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Abstract

This paper studies the problem of constructing a
minimum-weight spanning tree (MST ) in a distributed
network. This is one of the most important problems in
the area of distributed computing. There is a long line
of gradually improving protocols for this problem, and
the state of the art today is a protocol with running time
O(A(G) + y/n -log* n) due to Kutten and Peleg [KP95],
where A(G) denotes the diameter of the graph G. Peleg
and Rubinovich [PR99] have shown that Q(y/n) time is
required for constructing MST even on graphs of small
diameter, and claimed that their result “establishes the
asymptotic near-optimality” of the protocol of [KP95].

In this paper we refine this claim, and devise a
protocol that constructs the MST in O(u(G,w) + /n)
rounds, where u(G,w) is the MST-radius of the graph.
The ratio between the diameter and the MST-radius
may be as large as ©(n), and, consequently, on some
inputs our protocol is faster than the protocol of [KP95]
by a factor of Q(y/n). Also, on every input, the running
time of our protocol is never greater than twice the
running time of the protocol of [KP95].

As part of our protocol for constructing an MST, we
develop a protocol for constructing neighborhood covers
with a drastically improved running time. The latter
result may be of independent interest.

1 Introduction

1.1 Distributed Computing Consider a weighted
undirected n-vertex graph (G = (V, E),w), with a non-
negative weight function w. Suppose that every vertex
hosts a processor with unbounded computational power,
but with limited initial knowledge. Specifically, assume
that each vertex (the terms “vertex” and “processor”
are synonyms in this context) is attached a distinct
identity number from the set {1,2,...,n}, and at the
beginning of the computation each vertex v accepts as
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input its own identity number, the identity numbers of
its neighbors in G, and the weights of the edges that
are adjacent to v. The vertex may also accept some
additional inputs as specified by the problem at hand.

The vertices are allowed to communicate through
the edges of the graph G. The communication is syn-
chronous, and occurs in discrete pulses, called rounds.
In particular, all the vertices wake up simultaneously at
the beginning of round 1, and from this point on the ver-
tices always know the number of the current round. On
each round each vertex v is allowed to send an arbitrary
message of size O(logn) through each edge e = (v, u)
that is adjacent to v, and the message will arrive to u
at the end of the current round. The weights of the
edges are at most polynomial in the number of vertices
n, and, therefore, a weight of a single edge can be com-
municated in one round. We will refer to this model of
distributed computation as the CONGEST model. We
will also consider the so-called LOCAL model, in which
messages of unbounded size can be delivered through
an edge in one round. Finally, in-between there is the
CONGEST (B) model in which the upper bound on the
size of the messages is B, and B is a parameter.

There are several measures of efficiency of dis-
tributed algorithms (also called “protocols”), but we
will concentrate on one of them, specifically, the run-
ning time, that is, the number of rounds of distributed
communication. Note that the computation that is per-
formed by the vertices locally is “free”, i.e., it does not
affect the time efficiency measure.

This model of computation is often termed as dis-
tributed computing with no shared memory, or, shortly,
distributed computing.  The distributed computing
model has been attracting a lot of research attention
during last two decades (e.g., [Awe85, Awe87, CT85,
Gaf85, AP90a, Lin92, L.S91, ABCP93, ABCP96, PR99,
E1k01]; see also [Pel00] and the references therein). The
importance of the model stems from both practical and
theoretical considerations. From a practical perspective
the model serves as a fairly good abstraction of today’s
most prominent computer networks, particularly the In-
ternet. From a theoretical perspective the model can
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be seen as a gross generalization of the communication
complexity model, in which the graph G consists of a
single edge.

1.2 Distributed MST Problem: Previous Re-
search The distributed minimum-weight spanning tree
(henceforth, MST) problem is one of the most impor-
tant problems in the area of distributed computing. In
this problem each vertex v should return as output the
set of edges that are adjacent to v and belong to the
MST of the graph (assuming that the latter is unique;
otherwise, the outputs of all the vertices should be con-
sistent, and form an MST). The study of the MST
problem was initiated twenty years ago in a seminal pa-
per by Gallager et al. [GHS83], that devised a pro-
tocol that constructs the MST in O(n - logn) rounds
of distributed computation in the CONGEST model.
This result was improved soon afterwards by Chin and
Ting [CT85] to O(n - loglogn), further improved to
O(n - log*n) by Gafni [Gaf85], and consequently im-
proved by Awerbuch [Awe87] to an ezistentially optimal
running time of O(n).

