
Cost-Sensitive Analysis of Communication Protocols
(Extended Abstract)

Baruch Awerbuch * Alan Baratz t

Abstract

This paper introduces the notion of cost-sensitive com-
munication complexity and exemplifies it on the fol-
lowing basic communication problems: computing a
global function, network synchronization, clock syn-
chronization, controlling protocols’ worst-case execu-
tion, connected components, spanning tree, etc., con-
structing a minimum spanning tree, constructing a
shortest path tree.

1 Introduction

TraEic load is one of the major factors affecting
the behavior of a communication network. This
fact is well recognized, and is the reason why most

*Dept. of Mathematics and Lab. for Com-
puter Science, M.I.T., Cambridge, MA 02139. ARPA:
baruchQtheory.lcs.mit.edu. Supported by Air Force Con-
tract TNDGAFOSR-86-0078, AR0 contract DAAL03-86-
K-0171, NSF contract CCR8611442, DARPA contract
N00014-89-J-1988, and a special grant from IBM. Part of
the work was done while visiting IBM T.J. Watson Re-
search Center.

‘IBM T.J. Watson Research Center, Yorktown Heights,
NY 10598.

:Dept. of Applied Mathematics, The Weizmann In-
stitute, Rehovot 76100, Israel. BITNET: pelegOwisdom.
Supported in part by an Allon Fellowship, by a Bantrell Fel-
lowship and by a Haas Career Development Award. Part
of the work was done while visiting MIT and IBM T.J.
Watson Research Center.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM-0-89791-404-X/90/0008/0177 $1.50

David Peleg *

models for communication networks and most al-
gorithms for routing, traffic analysis etc. model
the network using a weight function on the edges,
capturing this factor. In this model, the weight of
an edge reflects the estimated delay for a message
transmitted on this edge, and thus also the cost
for using this edge. The significance of the load
factor has also motivated the intense study of effi-
cient methods for performing basic network tasks
such as computing shortest paths and construct-
ing minimum weight spanning trees (with length
,,,,, defined with respect to the weight func-
.

However, in most of the previous work on dis-
tributed algorithms for these and other tasks, the
design and analysis of the algorithms themselves
completely disregards this weight function. That
is, transmission over all the edges is assumed to
be equally costly and completed within the same
time bound. Such assumptions are made even
when the task performed by the algorithm is di-
rectly related to the edge costs, and the algorithm
has to be executed over the same network, and
thus suffer the same delays. This seems to contra-
dict the very purpose towards which the tasks are
performed. It is sometimes argued that it is not
crucial to take the weights into account when con-
sidering such “network service” algorithms, since
these algorithms occupy only a thin slice of the
network’s bandwidth. Nonetheless, it is clear that
an algorithm that can do well in that respect is
preferable to one that ignores the issue.

This paper proposes an approach enabling us
to take traffic loads into account in the design of
distributed algorithms. This issue is addressed
by introducing cost-sensitive complexity measures

177

for analysis of distributed protocols. We con-
sider weighted analogs for both communication
and time complexity. We then examine a host
of basic network problems, such as connectivity,
computing global functions, network synchroniza-
tion, controlling the worst-case execution of pro-
tocols, and constructing minimum spanning trees
and shortest path trees. For each of these prob-
lems we seek to establish some lower bounds and
propose some efficient algorithms with respect to
the new complexity measures.

We feel that the approach proposed in this pa-
per may serve as a basis for a more accurate ac-
count of the behavior of distributed algorithms in
communication networks.

1.1 The model

We consider the standard model of (static) asyn-
chronous communication networks. We consider
a communication graph G = (V, E, w), where a
weight w(e) is associated with each (undirected)
edge of the network. We denote n = IV!, m = [El.
We also denote by W the maximal weight w(e)
of a network edge, W = max(,,,)eE w(U, u). We
make the assumption that W = poZy(n), and
thus log W = O(logn). For any subgraph G’ =
(V’, E’, w) of G, let w(G) denote the total weight
of G’, i.e., w(G’) = CeEE, w(e). Let dist(~,~,G’)
be the weighted distance from u to v in G’, i.e.,
the minimum of w(p) over all paths p from u to v
in G’. Let Diam(G’) denote the de’armeter of G’,
i.e., max,,,ev~ dist(u, V, G’). Given a tree T and
two vertices 2, y in it, denote by Path(z, y, T) the
path from zc to y in T.

