger or equal level. For that purpose, a

tree delays selection of the best edge, until all trees to

whom best edge might lead, have bigger or equal

level. Roughly speaking, this means that a tree stays

completely idle, without even attempting to find the

best edge, until some neighboring tree has smaller

level. Notice that this delay does not introduce

deadlocks, since trees are waiting only for trees of

smaller level. The tree inherits the level of the tree

on the other side of the best edge. It follows that

each time a node participates in election of the best

edge or any pointer manipulation, its level increases

by 1, i.e. those operations can be done at most log,V

times. Thus, communication complexity is

O(E+ Vlog V) and time complexity is Vlog V. The

reason why time complexity is not linear is that there

might be a long chain of sub-trees of level I, each

sub-tree hooked onto the next sub-tree on the chain,

resulting in a tree of level 1 +l, regardless of the

length of the chain. In particular, a tree of level 1

with p nodes may be created. Such a tree may

undergo log V-1 level changes, each requiring n(V)
time.

Chin, Ting [CT-851 and Gafni (G-851 addressed

this problem by updating the level to the logarithm

of the cardinality of the tree, each time that compu-

tation of the best edge is performed. Thus, even if

level was too low during the process of selecting the

best edge, the situation is corrected before the next

selection. It seems that with this idea the resulting
algorithm should be linear in time. However, the

time complexity is 0(Vlog’ V). The reason for the

Iog’V factor is that updating the level of a long

chain comes too late. Indeed, consider a long chain

consisting of 2” sub-trees of level 10. Eventually, the

level of the resulting tree will be set to (at least) 20;

but this level update will take time linear in the size

of the tree, i.e. n(220). During this period of time, a

tree T,, of level 11 neighboring with a tree 7’i,, of

level 10, belonging to that chain, is idle, since it waits

until level of Tie reaches 11 (at least). Once level

update in the chain terminates, T,, can proceed look-

ing for its best edge. From the point of view of the

search for the best edge at Tll, creation of the chain

of 2” trees of level 10 caused loss of O(220) units of

time. The only possible way that ‘i”i:L can reimburse

itself for this loss is by hooking itself on a node in

that chain, sub-sequently inheriting level 20. Indeed,

in this case Z’ir waited O(2”‘) time, but at least it

got a reward: an impressive level increase from II to

20 ! Unfortunately, since T,, is committed to hook

thru its minimum-weight edge, it is most likely that it

will not be able to benefit from this opportunity.

3.2. Our MST algorithm

The observation above suggests that wa.iving

the minimum weight property can help to achieve a

linear time algorithm. Namely, instead of hooking

itself on its minimum weight edge, each tree will hook

itself on edge leading to the neighboring tree of max-

imum level. Thus, if the tree waits for a long tirne, it

will be rewarded properly. This is the main idea
behind the Counting stage of our algorithm. The

MST stage assumes knowledge of V, the total

number of nodes, which is provided by the previous

Counting stage. It has a lot of similarity with [GHS-

831, [G-85], [CT-851. Th e only difference is that level

increases are originated by many nodes, not only by

the root node.

The MST stage is performed in two phases. The

first phase runs an algorithm identical to [GHS-831,

and terminates when all trees reach the size of

Y &), In this phase, we even do not bother to use

the trick of [G-85,CT-85) since all trees are relatively

small. The new algorithmic ideas are introduced in

the second phase. We update the levels in a very

accurate fashion, which prevents small trees waiting

for big trees and speeds up the algorithm. This more

aggressive method of level updates requires more mes-

sages but does not increase the communication com-

plexity, since the number of trees is small, at most

1ogV. The only reason why the Counting stage is

needed is that without knowing what V is, one does
234

not know when does the first phase of the MST stage

terminate. The innovation here is that instead of

updating level by counting the total number of nodes,

as in [CT-85,G-851, the level is updated locally based

on estimate of number of nodes in a sub-tree. We

introduce two new (compared to [GHS-831) mechan-

isms for level update, called Root-Update and Test-

Distance. Roughly speaking, the Root-Update

increases the lever of the root if within certain time it

failed to find the best edge; Test-Distance increases

level of nodes in a sub-tree whose root is far enough

from the root of the resulting tree. The main goal is

to guarantee that the period of time in which 1 is the

smallest level in the network is upper-bounded by

O(2’).

