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Abstract 

This paper introduces the notion of cost-sensitive com- 
munication complexity and exemplifies it on the fol- 
lowing basic communication problems: computing a 
global function, network synchronization, clock syn- 
chronization, controlling protocols’ worst-case execu- 
tion, connected components, spanning tree, etc., con- 
structing a minimum spanning tree, constructing a 
shortest path tree. 

1 Introduction 

TraEic load is one of the major factors affecting 
the behavior of a communication network. This 
fact is well recognized, and is the reason why most 
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models for communication networks and most al- 
gorithms for routing, traffic analysis etc. model 
the network using a weight function on the edges, 
capturing this factor. In this model, the weight of 
an edge reflects the estimated delay for a message 
transmitted on this edge, and thus also the cost 
for using this edge. The significance of the load 
factor has also motivated the intense study of effi- 
cient methods for performing basic network tasks 
such as computing shortest paths and construct- 
ing minimum weight spanning trees (with length 
,,,,, defined with respect to the weight func- 
. 

However, in most of the previous work on dis- 
tributed algorithms for these and other tasks, the 
design and analysis of the algorithms themselves 
completely disregards this weight function. That 
is, transmission over all the edges is assumed to 
be equally costly and completed within the same 
time bound. Such assumptions are made even 
when the task performed by the algorithm is di- 
rectly related to the edge costs, and the algorithm 
has to be executed over the same network, and 
thus suffer the same delays. This seems to contra- 
dict the very purpose towards which the tasks are 
performed. It is sometimes argued that it is not 
crucial to take the weights into account when con- 
sidering such “network service” algorithms, since 
these algorithms occupy only a thin slice of the 
network’s bandwidth. Nonetheless, it is clear that 
an algorithm that can do well in that respect is 
preferable to one that ignores the issue. 

This paper proposes an approach enabling us 
to take traffic loads into account in the design of 
distributed algorithms. This issue is addressed 
by introducing cost-sensitive complexity measures 
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for analysis of distributed protocols. We con- 
sider weighted analogs for both communication 
and time complexity. We then examine a host 
of basic network problems, such as connectivity, 
computing global functions, network synchroniza- 
tion, controlling the worst-case execution of pro- 
tocols, and constructing minimum spanning trees 
and shortest path trees. For each of these prob- 
lems we seek to establish some lower bounds and 
propose some efficient algorithms with respect to 
the new complexity measures. 

We feel that the approach proposed in this pa- 
per may serve as a basis for a more accurate ac- 
count of the behavior of distributed algorithms in 
communication networks. 

1.1 The model 

We consider the standard model of (static) asyn- 
chronous communication networks. We consider 
a communication graph G = (V, E, w), where a 
weight w(e) is associated with each (undirected) 
edge of the network. We denote n = IV!, m = [El. 
We also denote by W the maximal weight w(e) 
of a network edge, W = max(,,,)eE w( U, u). We 
make the assumption that W = poZy(n), and 
thus log W = O(logn). For any subgraph G’ = 
(V’, E’, w) of G, let w(G) denote the total weight 
of G’, i.e., w(G’) = CeEE, w(e). Let dist(~,~,G’) 
be the weighted distance from u to v in G’, i.e., 
the minimum of w(p) over all paths p from u to v 
in G’. Let Diam(G’) denote the de’armeter of G’, 
i.e., max,,,ev~ dist(u, V, G’). Given a tree T and 
two vertices 2, y in it, denote by Path(z, y, T) the 
path from zc to y in T. 

1.2 The complexity measures 

This paper introduces weighted complexity mea- 
sures analogous to the traditional time and com- 
munication measures. We define the cost of trans- 
mitting a message over an edge e as w(e). The 
communication complexity of a protocol ?r, de- 
noted cz, is the sum of ‘all transmission costs of 
all messages sent during the execution of r. The 
time complexity of the protocol A, denoted t,, 

is the maximal physical time it takes 7r to com- 
plete its execution, assuming that the delay on an 

edge e varies between 0 and w(e). The classical 
complexity measures correspond to the case where 
w(e) = 1 for all e E E. 