1.2 The complexity measures

This paper introduces weighted complexity mea-
sures analogous to the traditional time and com-
munication measures. We define the cost of trans-
mitting a message over an edge e as w(e). The
communication complexity of a protocol ?r, de-
noted cz, is the sum of ‘all transmission costs of
all messages sent during the execution of r. The
time complexity of the protocol A, denoted t,,

is the maximal physical time it takes 7r to com-
plete its execution, assuming that the delay on an

edge e varies between 0 and w(e). The classical
complexity measures correspond to the case where
w(e) = 1 for all e E E.

Traditionally, communication protocols are
evaluated in terms of E, V, D, which denote, re-
spectively, the number of edges, the number of
vertices, and the unweighted (hop based) diameter
of the network. It turns out that it is convenient
to evaluate the weighted complexity of protocols
using the “weighted analogs” of E, V, D, denoted
by &, V,D, which are defined as follows:

& = 43 (= c 49)
eEE

V = w(T) where T is an MST of G

2, = Diam(G)

The analogy between these parameters and
their unweighted counterparts is manifested in the
fact that & equals the total cost of transmitting a
single message over all the edges of the network, V
is the minimal cost of reaching (or, disseminating
a message to) all vertices, and D is the maximal
cost of transmitting a message between a pair of
network nodes.

In the sequel we express the complexity of our
algorithms in terms of f, V and 2). This gives re-
sults that are conveniently similar in appearance
to the results of the unweighted case, as follows
from the statement of results in the following sub-
section.

1.3 Problems and results

1.3.1 Global function computation

The problem: We are concerned here with
computing global functions in a network. We as-
sume that the structure of the network is known
to all the vertices (including the edge weights.).
The only unknowns are the values of the n argu-
ments of the function, which are initially stored
at different vertices of the network, one at each
vertex. The outputs must be be produced at all
the vertices.

We restrict ourselves to the family of functions
called symmetric compact in [GS86]. The func-
tions fn : X” ---) X in this family are symmet-
ric (i.e., any two arguments can be switched)

178

Global function computation

1 Communication 1 Time
&

’ Upper bound

Lower bound

Figure 1: Lower and upper bounds for global functions.

and compact, in the sense that the contribu-
tion of any subset of arguments can be repre-
sented in “compact form” by a string of size
log, 1x1. The latter condition is formalized by
assuming that there exists a function g : X2 +
X such that for any L < n, f(q,52.. . z,> =
S(f&l, x2 * - - XL), fn-&(~k+1,5k+2 * - * 4).

Computing such functions is quite a basic task
in the area of network protocols. Many functions
belong to this family, e.g. maximum, sum, ba-
sic boolean functions (XOR, AND, OR). Many
other tasks, e.g. broadcasting a message from a
given node to the rest of the network, termination
detection, global synchronization, etc. can be rep-
resented as computing a symmetric compact func-
tion. A similar class of functions is considered in
[ALSY88].

The results: We show that the computation of
global functions requires O(V) messages and O(D)
time.

The upper bound is derived as follows. Define a
spanning tree as shallow-light tree (SLT) if its di-
ameter is O(D) and its weight is O(V). We then
show that SLT trees are effectively constructible,
which implies that computing the value of our
global function can be performed (optimally) with
O(V) messages and O(D) time.

We are also concerned with efficient distributed
constructions of SLT trees, or, in short, SLT algo-
rithms. We present a specific SLT algorithm that
requires O(V . n2) communication and O(D . n2)
time.

1.3.2 Clock Synchronixat ion

Problem: The purpose of the clock synchro-
nization is to generate at each node a sequence

of pulses, such that pulse p at a node is generated

after (in the “causal” sense [Lam78]) all neighbors
generate pulse p - 1.

As argued by Even and Raijsbaum [ER90], the
relevant complexity measure here is the “pulse de-
lay”, which is the maximal time delay in between
two successive pulses at a node. Let us denote
d = max(,,,)eE di&(u, u), i.e., d is largest dis-
tance between neighbors in the network. Clearly
d 5 W, and the problem is interesting when
d < W. A lower bound of R(d), and an upper
bound of 0 (W) are derived in [ERgOI. (It is worth
pointing out that the main emphasis of [ER90] is
on somewhat different “directed” version of this
problem.)

Results: In this paper, we show that one can
achieve a pulse delay of 0(d . log2 n), i.e. leave a
gap of log2 n between the lower and upper bounds.
This result relies heavily on a number of exist-
ing techniques, like the “Network Partition” of
[AP89], and the “Synchronizer 7” of [Awe85a].