Let us now describe the algorithm with some

more details. Whenever a node r becomes root of a

tree 2’ with level 1, it broadcasts an initialization

message, containing r, I as parameters, over T. This

message is further relayed into trees which hook

themselves onto T. Upon receipt of this initialization

message, a node j remembers those parameters in

local fields L,cuc/j , Rooti , and starts execution of a

local search procedure. This procedure either finds the

minimum weight edge outgoing from j to a node i

outside of T (with Rooti # Rooti) or declares that

such node does not exists, i.e. all edges incident to j

are internal edges in T.

Towards that goal, node j scans its incident
edges, not yet known to be internal edges, in the

decreasing order of their weights. Scanning an edge

consists of sending a special test message to the node

k on the other side of the edge and getting the reply

from k. That reply is negative if Rootk = r (i.e. k is

in T) and is positive otherwise. The crucial property

of the algorit,hm is that only nodes with level bigger

or equal to I reply immediately to such message. A

node k with Level!, <I delays response to that mes-

sage until Levelk reaches 1. If this level increase at k

is due to the hooking of k’s tree onto T, then k will

have Rootk == r; thus the reply is negative and the

edge to k is marked at j as “internal”. In this case,

the search procedure is resumed, namely next edge

(after the edge (j,k)) . IS scanned. Otherwise, if reply is

positive, then the edge (j,k) is declared to be the

local candidate for the best edge of T.

The names of the local candidates are collected

at the root. If none of the tree nodes could find a

local candidate, then the algorithm terminates, since

the tree spans the whole network and thus is the

MST. Otherwise, the root chooses the one with the

minimum weight, say edge (v,w) with v being the

internal endpoint, as the best edge of T. Next, a spe-

cial message travels to the internal endpoint v of that

edge, reversing all father pointers on its way and

transforming v into a root of T. When v receives

that message, it acts as follows. If the edge (v,w) is

a core edge and v is its biggest endpoint, u does not

hook itself, since it is the root of the resulting tree; its

level is increased by 1, and it broadcasts its own ini-

tialization message over the resulting tree.

Otherwise, v hooks itself on the other endpoint

UJ of that edge. Observe that T became a sub-tree in

a bigger tree, and v is the root of that sub-tree. If w

has already received an initialization message which

was broadcast by the root of the resulting tree, then

this message is relayed by 21 over T, so that T will

participate in the process of election of the best edge

in the resulting tree.

Until this happens, v iterates the Test-Distance

procedure. The main property of Test-Distance is
that if it srlcceeds, then the size of the resulting tree

is bigger than Z1(‘l+‘, where I(v) is level of node v . In

this case, the level of all the nodes in T, including v,

is increased by 1, and Test-D&ance procedure is exe-

cuted again.

Upon each invocation of Test-Distance, node v
sends a special ezploration token to its father w. The
token carries a counter, which is initialized to 2’(‘1+‘.

Upon arrival of a token at a certain node, that node

subtracts the number of its sons from the counter. If

counter is positive, and the receiving node is not a

root node, then that node forwards the token (with

decreased counter) to its father. Eventually, after

moving along pointers to fathers, either the token

reaches the root with positive counter, or the counter

of the token becomes non-positive, before reaching

the root. In the former case, token “dies” and the

Test-Distance procedure fails; in the latter case an

acknowledgement is sent back to v. Upon its arrival

at o, node w broadcasts a special message over T,

which causes every node in T to increase by its level

by 1. Upon termination of this broadcast, Test-

Distance procedure is declared to be a success, and it

is restarted again.