Traditionally, communication protocols are 
evaluated in terms of E, V, D, which denote, re- 
spectively, the number of edges, the number of 
vertices, and the unweighted (hop based) diameter 
of the network. It turns out that it is convenient 
to evaluate the weighted complexity of protocols 
using the “weighted analogs” of E, V, D, denoted 
by &, V,D, which are defined as follows: 

& = 43 ( = c 49 ) 
eEE 

V = w(T) where T is an MST of G 

2, = Diam(G) 

The analogy between these parameters and 
their unweighted counterparts is manifested in the 
fact that & equals the total cost of transmitting a 
single message over all the edges of the network, V 
is the minimal cost of reaching (or, disseminating 
a message to) all vertices, and D is the maximal 
cost of transmitting a message between a pair of 
network nodes. 

In the sequel we express the complexity of our 
algorithms in terms of f, V and 2). This gives re- 
sults that are conveniently similar in appearance 
to the results of the unweighted case, as follows 
from the statement of results in the following sub- 
section. 

1.3 Problems and results 

1.3.1 Global function computation 

The problem: We are concerned here with 
computing global functions in a network. We as- 
sume that the structure of the network is known 
to all the vertices (including the edge weights.). 
The only unknowns are the values of the n argu- 
ments of the function, which are initially stored 
at different vertices of the network, one at each 
vertex. The outputs must be be produced at all 
the vertices. 

We restrict ourselves to the family of functions 
called symmetric compact in [GS86]. The func- 
tions fn : X” ---) X in this family are symmet- 
ric (i.e., any two arguments can be switched) 

178 



Global function computation 

1 Communication 1 Time 
& 

’ Upper bound 

Lower bound 

Figure 1: Lower and upper bounds for global functions. 

and compact, in the sense that the contribu- 
tion of any subset of arguments can be repre- 
sented in “compact form” by a string of size 
log, 1x1. The latter condition is formalized by 
assuming that there exists a function g : X2 + 
X such that for any L < n, f(q,52.. . z,> = 
S(f&l, x2 * - - XL), fn-&(~k+1,5k+2 * - * 4). 

Computing such functions is quite a basic task 
in the area of network protocols. Many functions 
belong to this family, e.g. maximum, sum, ba- 
sic boolean functions (XOR, AND, OR). Many 
other tasks, e.g. broadcasting a message from a 
given node to the rest of the network, termination 
detection, global synchronization, etc. can be rep- 
resented as computing a symmetric compact func- 
tion. A similar class of functions is considered in 
[ALSY88]. 

The results: We show that the computation of 
global functions requires O(V) messages and O(D) 
time. 

The upper bound is derived as follows. Define a 
spanning tree as shallow-light tree (SLT) if its di- 
ameter is O(D) and its weight is O(V). We then 
show that SLT trees are effectively constructible, 
which implies that computing the value of our 
global function can be performed (optimally) with 
O(V) messages and O(D) time. 

We are also concerned with efficient distributed 
constructions of SLT trees, or, in short, SLT algo- 
rithms. We present a specific SLT algorithm that 
requires O(V . n2) communication and O(D . n2) 
time. 

1.3.2 Clock Synchronixat ion 

Problem: The purpose of the clock synchro- 
nization is to generate at each node a sequence 

of pulses, such that pulse p at a node is generated 

after (in the “causal” sense [Lam78]) all neighbors 
generate pulse p - 1. 

As argued by Even and Raijsbaum [ER90], the 
relevant complexity measure here is the “pulse de- 
lay”, which is the maximal time delay in between 
two successive pulses at a node. Let us denote 
d = max(,,,)eE di&(u, u), i.e., d is largest dis- 
tance between neighbors in the network. Clearly 
d 5 W, and the problem is interesting when 
d < W. A lower bound of R(d), and an upper 
bound of 0 (W) are derived in [ERgOI. (It is worth 
pointing out that the main emphasis of [ER90] is 
on somewhat different “directed” version of this 
problem.) 

Results: In this paper, we show that one can 
achieve a pulse delay of 0( d . log2 n), i.e. leave a 
gap of log2 n between the lower and upper bounds. 
This result relies heavily on a number of exist- 
ing techniques, like the “Network Partition” of 
[AP89], and the “Synchronizer 7” of [Awe85a]. 