In the late eighties it was observed that for most ex-
isting networks G, their diameter A(G) is significantly
smaller than the number of vertices n, and that there-
fore it is desirable to design protocols whose running
time is bounded in terms of A(G) rather than in terms of
n [Awe89]. The first such protocol for the MST problem
was designed by Garay et al. [GKP93], and its running
time is O(A(G) +n%%1). The result was later improved
by Kutten and Peleg [KP95] to O(A(G) + v/n - log™ n),
and this is the state of the art today. Table 1 sum-
marizes the upper bounds on the time complexity of
the MST problem in the CONGEST model. The lack
of progress in improving the result of [KP95] led re-
searchers to work on lower bounds. Peleg and Rubi-
novich [PR99] have shown that Q(%) rounds of dis-
tributed computation are required for constructing the
MST even when the input graphs have low diameter.
Elkin [Elk03] has recently improved this lower bound to

Q( logn)'

The upper bound of Kutten and Peleg [KP95] in
conjunction with the lower bound of Peleg and Rubi-
novich [PR99] may leave the impression that there is no
more room for a significant improvement in our under-
standing of the complexity of the MST problem. In-
deed, Peleg and Rubinovich explicitly stated in [PR99]
that in view of their lower bound, the protocol of [KP95]
is asymptotically near-optimal. However, an indication
that the protocol of [KP95] can still be improved was
provided by Peleg in [Pel00a], that devised a protocol
that constructs the MST in O(v(G)) rounds, where

Running time Reference
O(n -logn) Gallager et al.
[GHSS83]
O(n - loglogn) Chin, Ting
FOCS’85 [CT85]
O(n -log*n) Gafni
PODC’85 [Gaf85]
O(n) Awerbuch
STOC’87 [Awe87]
O(A(G) +n%%) | Garay et al.
FOCS’93 [GKP93]
O(A(G)+ Kutten, Peleg
Vv/n -log* n) PODC’95 [KP95]
O(uw(G,w) + v/n) | This paper.!

Table 1: The summary of upper bounds on
the complexity of the MST problem.

v(G) denotes the cyclic radius of the graph G, in the
LOCAL model. However, this result does not apply
to the more standard CONGEST model, while all the
aforementioned results do. The definition of the cyclic
radius y(G) is deferred to Section 2, and meanwhile we
remark that for every graph G, v(G) < A(G), and it is
often the case that v(G) < A(G).

We also remark that the protocol of [Pel00a] does
not detect termination. Intuitively, it means that if
an adversary is allowed to stop the execution of the
protocol and to force the vertices to return an output
in an arbitrary moment, they would be able to return
the MST of the input graph if this termination happens
after Q(v(@)) rounds.

1.3 Our Results Upper Bounds: The main moti-
vation for the result of [Pel00a] was the quest for the
“correct” graph parameter that reflects the complexity
of the MST problem to as large extent as possible. It
was suggested in [Pel00a] that the cyclic radius could be
such a parameter. In this paper we prove that it is not
true, and single out another parameter, specifically, the
MST-radius u(G,w), that also serves as an upper bound
on the complexity of the MST problem in the LOCAL
model. The MST-radius is never greater than the cyclic
radius, and the gap between the two parameters may be
arbitrarily large; in fact, we show an example of an in-
finite family of n-vertex graphs with cyclic radius equal
to n/2 and MST-radius equal to 1! (The definition of
MST-radius is deferred to Section 2.)

TWe use the notations O(f(n)) and Q(f(n)) to denote O(f(n)-
polylog(f(n))) and Q(f(n)/polylog(f(n))), respectively.
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Moreover, after eight years that witnessed no
progress on upper bounds for the MST problem in
the CONGEST model, we devise a randomized pro-
tocol for the problem with worst-case running time
O(u(G,w) ++/n). Since for many graphs (G,w) there is
a large gap between the diameter A(G) and the MST-
radius u(G,w), it is often the case that our protocol is
far more efficient than the previosly best-known proto-
col [KP95]. Specifically, the ratio between the running
times of these protocols may be as large® as Q(y/n).
Also, on any input, our protocol is as efficient as the
protocol of [KP95], up to a polylogarithmic factor in n
(and, actually, the two protocols can be combined in the
obvious way so that the running time of the combined
protocol is always at most twice the minimum of the
two running times).