The process continues until eventually Test-

Distance fails, i.e. the token of v reaches the root and

dies. Clearly, at that time v is within distance of at

most 2’(“1+’ from the root. Indeed, since every node

which receives the token has degree at least 1, the

token can travel for a length of at most ‘2’(‘)+’

towards the root.
235

Consider now the process of selection of the best

edge in a tree of level m . The Root-Update procedure

is activated either when initialization message has

advanced for distance bigger than 2”‘+’ or if some

node detected more than 2”‘+l internal edges while

testing its edges in search for the local candidate. In

either case, the process of selection of best edge is

interrupted, the level of the root is increased by 1,

new level is broadcast over the tree and new selection

process is started.

Theorem Wl: The MST stage eventually ter-

minates. Upon its termination the father pointers

form the MST of the network.

Proof: Will be given in full paper. l

3.3. Complexity of the MST stage

3.3.1. Communication

Theorem WZ: The communication complexity

of the MST stage is O(E+VlogV).

Proof: Given below.

First Phase: The fact that number of message in

the first phase is O(E+VlogV) follows from the
analysis of [GHS-831.

Second Phase: Compared to [GHS-831, the only
additional messages are the messages sent by the

Root-Update and the Test-Distance procedures.

Clearly, operation of Root-Update can be charged to

(nodqlevel) pairs with constant charge per pair. It

only remains to account for the exploration messages

(and acknowledgements) in the Test-Distance pro-

cedure.

Let the final exploration token of a sub-tree be

the exploration token which reaches the root. The

final exploration message is a transmission of the final

exploration token. The total number of non-final

exploration messages cannot exceed by more than a

constant the total number of transmissions of final

exploration messages. Indeed, each exploration token

traverses path which is twice longer than that of its

predecessor; the lengthes of those pathes form a

geometrical progression, whose sum is dominated by

its last term. It is thus sufficient to show that the

number of final exploration messages is 0(Vlog V).

Clearly, a node receives at most one final exploration

message from each sub-tree at Phase 2.

Consider now a directed tree, referred to as the

merging tree, whose vertices are trees existing during
Phase 2. The leaves of the merging tree are the initial

trees of Phase 2. The parent of a vertex representing

tree T is the vertex representing the tree .which

resulted from merging T with some other trees.

Observe now that if a network node i is traversecl by

exploration tokens of a tree A, then it canno,! be

traversed by tokens of any other tree C, which is an

ancestor of A in the merging tree, since any ancestor

C of A contains node i.

Thus, the total number of final exploration

messages received by a node is upper-bounded bsy the

maximal cardinality of a sub-set of vertices in the

merging tree, such that no vertex in the sub-set is

ancestor of another. Clearly, the largest possible sub-

set consists of all the the leaves in the merging tree,

corresponding to initial trees of Phase 2. Since in the
V

second phase every tree has size -- at least, and
log v

initial trees of Phase 2 are node-disjoint, then the

number of such trees is at most log V. This implies

that a node can receive at most Iog‘V final exlplora-

tion tokens, Thus, the total number of exploration

messages is 0 (Vlog V). This completles the Proof. l

3.3.2. Time

Theorem W3: The time complexity elf the

MST stage is O(V).

Proof: Given below.

First Phase: Let 7 I be the length of of the inter-

val of time in which level 1 is the lowest level in the
network and S1 be the size of the biggest tree o:f level

1. As observed in [G-85], .S’, 2 c *T I, where c is .a con-

stant independent of I. Let o be the set of all I’ -with
V

s, <-
log v

and P be the set of all I -with S, 2-c.
1ogv

Observe that the time complexity of the first phase is

For any two different levels in p, the biggest

trees with those levels must be node-disjoint, since
-.
V

after size of -
log v

is reached, the first phase i:s over

for such tree. Thus, the time of the first phase is

0 (V), because

Second Phase: Denote by Al the first time at

which 1 is the lowest level in the network, and by Cl

the first time after Al at which every node at distance

less than 2-2’+’ from the root has level I+1 at least.