1.3.3 Network Synchronization 

The problem: Asynchronous algorithms are in 
many cases substantially inferior in terms of their 
complexity to corresponding synchronous algo- 
rithms, and their design and analysis are more 
complicated. This motivates the development of 
a general simulation technique, known as the syn- 
chronizer, that allows users to write their algo- 
rithms as if they are run in a synchronous network. 
Implicitly, such techniques were proposed already 
in [Jaf80] and [Ga182]. The first explicit state- 
ment of the problem was given in [Awe85a]. Even 
better construction is known for special networks, 
like hypercubes [PU89]. Our goal is to extend the 
concept of the synchronizer to the weighted case 
and provide an appropriate construction. 

On a conceptual level, the synchronizer (as well 
as the controller, described in following sections) 
is a protocol transformer, transforming a proto- 
col 7r into a protocol 4 that is equivalent to r in 
some sense but enjoys some additional desirable 
properties. Recall that c, and t, denote the com- 
munication and time complexity of the protocol 
A, and similarly for c4 and td. Our purpose is to 
guarantee that the transformation maintains c4 
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and td small compared to c, and t,. 
The synchronizer can be viewed as a way to 

remove variations from link delays in an asyn- 
chronous network. In the “unweighted” case, this 
means that we want to “force” all link delays to be 
exactly 1. In the “weighted” case, the most natu- 
ral and most useful generalization of this concept 
is to force the delay on each link e to be exactly 
W(e). In a sense, the synchronizer enables to simu- 
late a “weighted” synchronous network G(V, E, w) 
with each link e having a delay of exactly w(e) by 
a “weighted” asynchronous network G( V, E, w). 
Such simulations may be useful for various appli- 
cations’ for which the absence of variations in edge 
delays significantly simplifies the tasks in hand, 
e.g., shortest paths [Awe89], constructing routing 
tables [ABNLP89], and others. However, in ad- 
dition to simplifying protocol design and analy- 
sis’ synchronizers actually lead to complexity im- 
provements for concrete algorithms. For example, 
the algorithm SPT,,,,h derived via a synchronizer 
(see full paper), is the best known shortest path 
algorithm for certain values of V,D,E. 

We define the amortized costs of a synchronizer 
e (i.e., the overhead per pulse) in communication 
and time as follows. 

G9 = + 
At first sight, the clock synchronization prob- 

lem from Subsection 1.3.2 seems to resemble 
the problem of simulating an “unweighted” syn- 
chronous network G’(V, E) (with all link delays 
being exactly 1) by a “weighted” asynchronous 
network G(V, E, w). The main difference is in the 
fact that the only goal of the network synchro- 
nizer is to simulate a particular protocol, whereas 
the purpose of the clock synchronizer is to gener- 
ate pulses. In general, it would be ineffective to 
use clock synchronizers for network synchroniza- 
tion, and vice versa. Even though the methods 
that we use to handle both problems have certain 
techniques in common, the differences are quite 
substantial. 

The results: We construct a synchronizer yzu, 
which is an analog of synchronizer y of [Awe85a], 

Synchronizers I 
Communication Time 

Upper bound Icnlogn log, n . log n 

Lower bound w4 W%k 4 

Figure 2: Lower and upper bounds for netHhxk synchre 
nization. 

such that 

C,(y,) = O(kn * logn) 

TJ(Yw) = O(logk n - log n) 

1.3.4 Controllers 

Problem: The controller [AAPS87] is a proto- 
col transformer transforming a protocol R into a 
protocol 4 that is equivalent to K in terms of its 
input-output relation on a static network, but is 
more “robust” than ?r in the sense that it has 
“reasonable” complexity even if it operates on 
“wrong” data. 

Results: In the unweighted case, [AAPS87] 
presents a controller guaranteeing td = c+ = 

0(&r . log2 cr). We show that the same bounds 
hold for the weighted case as well. 