1.3.3 Network Synchronization

The problem: Asynchronous algorithms are in
many cases substantially inferior in terms of their
complexity to corresponding synchronous algo-
rithms, and their design and analysis are more
complicated. This motivates the development of
a general simulation technique, known as the syn-
chronizer, that allows users to write their algo-
rithms as if they are run in a synchronous network.
Implicitly, such techniques were proposed already
in [Jaf80] and [Ga182]. The first explicit state-
ment of the problem was given in [Awe85a]. Even
better construction is known for special networks,
like hypercubes [PU89]. Our goal is to extend the
concept of the synchronizer to the weighted case
and provide an appropriate construction.

On a conceptual level, the synchronizer (as well
as the controller, described in following sections)
is a protocol transformer, transforming a proto-
col 7r into a protocol 4 that is equivalent to r in
some sense but enjoys some additional desirable
properties. Recall that c, and t, denote the com-
munication and time complexity of the protocol
A, and similarly for c4 and td. Our purpose is to
guarantee that the transformation maintains c4

179

and td small compared to c, and t,.
The synchronizer can be viewed as a way to

remove variations from link delays in an asyn-
chronous network. In the “unweighted” case, this
means that we want to “force” all link delays to be
exactly 1. In the “weighted” case, the most natu-
ral and most useful generalization of this concept
is to force the delay on each link e to be exactly
W(e). In a sense, the synchronizer enables to simu-
late a “weighted” synchronous network G(V, E, w)
with each link e having a delay of exactly w(e) by
a “weighted” asynchronous network G(V, E, w).
Such simulations may be useful for various appli-
cations’ for which the absence of variations in edge
delays significantly simplifies the tasks in hand,
e.g., shortest paths [Awe89], constructing routing
tables [ABNLP89], and others. However, in ad-
dition to simplifying protocol design and analy-
sis’ synchronizers actually lead to complexity im-
provements for concrete algorithms. For example,
the algorithm SPT,,,,h derived via a synchronizer
(see full paper), is the best known shortest path
algorithm for certain values of V,D,E.

We define the amortized costs of a synchronizer
e (i.e., the overhead per pulse) in communication
and time as follows.

G9 = +
At first sight, the clock synchronization prob-

lem from Subsection 1.3.2 seems to resemble
the problem of simulating an “unweighted” syn-
chronous network G’(V, E) (with all link delays
being exactly 1) by a “weighted” asynchronous
network G(V, E, w). The main difference is in the
fact that the only goal of the network synchro-
nizer is to simulate a particular protocol, whereas
the purpose of the clock synchronizer is to gener-
ate pulses. In general, it would be ineffective to
use clock synchronizers for network synchroniza-
tion, and vice versa. Even though the methods
that we use to handle both problems have certain
techniques in common, the differences are quite
substantial.

The results: We construct a synchronizer yzu,
which is an analog of synchronizer y of [Awe85a],

Synchronizers I
Communication Time

Upper bound Icnlogn log, n . log n

Lower bound w4 W%k 4

Figure 2: Lower and upper bounds for netHhxk synchre
nization.

such that

C,(y,) = O(kn * logn)

TJ(Yw) = O(logk n - log n)

1.3.4 Controllers

Problem: The controller [AAPS87] is a proto-
col transformer transforming a protocol R into a
protocol 4 that is equivalent to K in terms of its
input-output relation on a static network, but is
more “robust” than ?r in the sense that it has
“reasonable” complexity even if it operates on
“wrong” data.

Results: In the unweighted case, [AAPS87]
presents a controller guaranteeing td = c+ =

0(&r . log2 cr). We show that the same bounds
hold for the weighted case as well.

1.3.5 Connected components, spanning
tree

The problems: The problems considered here
are finding connected components and construct-
ing a (not necessarily minimum) spanning tree
[Seg83, AGPV89]. These problems are equivalent
to each other.

The results: We show that performing any of
the above tasks requires O(min{f,n-V)) commu-
nication by providing matching upper and lower
bounds. To be more precise, we prove that

1. For every distributed connectivity algorithm
A and for any n there exists a family of n
vertex graphs G on which A requires com-
munication complexity Q(n . Y) and a family

180

I Connectivity I
Communication Time

DFS I &

CONfkx.d & 2)

CONhybrid min 8,n.V min{&, 72 . V)

Lower bound Q(min{E, n . V)) fw)

I Shortest Path Trees (SPT) 1
1 Aleorithm 1 Communication I Time 1

SPT centr n I 2 v V.?l
SPTrec,, El+' vi+=

1
Sf’Ts,nch &+V.kn-logn 2J.w

SPThybrid min{E +.V + kn . log n), ElfE} V”’

Lower bound Sl(minI&, n - VII I NV,)

Figure 3: Our Connectivity algorithms.
Figure 5: Our SPT algorithm.