Claim 1: CL--Al=O(2’+‘).

Proof: .After time Al, consider a tree with level

1. Since this level is the minimum level in the net-

work, all test messages sent by nodes in that tree are

answered immediately. It is easy to see that either

the time required to complete the selection of the best

edge is only 0(2’+‘) time, or level of the root is

increased to l-+-l by the Root-Update. If the best

edge is select,ed, &nd it is not the core edge, then the

root ceases to be the root. If it is the core edge, then

the root stays a root but its level is increased to 1 -j-l.

In either case, by the time A1+0(2’+‘), all tree roots

have level I-t-1 at least.

It takes additional 0(2’+‘) time to propagate

level increase from a root to all the nodes whose dis-

tance from their roots does not exceed 2.2’+‘. l

Claim ,?: Al+1-Cl=O(21+‘).

Proof: Consider a node n in a sub-tree T of

depth D, 2” ID <2d+‘, which has level s, s > d

when it becomes a sub-tree. Let H be the distance of

the root of 7‘ to the root r of the whole tree.

If. s 2 I +l, then level of n is already 1 +l at

least. If s <I+1 and H <2l+‘, then node n is within

distance of .D+H <2”+2’+’ <2*2’+’ from r and its

level is 1 +l at least by the time C, .

It only remains to consider the case of s <I +l

and H >2’*‘. Since s <l+l, T must become a sub-

tree before time Cl. Afterwards, each Test-Distance
Procedure of level q , s <q 5 1 +l, terminates success-

fully in time 0(29+‘) after its invocation, raising the

level of all the nodes in the tree T to q. The total

time consumed by all those Test-Distance procedures

is at most

1+1

c 0(29+‘) = 0(2’+‘).
q=s+l

Thus, by the time C1+0(2’+‘), all nodes have

level l+l at least. 0

Claims 1,2 imply that r l=Al+l- Al =0(2’+‘),

i.e. the period of time in which 1 is the smallest level

in the network is upper-bounded by O(2’). The time

complexity of the second phase is upper-bounded by

‘Er 1 <‘EO(2’) = O(2’Ogv)=O(V).o
14 14

4. Stage :L: Counting algorithm

4.1. Outline

The algorithm uses ideas of [GHS-831, [G-85]

236 and [CT-851, b t u is substantially different from them.

The main difference is that it does not insist of con- found. If no neighboring trees of the same level have

strutting a minimum spanning tree of the network. It been found, then the algorithm is finished. Otherwise,

does construct a spanning tree, but not necessarily minimum-weight link leading to another tree of the

the one of minimum cost. It uses the idea of levels, same level is found, and the following Marriage Pro-

introduced in [GHS-831, and attempts to adjust levels cedure merges together pairs of trees of the same level

to the actual size of the tree, as suggested in \G-851 which have the same minimum-weight outgoing link.

and [CT-851. However, the level adjustment technique If the Marriage procedure cannot match the tree to

is much more subtle. Essentially, level is adjusted another tree, then the algorithm is terminated.

according to height and degree of nodes in the tree, This loop is repeated by each tree which has not
as well as total number of the nodes in the tree; this yet been conquered. It is not hard to see that all the
gives a good estimate on the the time spent on pro- procedures executed by all the nodes were executed in
cessing of that tree. Since we waived the requirement some serial order, then the algorithm above is correct.
that the tree should be of minimum cost, trees will

almost never wait to other trees. Now us proceed 4.2. Detailed description of the algorithm
with a more detailed description.

Upon the invocation of the algorithm and after
The algorithm maintains in the network a

forest of directed rooted trees, which span all the
each level increase, Link-Search procedure is called.