1.3.5 Connected components, spanning 
tree 

The problems: The problems considered here 
are finding connected components and construct- 
ing a (not necessarily minimum) spanning tree 
[Seg83, AGPV89]. These problems are equivalent 
to each other. 

The results: We show that performing any of 
the above tasks requires O(min{f,n-V)) commu- 
nication by providing matching upper and lower 
bounds. To be more precise, we prove that 

1. For every distributed connectivity algorithm 
A and for any n there exists a family of n 
vertex graphs G on which A requires com- 
munication complexity Q( n . Y) and a family 
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I Connectivity I 
Communication Time 

DFS I & 

CONfkx.d & 2) 

CONhybrid min 8,n.V min{&, 72 . V) 

Lower bound Q(min{E, n . V)) fw) 

I Shortest Path Trees (SPT) 1 
1 Aleorithm 1 Communication I Time 1 

SPT centr n I 2 v V.?l 
SPTrec,, El+' vi+= 

1 
Sf’Ts,nch &+V.kn-logn 2J.w 

SPThybrid min{E +.V + kn . log n), ElfE} V”’ 

Lower bound Sl(minI&, n - VII I NV,) 

Figure 3: Our Connectivity algorithms. 
Figure 5: Our SPT algorithm. 

1 Minimum Spanning Trees {MST) 1 
1 Algorithm 1 Communication 1 Time 

1.3.7 Constructing shortest path trees 

I MSTnhr I E+V*loen I E+V.lofzn I 
1 MST,.,,, 1 n-V I n2v2). -. I --,.., 

MSTjast 
MSThybrid 

E.lognlogV V.n.logn.logV. 
min(t, n . V . log n} min{&, n . V . log n} 

nlE. n . VII I f2fV) 1 Lower bound 1 n(mi , , ,, \ I I 

Problem: The shortest paths tree (SPT) of the 
graph G with respect to a source vertex s E V is 

a tree defined by the collection of shortest paths 
from s to all other vertices in G. 

Figure 4: Our MST algorithm. 

Results: We develop a number of SPT algo- 
rithms: 

of n vertex graphs G on which A requires 
communication complexity 0(C). 

2. There is a distributed connectivity algorithm 
with communication complexity 
O(min{E,n SV}) on any graph G. 

1.3.6 Constructing minimum spanning 
trees 

Problem: The minimum spanning tree (MST) 
of the graph G is a tree of minimum weight span- 
ning G. 

Results: We develop a number of MST algo- 
rithms, based on modifications of the algorithms 
of [GHS83, Awe87]. 

1. An algorithm with communication complex- 
ity O(min{E + Y . logn, n. V}). 

2. An algorithm with communication complex- 
ity O(& . log n log V) and time complexity 
O(D e n - log n. log V). 

1. An algorithm with communication complex- 
ity O(,!?+‘) and time complexity O(D’+‘). 
This is analogous to the result of [Awe89], 
which achieves same result for the unweighted 
case. 

2. An algorithm with communication complex- 
ity O(C + 2) . Icn . log n) and time complexity 
O(D .logk nlogn). 

1.4 Structure of this paper 

The paper proceeds as follows. Section 2 gives 
tight upper and lower bounds on the computa- 
tion of global functions. Section 3 contains clock 
synchronization algorithms. In Section 4, we give 
upper and Iower bounds for network synchroniz- 
ers. Finally, in Section 5 we give a lower bound 
for the problems of constructing connected com- 
ponents, spanning tree, and others. 

The rest of the results will appear in the full 
paper. 
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2 Optimal computation of 
global functions 

2.1 The lower bound 

Theorem 2.1 The computation of global symmet- 

ric compact functions requires C!(V) communication 

and Q(D) time. 

Proof: Suppose that the value of the function has 
been computed at the vertex V. Since the value of 
a global function depends on the value of all of its 
arguments, there must be some information flow 
from each of the vertices to V. Thus the subgraph 
G’(V, E’), defined by the set of edges E’ traversed 
by messages of the protocol, must contain a path 
from TJ to any other vertex in V, i.e., it must con- 
tain some spanning tree of G. 