1 Minimum Spanning Trees {MST) 1
1 Algorithm 1 Communication 1 Time

1.3.7 Constructing shortest path trees

I MSTnhr I E+V*loen I E+V.lofzn I
1 MST,.,,, 1 n-V I n2v2). -. I --,..,

MSTjast
MSThybrid

E.lognlogV V.n.logn.logV.
min(t, n . V . log n} min{&, n . V . log n}

nlE. n . VII I f2fV) 1 Lower bound 1 n(mi , , ,, \ I I

Problem: The shortest paths tree (SPT) of the
graph G with respect to a source vertex s E V is

a tree defined by the collection of shortest paths
from s to all other vertices in G.

Figure 4: Our MST algorithm.

Results: We develop a number of SPT algo-
rithms:

of n vertex graphs G on which A requires
communication complexity 0(C).

2. There is a distributed connectivity algorithm
with communication complexity
O(min{E,n SV}) on any graph G.

1.3.6 Constructing minimum spanning
trees

Problem: The minimum spanning tree (MST)
of the graph G is a tree of minimum weight span-
ning G.

Results: We develop a number of MST algo-
rithms, based on modifications of the algorithms
of [GHS83, Awe87].

1. An algorithm with communication complex-
ity O(min{E + Y . logn, n. V}).

2. An algorithm with communication complex-
ity O(& . log n log V) and time complexity
O(D e n - log n. log V).

1. An algorithm with communication complex-
ity O(,!?+‘) and time complexity O(D’+‘).
This is analogous to the result of [Awe89],
which achieves same result for the unweighted
case.

2. An algorithm with communication complex-
ity O(C + 2) . Icn . log n) and time complexity
O(D .logk nlogn).

1.4 Structure of this paper

The paper proceeds as follows. Section 2 gives
tight upper and lower bounds on the computa-
tion of global functions. Section 3 contains clock
synchronization algorithms. In Section 4, we give
upper and Iower bounds for network synchroniz-
ers. Finally, in Section 5 we give a lower bound
for the problems of constructing connected com-
ponents, spanning tree, and others.

The rest of the results will appear in the full
paper.

181

2 Optimal computation of
global functions

2.1 The lower bound

Theorem 2.1 The computation of global symmet-

ric compact functions requires C!(V) communication

and Q(D) time.

Proof: Suppose that the value of the function has
been computed at the vertex V. Since the value of
a global function depends on the value of all of its
arguments, there must be some information flow
from each of the vertices to V. Thus the subgraph
G’(V, E’), defined by the set of edges E’ traversed
by messages of the protocol, must contain a path
from TJ to any other vertex in V, i.e., it must con-
tain some spanning tree of G.

Observe that the distance &&(u,zI, G’) from
TJ to any other vertex u E V is a lower bound
on time complexity of the protocol. Picking a
pair of vertices u,o realizing 2) (i.e., maximiz-
ing the distance &st(u, v,G)) and noting that
dist(u, 8, G’) > dist(u, w, G) = 23, we get that 2)
is a lower bound on the time complexity of the
protocol.

Furthermore, the total weight of the edges of
G’, zo(G’), is a lower bound on the communica
tion complexity of the computation. Now, since
G’ contains a spanning tree of G, its total weight
satisfies w(G’) 2 Y, Thus Y lower bounds the
communication complexity of the protocol. 1

2.2 The upper bound

It is easy to see that given a spanning tree 7’ for
the network, a global function can be computed
with communication complexity w(T) and time
complexity Diana(T). Clearly, any shortest path
tree Ts has small depth, namely Diam(Ts) =
O(2)), but its weight may be as big as zu(Ts) =
R(n.V). Analogously, any minimum spanning tree
37’ has small weight, namely w(T’) = U; but its
depth may be as high as Diam(T~) = Q(n -‘D).

Recall that a spanning tree is shallow-light tree
(SLT) if its diameter is O(D) and its weight is
O(V). Such trees minimize simultaneously both
weight and depth; existence of such tree would

imply that in any graph, one can compute global
functions with communication complexity 0 (V)
and O(D) time. However, it is not clear that such
trees exist. In the next subsection we establish

Theorem 2.2 Every graph has a shallow-light
spanning tree.

Corollary 2.3 The computation of global sym-

metric compact functions can be performed with

communication complexity O(V) and O(D) time.