During the procedure, each node scans its incident
nodes of the network. A link which enters the forest links, in the order of their weights, starting with the
stays in the forest forever. Each tree is kept in a dis- link of the smallest weight, until it finds a link lead-
tributed fashion, i.e. node only keeps pointers to its ing to another tree of bigger or equal level; such link
father and its sons in the tree. The root of each tree is called jeasible link of that node at that level.
is called leader of that tree. Initially, every node Links already known to be internal links in the tree
forms a degenerate tree consisting of one node. Upon are not scanned any more. If while this scanning a
the termination of the algorithm, there is only one node detects a link leading to a tree with smaller
tree; its root is the leader of the network. level, then the bigger tree starts invasion of the

Each tree has a level, which supposedly reflects smaller tree thru that link, while at the same time
the size of the tree. The level of a tree containing a the node in the bigger tree continues search for the
single node is 0. At any time level of a tree is a lower feasible link, attempting to find a link to another tree
bound on the logarithm of the number of nodes in of bigger or equal level.
the tree. In the course of the algorithm, trees are The procedure is interrupted whenever a node is
expanding and clash with neighboring trees. In such detected such that the sum of its height in the tree
clashs, bigger level trees are allowed to invade terri- and its degree in the tree exceeds 2kf1, where k is the
tory of smaller-level trees, capturing their nodes. level of the tree. In this case Level-Update Procedure
Captured nodes of the smaller-level tree inherit the is called, since, obviously, the tree contains much
level of the bigger tree and the name of the leader of more nodes than ought to be in a tree of its level, and
the bigger tree, updating their father-son pointers thus the level should be increased. The idea behind
accordingly. A tree can be invaded at the same time this interrupt mechanism is that Link-Search is inter-
by many bigger-level trees from different directions, rupted whenever the time it spends is too big. This
each capturing another piece of its territory. time is measured implicitly by the communication

Schematically, the algorithm performed by each depth of Link-Search which is bounded by the max-

tree at each level can be be viewed as consecutive imum sum of node height and node degree in the tree,

applications of 3 basic procedures, Link-Search, taken over nodes which participated in this pro-

Level- Update and Marriage. Level- Update Procedure cedure.

updates the level of the tree resulting from merging Level-Update Procedure attempts to update the
tree, setting it to the logarithm of its cardinality. level of the tree to the (integer) value of the loga-
Level-Update succeeds in its task, unless the tree in rithm of the number of nodes (cardinality) of the
which it is running is being invaded at the same time tree. Level-Update procedure succeeds in case that the
by some other tree. In case that it does succeed, tree is not being absorbed at that time by bigger-level
Link-Search is called. In Link-Search Procedure, the tree and aborts otherwise. In the latter case, the level
tree expands, conquering neighboring trees of smaller is not changed. The Level-Update procedure operates
level until either a tree of the same or bigger level is similarly to “twephase commit” protocols. It first

237

attempts to fock the nodes of the tree; it succeeds to

lock the nodes which have not been captured in the

meantime by bigger trees. A locked node cannot be

captured by other tree until the lock is released. If all

the nodes of the tree have been locked, then the pro-

cedure succeeds as a whole; then level of each node is

set to the (integer) value of the logarithm of the car-

dinality of the tree. Otherwise, the procedure aborts

without changing a level of any node. In both cases,

all the nodes are unlocked upon the termination of

the procedure. In case that Level-Update aborts, the

leader of this tree becomes inacta’ve, in the sense that

it will not trigger execution of any additional pro-

cedure in its tree. The reason for it is that it realizes

that it will never become the network leader and its

tree will be absorbed by bigger-level trees. Observe

that upon termination of Level-Update, either the

level is increased or the tree becomes inactive.

Eventually, either there will be a non-

interrupted execution of Link-Search, or the tree is

invaded by another tree. In the latter case, the tree

leader is killed. In the former case, it acts as follows.

If none of the tree nodes found a feasible link:, then

the tree must cover the entire network. In this case,

the algorithm terminates, the tree is a final spanning

tree, the root of the tree is declared to be the leader,

its name is broadcasted over the tree to all the nodes,

and the total number of nodes is counted. Otherwise,

some feasible links have been found. If all feasible

links lead to trees of the same level, then the pre-

ferred link is elected as the feasible link: with

minimum weight; the tree on the other side of this

link is called the preferred tree. Otherwise, if there

exists a feasible link leading to a tree with bigger

level, then the tree becomes inactive.