Observe that the distance &&(u,zI, G’) from 
TJ to any other vertex u E V is a lower bound 
on time complexity of the protocol. Picking a 
pair of vertices u,o realizing 2) (i.e., maximiz- 
ing the distance &st(u, v,G)) and noting that 
dist(u, 8, G’) > dist(u, w, G) = 23, we get that 2) 
is a lower bound on the time complexity of the 
protocol. 

Furthermore, the total weight of the edges of 
G’, zo(G’), is a lower bound on the communica 
tion complexity of the computation. Now, since 
G’ contains a spanning tree of G, its total weight 
satisfies w(G’) 2 Y, Thus Y lower bounds the 
communication complexity of the protocol. 1 

2.2 The upper bound 

It is easy to see that given a spanning tree 7’ for 
the network, a global function can be computed 
with communication complexity w(T) and time 
complexity Diana(T). Clearly, any shortest path 
tree Ts has small depth, namely Diam(Ts) = 
O(2)), but its weight may be as big as zu(Ts) = 
R(n.V). Analogously, any minimum spanning tree 
37’ has small weight, namely w(T’) = U; but its 
depth may be as high as Diam(T~) = Q(n -‘D). 

Recall that a spanning tree is shallow-light tree 
(SLT) if its diameter is O(D) and its weight is 
O(V). Such trees minimize simultaneously both 
weight and depth; existence of such tree would 

imply that in any graph, one can compute global 
functions with communication complexity 0 (V) 
and O(D) time. However, it is not clear that such 
trees exist. In the next subsection we establish 

Theorem 2.2 Every graph has a shallow-light 
spanning tree. 

Corollary 2.3 The computation of global sym- 

metric compact functions can be performed with 

communication complexity O(V) and O(D) time. 

1 

The shallow-light tree algorit hm 

We next provide an algorithm (hereafter referred 
to as the SLT algorithm) for constructing an SLT 
for an arbitrary graph, thus proving Theorem 2.2. 

1. 

2. 

3. 

4. 

Construct an MST TM and an SPT Ts for G. 

Traverse TM in a DFS fashion. Observe 
that DFS defines a “tour” through the tree, 
in which each tree edge is traversed exactly 
twice. Define the “mileage” of the center of 
activity of the DFS to be the number of tree 
edge traversals (forward and backward) up to 
this time. Denote by v(i) (0 2 i 2 2(” - 1)) 
the location of the center of activity of the 
DFS at the time its mileage is exactly i. For 
example, v(0) = 4272 - 2) = s, where s is the 
source of the DFS. 

Construct the “line-version” L of TM, which 
is a (weighted) path graph containing ver- 
tices 0, 1, . . .2(n - 1). A vertex i on the path 
corresponds to y(i). We assign each edge 

= (i,i + 1) on the line L the weight of 
The corresponding edge (v(i), ~(i + 1)) in the 
graph G. Observe that the total weight of 
the line is at most twice the total weight of 
the MST TM, i.e., w(L) 5 2V. 

Fix a parameter q > 0. Construct “break- 
points” B; on L by scanning it from left to 
right according to the following rules. 

(a) Break-point Bi is vertex 0 on the line L. 
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Construct a minimum spanning tree TM for G. 
Construct a shortest path tree Ts for G. 
Construct L based on TM as described above. 
Assign each edge e of L the same weight as v(e) in G. 
E’+TM 
XcO;Y+O 
repeat 

repeat Y 4- Y + 1 
until dist(X, Y, L) > q - dist(X, Y, Ts) 

E’ c E’ U Path(X, Y, Ts) 
X-Y 

until Y = n 
Construct a shortest path tree T in G’ = (V, E’) 
output T 

Figure 6: l%e SLT algorithm 

(b) Break-point B;+l is the first point to the 

right of B; such that dist(B;, &+I, L) > 
&ist(v(Bi), v(Bi+l), Ts), meaning that 
the distance from & to &+I in TM ex- 
ceeds that in Ts by a factor of at least 

!7- 

5. Create a subgraph G’ of G by taking TM 
and adding Path(v( B;), v(B;+l), Ts) for all 
break-points Bi, i > 1 (i.e., shortest paths 
connecting v(Bi) to V( Bi-I)). 