1

The shallow-light tree algorit hm

We next provide an algorithm (hereafter referred
to as the SLT algorithm) for constructing an SLT
for an arbitrary graph, thus proving Theorem 2.2.

1.

2.

3.

4.

Construct an MST TM and an SPT Ts for G.

Traverse TM in a DFS fashion. Observe
that DFS defines a “tour” through the tree,
in which each tree edge is traversed exactly
twice. Define the “mileage” of the center of
activity of the DFS to be the number of tree
edge traversals (forward and backward) up to
this time. Denote by v(i) (0 2 i 2 2(” - 1))
the location of the center of activity of the
DFS at the time its mileage is exactly i. For
example, v(0) = 4272 - 2) = s, where s is the
source of the DFS.

Construct the “line-version” L of TM, which
is a (weighted) path graph containing ver-
tices 0, 1, . . .2(n - 1). A vertex i on the path
corresponds to y(i). We assign each edge

= (i,i + 1) on the line L the weight of
The corresponding edge (v(i), ~(i + 1)) in the
graph G. Observe that the total weight of
the line is at most twice the total weight of
the MST TM, i.e., w(L) 5 2V.

Fix a parameter q > 0. Construct “break-
points” B; on L by scanning it from left to
right according to the following rules.

(a) Break-point Bi is vertex 0 on the line L.

182

Construct a minimum spanning tree TM for G.
Construct a shortest path tree Ts for G.
Construct L based on TM as described above.
Assign each edge e of L the same weight as v(e) in G.
E’+TM
XcO;Y+O
repeat

repeat Y 4- Y + 1
until dist(X, Y, L) > q - dist(X, Y, Ts)

E’ c E’ U Path(X, Y, Ts)
X-Y

until Y = n
Construct a shortest path tree T in G’ = (V, E’)
output T

Figure 6: l%e SLT algorithm

(b) Break-point B;+l is the first point to the

right of B; such that dist(B;, &+I, L) >
&ist(v(Bi), v(Bi+l), Ts), meaning that
the distance from & to &+I in TM ex-
ceeds that in Ts by a factor of at least

!7-

5. Create a subgraph G’ of G by taking TM
and adding Path(v(B;), v(B;+l), Ts) for all
break-points Bi, i > 1 (i.e., shortest paths
connecting v(Bi) to V(Bi-I)).

6. Construct a shortest path tree T in the re-
sulting graph G’.

7. output T.

The algorithm is presented formally in Figure
6. In the algorithm, T denotes the set of edges se-
lected to the shallow-light tree and X, Y are point-
ers on the line L.

2.3 Analysis

Claim 2.4 The tree T constructed by the algo-

rithm satisfies w(T) < 2 * (1 + i) - Y. I

Claim 2.5 The tree T constructed by the algo-
rithm satisfies d(T) < (2q + 1) -D. 1

Corollary 2.6 The tree T constructed by the al-
gorithm is an SLT.

As for a distributed construction of shallow-
light trees, we show in the full paper

Theorem 2.7 There is a distributed algorithm for

constructing an SLT requiring O(V . n”) communi-

cation and O(D . n2) time.

3 Clock synchronization

In this section we describe three methods of clock
synchronization, called synchronizer cx*, /?* and
r*, These are modifications of synchronizers cx, /3
and y of [Awe85a].

3.1 Clock synchronizer a*

As pointed out in [ERgOI, the most natural ap-
proach to clock synchronization is to use the fol-
lowing synchronization mechanism, caJ.Ied syn-
chronizer a*.

Synchronizer a* : whenever a node generates
pulse p, is send messages to all neighbors, and
when it receives messages of pulse p from all neigh-
bors, it generates pulse p + 1.

This method clearly requires time proportional
to the highest edge weight, namely O(W). Our
goal is to approach the lower bound, which is O(d)
(recall that d is largest distance between neigh-
bors).

The naive way to improve the delay is to con-
struct a shortest path Path(U, V) for all (u, TJ> E E
and to communicate with each neighbor over such
path. The problem with this method is that a par-
ticular edge may belong to many paths (up to E),
and thus the resulting congestion will slow down
the communication time by the corresponding fac-
tor (up to E).

3.2 Clock synchronizer ,B*

In order to minimize congestion, we may try the
following method, called synchronizer /3*.

Preprocessing: We construct a spanning tree
T of the network, and select a “leader” to be the
root of this tree.