At this point, if the tree is active, then Mar-

riage Procedure is called, which merges together pairs

of trees of the same level, having the same preferred

link. In such pair, the tree with bigger identity con-

quers its mate with smaller identity, in spite of the

fact that their levels are the same.

4.3. Implementation details

In the Link-Search Procedure, scanning of the

edges is implemented by sending exploration messages

along these edges. After each node of the tree linishs

its search of the feasible link, it reports the result of

the search to the root of the tree. A leaf nod.e sends

the report whenever it finishes the search, whil.e inter-

nal node does it only after receiving reports from all

been referred to as convergecast in [A-85], (AG851.

This report either contains the identity of the feasible

link and the level of the tree on the other side or sim-

ply says that no feasible link has been found, i.e. all

incident links are internal links. The root node col-

lects such reports from all nodes of its tree, including

the nodes that have just been captured or are going

to be captured.

The locking mechanism, used in the Level-

Update Procedure, is implemented in 2 phases; each

phase involves one broadcast and one convergecast

over the tree. In the first broadcast, nodes are

informed that the locking algorithm has started; a

node receiving the first broadcast becomes locked if it

has not yet been invaded by another tree. A locked

node cannot be invaded by another tree until it is

unlocked; the arriving exploration messages are

buffered and processed immediately after the node

will be unlocked. In the following convergecast, the

leader of the tree finds out whether all locks has been

obtained. If this is the case, then the locking suc-

ceeded; otherwise it fails. If the locking has been suc-

cessful, then new level is computed. The following

broadcast informs all the nodes whether the locking

was successful. If locking was successful, then each

node updates its level. In any case, it becomes

unlocked and processes the exploration messages

stored in its buffer while locking algorithm was run-

ning. The following convergecast is needed only for

purpose of synchronization, i.e. to ensure that all

nodes have completed this procedure.

4.4. Correctness

Theorem Ul: The algorithm above eventually

terminates, with father pointers forming a spanning

tree in the network.

Proof (Sketch): Obviously, if the algorithm ever

terminates, then it terminates correctly. A node may

declare itself to be the leader of the network only if it

is the root of a tree which spans the entire network.

Clearly, such a node must be unique and all other

nodes will know the name of the leader, since leader

broadcasts its name along the tree after declaring

itself as the leader. It only remains to show that the

algorithm does terminate.

Since the trees can only gFOW, then, if the algo-

rithm does not terminate, there must exist a “final”

forest that consists of many trees, none of which will

grow in the future. Consider among them the set S

trees of the highest level. Link-Search procedures
the sons. This well known communication pattern has

238
among these trees could not abort, since they have

the highest level. Thus, every tree in S has a pre-

ferred link, leading to another tree in S. These pre-
ferred links are part of minimum weight spanning
tree among all spanning tree which contain all the

trees in 5’. Thus the trees in S together with pre-

ferred links cannot contain a simple cycle.

It follows that there exists a pair of trees in S

whose preferred links lead to each other. Marriage

procedure will merge such trees. This merging cannot

be interrupted by higher-level trees since there are not

any. This merging leads to a bigger tree with

increased level, and contradicts the assumption that

this is the final forest.

Details of t,he proof will be given in the final

paper. 0

4.5. Complexity of the Counting Stage

4.5.1. Communication complexity

Theorem U2: The total number of messages is

O(E+VlogzV).

Proof: We need to prove the following

Lemma: The maximum level is log,V.

Proof: immediately follows from the fact that level is

set to the logarithm base 2 of the number of nodes in
the tree l

Now, let us divide messages in two categories:

exploration messages which are sent by nodes during

the search for chosen link and con&01 messages which

include all the rest. Consider an exploration message

sent from a node i to a node j. Let Name(i) and

Level(i) denote name and level of node i upon

transmission of that message, and let Name(j) and

Level(j) denote name and level of node j upon

arrival of that message. If Name(i) = Name(j) then

this is the last message to be sent over that link, and

it will be charged to the link (i *j). Otherwise, the

charging is as follows.