6. Construct a shortest path tree T in the re- 
sulting graph G’. 

7. output T. 

The algorithm is presented formally in Figure 
6. In the algorithm, T denotes the set of edges se- 
lected to the shallow-light tree and X, Y are point- 
ers on the line L. 

2.3 Analysis 

Claim 2.4 The tree T constructed by the algo- 

rithm satisfies w(T) < 2 * (1 + i) - Y. I 

Claim 2.5 The tree T constructed by the algo- 
rithm satisfies d(T) < (2q + 1) -D. 1 

Corollary 2.6 The tree T constructed by the al- 
gorithm is an SLT. 

As for a distributed construction of shallow- 
light trees, we show in the full paper 

Theorem 2.7 There is a distributed algorithm for 

constructing an SLT requiring O(V . n”) communi- 

cation and O(D . n2) time. 

3 Clock synchronization 

In this section we describe three methods of clock 
synchronization, called synchronizer cx*, /?* and 
r*, These are modifications of synchronizers cx, /3 
and y of [Awe85a]. 

3.1 Clock synchronizer a* 

As pointed out in [ERgOI, the most natural ap- 
proach to clock synchronization is to use the fol- 
lowing synchronization mechanism, caJ.Ied syn- 
chronizer a*. 

Synchronizer a* : whenever a node generates 
pulse p, is send messages to all neighbors, and 
when it receives messages of pulse p from all neigh- 
bors, it generates pulse p + 1. 

This method clearly requires time proportional 
to the highest edge weight, namely O(W). Our 
goal is to approach the lower bound, which is O(d) 
(recall that d is largest distance between neigh- 
bors). 

The naive way to improve the delay is to con- 
struct a shortest path Path( U, V) for all (u, TJ> E E 
and to communicate with each neighbor over such 
path. The problem with this method is that a par- 
ticular edge may belong to many paths (up to E), 
and thus the resulting congestion will slow down 
the communication time by the corresponding fac- 
tor (up to E). 

3.2 Clock synchronizer ,B* 

In order to minimize congestion, we may try the 
following method, called synchronizer /3*. 

Preprocessing: We construct a spanning tree 
T of the network, and select a “leader” to be the 
root of this tree. 
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Pulse generat ion: Information about the com- 
pletion of the current pulse is gathered up the tree 
by means of a communication pattern referred 
to as convergecust, which is started at the leaves 
of the tree and terminates at the root. Namely, 
whenever a node learns that it is done with this 
pulse and all its descendants in the tree are done 
with it as well, it reports this fact to its parent. 
Thus within finite time after the execution of the 
pulse, the leader eventually learns that all the 
nodes in the network are done. At that time it 
broadcasts a message along the tree, notifying all 
the nodes that they may generate a new pulse. 

The time complexity of Synchronizer ,L?* is 
R(D), because the entire convergecast and broad- 
cast process is performed along a spanning tree, 
whose depth is at least the diameter of the net- 
work. 

3.3 Clock synchronizer y* 

Our final synchronizer, called synchronizer y*, 
combines synchronizer y of [Awe85a]) with the 
network partitions of [AP89]. 

Definition 3.1 Given an n-vertex weighted graph 
G(V,E, w), a tree edge-cover for G is a collection 

M of trees, such that 

1. every edge of G is shared by at most O(logn) 
trees of M, 

2. the depth of each tree in M is at most O(logn- 
d), and 

3. for each edge, there exists at least one tree con- 

taining both endpoints. 

Lemma 3.2 For every n-vertex weighted graph 

G(V,E, w), it is possible to construct a tree edge- 
cover. 

Proof: The desired collection of trees can be con- 
structed using the techniques of [AP89]. Details 
will be given in the full paper. I 

Preprocessing: Construct a tree edge-cover for 
G. Inside each tree, a leader is chosen to coor- 
dinate the operations of tree. We call two trees 
neighboring if they share a node. 