183

Pulse generat ion: Information about the com-
pletion of the current pulse is gathered up the tree
by means of a communication pattern referred
to as convergecust, which is started at the leaves
of the tree and terminates at the root. Namely,
whenever a node learns that it is done with this
pulse and all its descendants in the tree are done
with it as well, it reports this fact to its parent.
Thus within finite time after the execution of the
pulse, the leader eventually learns that all the
nodes in the network are done. At that time it
broadcasts a message along the tree, notifying all
the nodes that they may generate a new pulse.

The time complexity of Synchronizer ,L?* is
R(D), because the entire convergecast and broad-
cast process is performed along a spanning tree,
whose depth is at least the diameter of the net-
work.

3.3 Clock synchronizer y*

Our final synchronizer, called synchronizer y*,
combines synchronizer y of [Awe85a]) with the
network partitions of [AP89].

Definition 3.1 Given an n-vertex weighted graph
G(V,E, w), a tree edge-cover for G is a collection

M of trees, such that

1. every edge of G is shared by at most O(logn)
trees of M,

2. the depth of each tree in M is at most O(logn-
d), and

3. for each edge, there exists at least one tree con-

taining both endpoints.

Lemma 3.2 For every n-vertex weighted graph

G(V,E, w), it is possible to construct a tree edge-
cover.

Proof: The desired collection of trees can be con-
structed using the techniques of [AP89]. Details
will be given in the full paper. I

Preprocessing: Construct a tree edge-cover for
G. Inside each tree, a leader is chosen to coor-
dinate the operations of tree. We call two trees
neighboring if they share a node.

Pulse generat ion: The process is performed
in two phases. In the first phase, Synchronizer
p is applied separately in each tree. Whenever
the leader of a tree learns that its tree is done,
it reports this fact to all the nodes in the tree
which relay it to the leaders of all the neighboring
trees. Now, the nodes of the tree enter the second
phase, in which they wait until all the neighboring
trees are known to be done and then generate the
next pulse (as if Synchronizer cr* is applied among
trees). More details will be given in the full paper.

Complexity: The “congestion” caused by the
fact that messages of different trees cross the same
edge, adds at most an O(log n) multiplicative fac-
tor to the time overhead. Since the height of each
tree is O(dlogn), it follows that the time to sim-
ulate one pulse is O(d n log2 n).

4 Synchronizers

The lower bound of [Awe85a] for the unweighted
case holds here as well.

Lemma 4.1 [Awe85a] For any k, any synchre

nizer [satisfying Ce = O(kn), must have Te =
fqlO& 4. I

In the rest of this section, we develop our syn-
chronizer in a number of steps.

The synchronizers discussed in this section op-
erate by generating sequences of “clock-pulses”
at each vertex of the network, satisfying the fol-
lowing property: pulse p is generated at a ver-
tex only after it receives all the messages of the
synchronous algorithm that arrive at that vertex
prior to pulse p. This property ensures that the
network behaves as a synchronous one from the
point of view of the particular synchronous algo-
rithm.

The problem arising with synchronizer design is
that a vertex cannot know which messages were
sent to it by its neighbors and there are no bounds
on edge delays. Thus, the above property cannot
be achieved simply by waiting “enough time” be-
fore generating the next pulse, as may be possible
in a network with bounded delays. However, it

184

may be achieved if additional messages are sent
for the purpose of synchronization.

In the unweighted synchronizers of [Awe%a],
incoming links are “cleaned” from transient mes-
sages in between any two consecutive pulses, sim-
ilar to the clock synchronizers in Section 3. In
our (weighted) case, this would be very inefficient
since cleaning the links requires time proportional
to the maximal link weight W >> 1, which would
therefore dictate the multiplicative overhead of
the synchronization. The idea for overcoming this
problem is that links of high weight should be
cleaned less frequently, thus enabling to amortize
the cost of cleaning them over longer time inter-
vals.

We need to state a number of definitions first.

Definition 4.2 Given a synchronous protocol

x running on a synchronous weighted network

G(V,E, w), we say that A is in synch with G if

A transmits a message on edge e only at times that

are divisible by w(e).

Definition 4.3 A weighted network G(V, E, w) is
said to be normalized if all weights w(e) are powers

of 2.

Informally, our solution proceeds according to
the following plan.

1. Design a synchronizer for normalized net-

works and protocols that are in synch with
the networks on which they are run.

2. Show that one can transform an arbitrary
synchronous protocol 7r and synchronous net-
work G, so that the above assumptions are
satisfied, without significantly increasing the
complexities.

These two steps are described in the following
two subsections.