We remark that it is natural that there exist graphs
on which the upper bound on the running time of our
protocol is no better than the running time of the
protocol of [KP95]. Indeed, this is the case also when
comparing the running time of the protocol of [KP95]
with that of [GKP93], or with that of [Awe87]. In
other words, the existential optimality of the protocol of
[Awe87] rules out the possibility of devising a protocol
that has strictly smaller running time than the protocol
of [Awe87] on every graph.

However, unlike the previous protocols [KP95,
GKP93, Awe87], in our protocol the vertices should ac-
cept the MST-radius u(G,w) of the input graph as an
additional input (or, else, the protocol does not detect
termination). To weaken this assumption we generalize
the protocol to work in the scenario when each vertex v
in the graph accepts as input its own upper bound fi, of
the MST-radius of the graph, and for different vertices
these upper bounds are allowed to disagree. Denoting
the maximum of these upper bounds by £, the running
time of our protocol in this scenario is O(fi 4+ /7).

We remark that some assumption of this sort
is necessary, as protocol with our running time in
which the vertices accept no additional input provably
provides wrong outputs on some inputs. Also, the
assumption that all the vertices in the graph know
an estimate of some parameter of the input graph,
such as the number of vertices or the diameter of
the graph, is quite common in distributed computing
[LS91, AGLP89], especially for protocols whose running
time is o(A(G)) (protocols that run Q(A(G)) rounds

ZMoreover, both protocols generalize to the CONGEST(B)
model. The running time of the generalization of the protocol of
[KP95] is O(A(G) + y/(nlogn)/Blog* n), and the running time
of our protocol is O(u(G,w) + y/n/B). Hence, the maximum

ratio between the running times of the two protocols grows with
B. Specifically, it is min{n,v/n - B/log3n}.

can compute these parameters within their complexity
bounds).

Lower Bounds: We also show that the MST-radius
“deserves its name”, that is, reflects the complexity of
the MST problem in several senses (and, in particular,
it is rather unlikely that a protocol for constructing an
MST with running time smaller than the MST-radius
exists even in the LOCAL model). All our lower
bounds are proved in the LOCAL model, and therefore
they obviously apply to the CONGEST model as well.

First, we consider the class of coarsening protocols
that do not detect termination. Intuitively, a protocol
is coarsening if for every input its output is always a
superset of the correct answer of the problem on this
input, even if the protocol is stopped prematurely. We
show that for every coarsening protocol and every input
(G,w) of the MST problem, the running time of the
protocol is at least u(G,w), or else the protocol returns
a wrong output on some other instance. Note that
this lower bound is matched ezactly by our protocol for
constructing the MST in the LOCAL model.

However, note that both these upper and lower
bounds refer to the distributed network as a blackbox,
considering the running time of a protocol as a whole,
and making no distinction between the individual ver-
tices. While this is the standard way to think about
the running time of a protocol (as maximum of the run-
ning times of individual vertices that run the protocol),
in this paper we suggest a refined way of defining the
running time of distributed protocols. Specifically, we
introduce the notion of wvector running time of a dis-
tributed protocol, which is the n-tuple of the running
times of different vertices. We also refine the notion
of the MST-radius, and define the vector MST -radius,
ii(G,w), of a graph. The vector MST-radius of a graph
(G,w) is an n-dimensional vector indexed by the vertex
set V of G, and for every vertex v € V the vth coordi-
nate of ji(G,w), denoted p,(G,w), is a parameter that
depends both on the graph (G,w) and on the vertex v
(see Section 2).

We show that for every coarsening protocol and
every input (G,w) of the MST problem, and every
vertex v of G, the running time of the vertex v in the
protocol is at least the vth coordinate of the MST-
radius fi(G,w), that is, p,(G,w). This lower bound is
also exactly matched by protocol for constructing the
MST in the LOCAL model, i.e., when the protocol is
run on the graph (G, w), for every vertex v of the graph,
the running time of the restriction of this protocol to v
is precisely p,(G,w). In terms of our refined notion of
running time, the vector running time of our protocol is
precisely equal to the vector MST-radius of the graph.
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Second, we consider the MST* problem, a variant
of the MST problem in which every vertex accepts
the MST-radius of the input graph (G,w) as part
of its input. We show that for every graph (G,w),
every protocol that solves the MST™ problem on (G,w)
requires Q(u(G,w)) rounds even in the LOCAL model,
and this lower bound is matched up to a constant by
our upper bound for the LOCAL model.