Pulse generat ion: The process is performed 
in two phases. In the first phase, Synchronizer 
p is applied separately in each tree. Whenever 
the leader of a tree learns that its tree is done, 
it reports this fact to all the nodes in the tree 
which relay it to the leaders of all the neighboring 
trees. Now, the nodes of the tree enter the second 
phase, in which they wait until all the neighboring 
trees are known to be done and then generate the 
next pulse (as if Synchronizer cr* is applied among 
trees). More details will be given in the full paper. 

Complexity: The “congestion” caused by the 
fact that messages of different trees cross the same 
edge, adds at most an O(log n) multiplicative fac- 
tor to the time overhead. Since the height of each 
tree is O(dlogn), it follows that the time to sim- 
ulate one pulse is O(d n log2 n). 

4 Synchronizers 

The lower bound of [Awe85a] for the unweighted 
case holds here as well. 

Lemma 4.1 [Awe85a] For any k, any synchre 

nizer [ satisfying Ce = O(kn), must have Te = 
fqlO& 4. I 

In the rest of this section, we develop our syn- 
chronizer in a number of steps. 

The synchronizers discussed in this section op- 
erate by generating sequences of “clock-pulses” 
at each vertex of the network, satisfying the fol- 
lowing property: pulse p is generated at a ver- 
tex only after it receives all the messages of the 
synchronous algorithm that arrive at that vertex 
prior to pulse p. This property ensures that the 
network behaves as a synchronous one from the 
point of view of the particular synchronous algo- 
rithm. 

The problem arising with synchronizer design is 
that a vertex cannot know which messages were 
sent to it by its neighbors and there are no bounds 
on edge delays. Thus, the above property cannot 
be achieved simply by waiting “enough time” be- 
fore generating the next pulse, as may be possible 
in a network with bounded delays. However, it 
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may be achieved if additional messages are sent 
for the purpose of synchronization. 

In the unweighted synchronizers of [Awe%a], 
incoming links are “cleaned” from transient mes- 
sages in between any two consecutive pulses, sim- 
ilar to the clock synchronizers in Section 3. In 
our (weighted) case, this would be very inefficient 
since cleaning the links requires time proportional 
to the maximal link weight W >> 1, which would 
therefore dictate the multiplicative overhead of 
the synchronization. The idea for overcoming this 
problem is that links of high weight should be 
cleaned less frequently, thus enabling to amortize 
the cost of cleaning them over longer time inter- 
vals. 

We need to state a number of definitions first. 

Definition 4.2 Given a synchronous protocol 

x running on a synchronous weighted network 

G(V,E, w), we say that A is in synch with G if 

A transmits a message on edge e only at times that 

are divisible by w(e). 

Definition 4.3 A weighted network G(V, E, w) is 
said to be normalized if all weights w(e) are powers 

of 2. 

Informally, our solution proceeds according to 
the following plan. 

1. Design a synchronizer for normalized net- 

works and protocols that are in synch with 
the networks on which they are run. 

2. Show that one can transform an arbitrary 
synchronous protocol 7r and synchronous net- 
work G, so that the above assumptions are 
satisfied, without significantly increasing the 
complexities. 

These two steps are described in the following 
two subsections. 

4.1 Synchronizer rW 

We assume now that the weights of all network 
edges are powers of 2, and messages are sent on 
an edge of weight 2’ only at times divisible by 2’. 

Let. 6 = 1ogW. We define a collection of sub- 
networks {Gi(V,Ei) J 0 5 i _< 6}, by defining Ei 

to be the set of edges whose weights are divisible 
by 2’. (Note that an edge e with weight W(e) = 2j 
occurs in all graphs Gi for j 2 i.) 

The idea is that pulses divisible by 2i are han- 
dled by a so-called synchronizer yi, which is ex- 
actly synchronizer 7 of [AweBa], applied to the 
graph G;. The synchr,onizer 7i treats pulse p. 2; 
as “super-pulse” p. It guarantees that super-pulse 
p is executed only after all messages sent along 
edges in E; at super-pulse (p - 1) have arrived. 