4.1 Synchronizer rW

We assume now that the weights of all network
edges are powers of 2, and messages are sent on
an edge of weight 2’ only at times divisible by 2’.

Let. 6 = 1ogW. We define a collection of sub-
networks {Gi(V,Ei) J 0 5 i _< 6}, by defining Ei

to be the set of edges whose weights are divisible
by 2’. (Note that an edge e with weight W(e) = 2j
occurs in all graphs Gi for j 2 i.)

The idea is that pulses divisible by 2i are han-
dled by a so-called synchronizer yi, which is ex-
actly synchronizer 7 of [AweBa], applied to the
graph G;. The synchr,onizer 7i treats pulse p. 2;
as “super-pulse” p. It guarantees that super-pulse
p is executed only after all messages sent along
edges in E; at super-pulse (p - 1) have arrived.

A vertex has to satisfy all S synchronizers in
order to proceed with a pulse. More specifically,
consider a pulse p = 2j - (2~ + l), i.e., such that 2j
is the maximal power of 2 dividing p. Then pulse
p is postponed until super-pulse (2~ + 1) . 2jei of
synchronizer 7i is executed. For example, pulse
24 = 3 .23 is completed only after the synchroniz-
ers 70,71,72, and 73 are done carryng their pulses
24, 12, 6 and 3, respectively.

Lemma 4.4 Synchronizer yW is correct.

Proof Sketch: We need to show that under syn-
chronizer y,,,, a vertex v generates pulse p only af-
ter receiving all messages it would receive by pulse
p were the protocol executed on a synchronous
network. This follows from the fact that the set
of messages it would get by pulse p, i.e., the set
of messages affecting this pulse, includes messages
sent on edges belonging to G’i sent at pulse p - 2’,
and the arrival of these messages is guaranteed by
synchronizer 7;. 1

4.2 Designing the protocol transforma-
tion

In order to justify the assumptions of the previous
subsection we need to prove the following claim.

Lemma 4.5 Given a synchronous protocol K run-

ning on a synchronous weighted network G(V, E, w),
there exist a synchronous protocol ?r’ and a syn-

chronous network G’(V, E,w’) with the following

properties:

1. G’ is normalized.

2. The protocol r’ is in synch with G’.

185

3.

4.

The output of ‘lr’ on G’ is identical to the output

of 7r on G.

The time and communication complexities of a

run of T’ on G’ are at most twice higher than

the complexities of the corresponding run of x

on G.

The proof is postponed to the full paper.

4.3 Complexity

Lemma 4.6 The synchronizer -y,,, described above
has the following complexities:

Cp(yw) = U(k - n - log W) = O(k - n - logn)

5$(yw) = O(lo& n a log W) = U(logk n . log n)

Proof: Synchronizer ^I; is invoked on the graph G;
once every 2’ time units. This costs us O(2; - n - L)
in communication and O(2’ - logk n) time. This
waste is amortized over 2’ time units, and then
summed over all 0 5 a 2 1ogW graphs G;. 1

5 Connected components and
spanning tree construction

In this section, we prove matching upper and
lower bounds on the communication complexity
of performing the tasks of finding connected com-
ponents and constructing a spanning tree.

5.1 Lower bounds

Let us first point out that an fit(Z) lower bound on
communication is given in [AGPV89] for the case
where all edge weights are unity. In the rest of
this subsection, we prove an Sl(n - V) lower bound
on the communication complexity.

Consider the family of graphs G, = (V, E,w)
defined as follows. V = { 1,. . . , n). The set of
edges is composed of two subsets, E = Ep lJ &,,
where the first subset creates a path, Ep = ((i, i +
1) 1 1 5 i 5 n- l}, and the second subset consists
of bypassing edges, Eb = {(i, n + 1 - i) 1 1 5 i 5
n/2}. The weights are defined as

44 = x, e E Ep,
x4 , -3%

where X is some large value, say X > n.
Note that the MST for G is the subgraph

(V, Ep) based on the path alone, so V = nX.
We make some assumptions similar to those of

[AGPV89] regarding the model. In particular, we
assume that the only operation one can do with
ID’s is comparisons; this can be extended also to
general operations in case the ID’s are allowed to
be sufficiently large.

Let A be a deterministic algorithm that suc-
ceeds in computing a spanning tree on every in-
put graph and whose communication complex-
ity is f(n) = o(n4). In particular, this means
that there exists a constant no such that for ev-
ery n > no, the algorithm A completes the con-
struction of tree on G, with communication cost
less than n4. Clearly, then, the algorithm does
not send any messages over any bypassing edge
in these graphs, since using such an edge immedi-
ately incurs a cost of n 4. Henceforce we restrict
attention to graphs G, for n > no.