If Level(i) >Level(j) then we charge the mes-

sage to the pair (Level(i) , j]; each pair is charged

only once because upon receipt of that message node

j immediately increases its level to Level(i).

If Level(i) 5 Level(j) then we charge the mes-

sage to the pair [Level(i), k]; each pair is charged

only once since this is the last exploration message

sent by i at that level, i.e. level of i will increase
before additional messages are sent. Since, the max-

imum possible level is log,V, it follows that the total

number of exploration messages is 0 (E + I/log, V).

Now, we are going to prove that the total

number of control messages is 0(Vlog2V), and thus

the exploration messages dominate the communica-

tion complexity of the whole algorithm. Control mes-

sages include the messages sent by Link-Search,
Level-Update and Marriage Procedures. It is easy to

see that messages of these procedures are sent only

along tree links, and each procedure involves constant

number of messages per each tree link. It only

remains to show that at certain level, each procedure

is called at most once. This is obviously true for

Link-Search, which is called by tree leader (only) at

times when level of the tree increases. Marriage pro-

cedure is also called once per level. Level-Update pro-

cedure is called once after each Link-Search Procedure

and once in Marriage Procedure, i.e. at most twice

per level. Thus, each of the procedures is indeed

called only constant number of times. l

4.5.2. Time complexity

Theorem U3: The time complexity of the

algorithm is O(V).

Proof: Let time tk be the last time that an active

tree at level k exists in the network. A tree is defined

to be active if its leader is active. We cla.im that

tk = O(29. S’ mce the the biggest. level b that is

achievable is 1og2V, this claim establishes the state-

ment of the Theorem. To prove the claim, all we

need to show that tl, - tl,-, 5 c .2k, since summing

this inequality over all levels k yields

tk <2c .2k = O(2k).

Since the time it is created, a tree at level k

executes, first, Link-Search Procedure, then Marriage

Procedure and, finally, Level-Update Procedure. In

case that Link-Search was not interrupted, Marriage

Procedure is executed. Then, Level-Update Procedure

is performed. Upon its completion, either tree

becomes inactive or its level is increased to k+l.

Claim US: Each one of the procedures above

takes at most O(2”) time, if we we ignore the time

spent in Link-Search Procedure, that is caused by

waiting to nodes of lower level to become unlocked.

It is easy to see that the Claim implies that

tk - tkml = O(2”). Indeed, by time tkml, all processes

of level k have already been created and all nodes,

locked by Level-Update procedures of processes of lev-

els less than k are already unlocked. Thus, after &-1,
Link-Search procedures called by level k processes
never wait until lower-level trees unlock their terri-

tory while invading it. According to the claim, all the

239
procedures take O(2k) time if this waiting this

ignored, proving the Claim.

To see that the Claim is true, observe that in

the Link-Search messages never reach a node with

height bigger than O(2”) and no node scans ‘more

than O(Z’) incident edges. Thus, t.hen execution of

this procedure (after &) takes O(12k) time. IMar-

riage procedure involves sending proposal to preferred

tree of the same level, getting a reply. If there is no

engagement, i.e. a tree makes a proposal and this pro-

posal is turned down, then the tree becomes in.sctive.

In case that proposal is accepted, the tree with bigger

leader identity absorbs its preferred tree. Level-

Update involves propagating a message over the

resulting tree and getting acknowledgements back for

constant number of times. All these actions take

time proportional to the height of the trees involved.

These heights cannot exceed O(2k) because of the

interruption rule. Thus, overall, every one of the pro-

cedures above takes O(2”) time after tk-1. l

Acknowledgements

Oded Goldreich and Silvio Micali have colla-

borated with the author in the earlier stages of this

research and contributed some of the ideas used in

the Counting Algorithm. Oded Goldreich heljped to

prove the Completeness Theorem.