A vertex has to satisfy all S synchronizers in 
order to proceed with a pulse. More specifically, 
consider a pulse p = 2j - (2~ + l), i.e., such that 2j 
is the maximal power of 2 dividing p. Then pulse 
p is postponed until super-pulse (2~ + 1) . 2jei of 
synchronizer 7i is executed. For example, pulse 
24 = 3 .23 is completed only after the synchroniz- 
ers 70,71,72, and 73 are done carryng their pulses 
24, 12, 6 and 3, respectively. 

Lemma 4.4 Synchronizer yW is correct. 

Proof Sketch: We need to show that under syn- 
chronizer y,,,, a vertex v generates pulse p only af- 
ter receiving all messages it would receive by pulse 
p were the protocol executed on a synchronous 
network. This follows from the fact that the set 
of messages it would get by pulse p, i.e., the set 
of messages affecting this pulse, includes messages 
sent on edges belonging to G’i sent at pulse p - 2’, 
and the arrival of these messages is guaranteed by 
synchronizer 7;. 1 

4.2 Designing the protocol transforma- 
tion 

In order to justify the assumptions of the previous 
subsection we need to prove the following claim. 

Lemma 4.5 Given a synchronous protocol K run- 

ning on a synchronous weighted network G( V, E, w), 
there exist a synchronous protocol ?r’ and a syn- 

chronous network G’(V, E,w’) with the following 

properties: 

1. G’ is normalized. 

2. The protocol r’ is in synch with G’. 
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3. 

4. 

The output of ‘lr’ on G’ is identical to the output 

of 7r on G. 

The time and communication complexities of a 

run of T’ on G’ are at most twice higher than 

the complexities of the corresponding run of x 

on G. 

The proof is postponed to the full paper. 

4.3 Complexity 

Lemma 4.6 The synchronizer -y,,, described above 
has the following complexities: 

Cp(yw) = U(k - n - log W) = O(k - n - logn) 

5$(yw) = O(lo& n a log W) = U(logk n . log n) 

Proof: Synchronizer ^I; is invoked on the graph G; 
once every 2’ time units. This costs us O(2; - n - L) 
in communication and O(2’ - logk n) time. This 
waste is amortized over 2’ time units, and then 
summed over all 0 5 a 2 1ogW graphs G;. 1 

5 Connected components and 
spanning tree construction 

In this section, we prove matching upper and 
lower bounds on the communication complexity 
of performing the tasks of finding connected com- 
ponents and constructing a spanning tree. 

5.1 Lower bounds 

Let us first point out that an fit(Z) lower bound on 
communication is given in [AGPV89] for the case 
where all edge weights are unity. In the rest of 
this subsection, we prove an Sl(n - V) lower bound 
on the communication complexity. 

Consider the family of graphs G, = (V, E,w) 
defined as follows. V = { 1,. . . , n). The set of 
edges is composed of two subsets, E = Ep lJ &,, 
where the first subset creates a path, Ep = ((i, i + 
1) 1 1 5 i 5 n- l}, and the second subset consists 
of bypassing edges, Eb = {(i, n + 1 - i) 1 1 5 i 5 
n/2}. The weights are defined as 

44 = x, e E Ep, 
x4 , -3% 

where X is some large value, say X > n. 
Note that the MST for G is the subgraph 

(V, Ep) based on the path alone, so V = nX. 
We make some assumptions similar to those of 

[AGPV89] regarding the model. In particular, we 
assume that the only operation one can do with 
ID’s is comparisons; this can be extended also to 
general operations in case the ID’s are allowed to 
be sufficiently large. 

Let A be a deterministic algorithm that suc- 
ceeds in computing a spanning tree on every in- 
put graph and whose communication complex- 
ity is f(n) = o(n4). In particular, this means 
that there exists a constant no such that for ev- 
ery n > no, the algorithm A completes the con- 
struction of tree on G, with communication cost 
less than n4. Clearly, then, the algorithm does 
not send any messages over any bypassing edge 
in these graphs, since using such an edge immedi- 
ately incurs a cost of n 4. Henceforce we restrict 
attention to graphs G, for n > no. 

Lemma 5.1 Algorithm A requires C?(nY) mes- 
sages. 1 

5.2 An upper bound 

Claim 5.2 Algorithm CONhybrid (presented in the 

full paper) requires O(min{e, n 9 Y}) messages. 
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