Lemma 5.1 Algorithm A requires C?(nY) mes-
sages. 1

5.2 An upper bound

Claim 5.2 Algorithm CONhybrid (presented in the

full paper) requires O(min{e, n 9 Y}) messages.

Acknowledgments

We warmly thank Oded Goldreich f&r his illumi-
nating-comments on a previous drafi.

References

[AAPS87]

[ABNLP89]

Yehuda Afek, Baruch Awerbuch, Serge A.
Plotkin, and Michael Saks. Local man-
agement of a global resource in a commu-
nication network. En 28’” Annual Sym-
posium on Foundations of Computer Sci-
ence. IEEE, October 1987.

Baruch Awerbuch, Amotz Bar-Noy, Nati
Linial, and David Peleg. Compact dis-
tributed data structures for adaptive net-
work routing. In Proc. &lst ACM Symp.
on Theory of Computing, pages 230-240.
ACM SIGACT, ACM, May 1989.

186

[AGPV89]

[ALSY88]

[AP89]

[Awe85a]

[Awe85b]

[Awe871

[Awe891

[DS80]

[ER90]

[Eve791

[Gal821

Baruch Awerbuch, Oded
Goldreich, David Peleg, and Ronen Vain-
ish. A tradeoff between information and
communication in broadcast protocols. J.
of the ACM, 1989. to appear.

Y. Afek, G.M. Landau, B. Schieber, and
M. Yung. The power of multimedia:
combining point-topoint and multiaccess
networks. In Proc. of the 7th ACMSymp.
on Principles of Distributed Computing,
pages 90-104, Toronto, Canada, August
1988.

Baruch Awerbuch and David Peleg.
Routing with polynomial communication-
space trade-off. Technical Memo TM-41 1,
MIT, Lab. for Computer Science, Septem-
ber 1989.

Baruch Awerbuch. Complexity of net-
work synchronization. J. of the ACM,
32(4):804-823, October 1985.

Baruch Awerbuch. A new distributed
depth-first-search algorithm. Info. Pro-
cess. Letters, !20:147-150, April 1985.

Baruch Awerbuch. Optimal distributed
algorithms for minimum weight spanning
tree, counting, leader election and re-
lated problems. In Proceedings of the lgtn
Annual ACM Symposium on Theory of
Computing, pages 230-240. ACM, May
1987.

Baruch Awerbuch. Distributed short-
est paths algorithms. In Proc. 2lst
ACM Symp. on Theory of Computing,
pages 230-240. ACM SIGACT, ACM,
May 1989.

Edsger W. Dijkstra and C. S. Scholten.
Termination detection for diffusing com-
putations. Info. Process. Letters, ll(l):l-
4, August 1980.

Shimon Even and Sergio Rijsbaum. The
use of a synchronizer yields maximum
computation rate in distributed networks.
In Proc. 2tnd ACM Symp. on Theory of
Computing. ACM SIGACT, ACM, May
1990.

Shimon Even. Graph Algorithms. Corn-
puter Science Press, 1979.

Robert G. Gallager. Distributed mini-
mum hop algorithms. Technical Report

[GHS83]

[GSSG]

[Jaf80]

[Lam781

[PU89]

Peg831

LIDS-P-1175, MIT, Lab. for Information
and Decision Systems, January 1982.

Robert G. Gallager, Pierre A. Hum-
blet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning
trees. ACM Trans. on Programming
Lang. and. Syst., 5(1):66-77, January
1983.

0. Goldreich and L. Shrira. The effects
of link failures on computations in ssyn-
chronous rings. In Proc. 5th ACM Symp.
on PrincipIes of Distn’buted Computing,
pages 174-186. ACM, August 1986.

Jeffrey Jaffe. Using signalling mes-
sages instead of clocks. Unpublished
manuscript., 1980.

Leslie Lamport. Time, clocks, and the
ordering of events in a distributed system.
Comm. of the ACM, 21(7):558-565, July
1978.

David Peleg and Jeffrey D. Ullman. An
optimal synchronizer for the hypercube.
SIAM J. on Comput., 18(2):740-747,
1989.

Adrian Segall. Distributed network pro-
tocols. IEEE Tmns. on Info. Theory, IT-
29(1):23-35, January 1983. Some details
in technical report of same name, MIT
Lab. for Info. and Decision Syst., LIDS-
P-1015; Technion Dept. EE, Publ. 414,
July 1981.

187