References

[A-85] B. Awerbuch, “Complexity of Network Synchroniza-
tion”, Journal of the ACM, Vol. 32, No. 4, October 1985,
pp. 804823.

[AD-761 P.A.Alsberg and J.D.Day, “A Principle for Resi-
lient, Sharing of Distributed Resources”, Proceeding 2nd
Int. Conference on Software Engineering, San-Francisco,
October 1976.

IAfek-85) Y.Afek and E.Gafni, “Time and Message :Bounds
for Election in Synchronous and Asynchronous Complete
Networks”, Proceedings of 1985 PODC Conference,
Minacki, Ontario, August 1985.

[AE86] B. Awerbuch and S. Even, Reliable Broadcast in
Unreliable Networks, to appear in Networks.

[AG-851 B.Awerbuch and R.Gallager, “Distri’buted
Breadth-First-Search Algorithms”, IEE% Symposrum on
Foundations of Computer Science, October 1985, Portland,
Oregon.

(AGV-871 B.Awerbuch, O.Goldreich and R.Vainish, “On
message complexity of broadcast: a basic lower bound”,
unpublished manuscript, January 1987.

[AM-851 B. Awerbuch and S.Micali, “Dynamic Deadlock
Resolution Protocols with Bounded Complexities”, unpub-

lished manuscript, MIT, 1985.

[AM-861 B. Awerbuch and S.Micali, “Dynamic Deadlock
Resolution Protocols”, Proceedings of 11986 FOCS Confer-
ence, Toronto, Ontario, October 1986.

[AP-86] B.Awerbuch and S.Plotkin, “An 0 (E+ VIog2 v)
leader election in faulty networks”, unpublished manuscript,
MIT, Decemb’er 1986.

[B-80] J.E.Burns, “A Formal Model for Message-Passing
Systems”, TR-91, Indiana Univ., Bloom:ington, May 1980.

[CT-851 F.Ch.in and H.F.Ting, “An almost, linear time and
O(VIog V+.E) messages Distributed Algorithm for
Minimum Weight Spanning Trees”, Proceedings of 1985
FOCS Conference, Portland, Oregon, October 1985.

[DM-781 Y.K. Dalal and R. Metcalfe, “Reserve Path For-
warding of Elroadcast Packets”, CACM, Vol. 21, No. 12,
pp. 104@1048, December 1978.

[FL-841 G. Frederickson and N.Lynch, “The Impact of Syn-
chronous Communication on the Problem of Electing a
Leader in a IRing”, Proceedings of the 16’th ACM Sympo-
sium on Theory of Computing, Washington, D.C., April
1984.

[G-85] E.Gafni, “Improvements in time complexities of two
message-optimal algorithms”, Proceedings of 1985 PODC
Conference, Minacki, Ontario, August 1985.

[GHS-831 R.G. Gallager, P.A. Humblet and P.M. Spira, “A
Distributed Algorithm for Minimum Weight Spanning
Trees”, ACM Trans. on Program. Lang. & Systems, Vol. 5,
pp. 6677, January 1983.

[K-78] P. Kanellakis, “An Election Problem in a Network”,
6.854 term paper, MIT, May 1978.

[KhfZ-84] E.‘Korach, S.Moran and S.Zaks, “Tight Lower
and Upper I3ounds for some Distributed Algorithms for
Complete Network of Processes”, Proceedings of 1985
PODC Conference, Vancouver, BC, August 1984.

[MMP-78) D.A.Menasce, R.Muntz and J. Popek, “A Lock-
ing Protocol for Resource Coordination in Distributed
Databases” Proceedings of A CM SIGMOD, June 1978.

[S-77] P.Spir:a, “Communication Complexity of distributed
minimum spanning tree algorithms”, 2nd Berkeley Confer-
ence on Distributed Data Management and Computer Net-
works, Berkeley, California, June 1977.

240