1.4 Every-Case Complexity While these lower
bounds do not rule out completely the possibility that
our protocol would ever be improved, they can still serve
as a strong evidence that the MST-radius is not an ar-
bitrary parameter, and that it reflects in a rather strong
sense the complexity of the MST problem.

It should be noticed that in the LOCAL model
our upper and lower bounds agree on every instance.
This every-case or instance optimality is a rather rare
phenomenon, that, however, was already observed more
or less explicitly in several different contexts.

First, more than thirty years ago, Levin [LevT72]
proved that for every NP-relation there exists an opti-
mal search algorithm. Without going into details of the
precise sense in which this algorithm is optimal, we note
that this “optimality” is achieved on every instance of
the appropriate search problem. More recently, Dwork
and Moses [DM90] have devised an algorithm for Byzan-
tine agreement, and their algorithm is optimal for ev-
ery sequence of crash failures of the participating pro-
cessors. Very recently, Fagin et al. [FLNO1] have de-
vised an aggregation algorithm for database systems,
and have shown that their algorithm is optimal up to a
factor of 2 on every instance of the problem, as far as
the attention is restricted to a certain rather wide class
of algorithms. Garay et al. [GKP93] were probably
the first to discuss the general phenomenon of algorith-
mic optimality on every instance explicitly, and they
called it universal optimality. Fagin et al. [FLNO1] fur-
ther formalized this notion of optimality, and termed it
instance-optimality.

We take the discussion on instance-optimality one
step forward, and define a new complezity measure of
problems that has the property that instance-optimal
algorithms are optimal with respect to this measure.
We call this measure every-case complexity, and inter-
pret our results concerning the MST problem in the
LOCAL model in terms of this new complexity mea-
sure. Specifically, the aforementioned result concerning
the MST* problem means that the every-case complex-
ity of this problem is (up to a constant factor) equal to
the MST-radius. We also generalize the notion of every-
case complexity measure to adapt it to the distributed
model with the vector notion of running time. For this

scenario we introduce the wvector every-case complex-
ity measure of problems, and in terms of this measure
our result concerning the coarsening will-maintaining
protocols for the MST problem in the LOCAL model
means that the vector every-case complexity of the MST
problem with respect to an appropriate class of proto-
cols is precisely equal to the vector MST-radius. (Note
that both the complexity measure and the vector MST-
radius are vector functions with common domain; the
latter is the class of all weighted graphs.)

We remark that these semantic interpretations
do not aim to shed a new light on the complexity
of the MST problem, but rather to illustrate that
the scalar and vector every-case complexity measures,
introduced in this paper are meaningful, and convey
more information about the complexity of certain
problems than the classic worst-case and average-case
complexity measures.

Our Techniques: We believe that our main contribu-
tion is in realizing that the result of Kutten and Peleg
[KP95] still leaves a large room for improvement. From
a technical perspective, the idea that makes possible
such an improvement is to use neighborhood covers
for constructing the MST. Neighborhood covers were
introduced in [ABCP93], and were found very useful
for various applications. In particular, they were used
in [AP90a] for network synchronization, in [AP92] for
routing, and in [ABCP93, Elk01] for computing almost
shortest paths and constructing spanners. However, so
far neighborhood covers were not used for constructing
the MST, and moreover, all the existing distributed
protocols for constructing neighborhood covers that
apply for the entire range of the parameters either
require super-linear time [ABCP93, AP90b], or apply
only to the LOCAL model [ABCP96]. This running
time exceeds by far our desired resource limits, that
is, a running time of O(p 4+ /n). To overcome this
difficulty we devise a new efficient randomized protocol
for constructing neighborhood covers.

Our protocol for constructing neighborhood covers
is based on Cohen’s parallel algorithm for constructing
pairwise covers [Coh93], and adapts some techniques
from [ABCP96]. There are two major differences be-
tween our protocol and Cohen’s algorithm. First, pair-
wise covers are very related but yet different from neigh-
borhood covers. The more striking is the difference be-
tween the parallel and distributed models of computa-
tion. In the parallel model the objective is to minimize
the maximum number of steps of computation that are
performed by each processor, and the number of proces-
sors involved, while in the distributed model the objec-
tive is to minimize the number of rounds of communica-
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tion between the processors that have unbounded com-
putational power. Also, the algorithm of [Coh93] uses
the assumption that the processors have shared mem-
ory, and this is not the case in the distributed model.

We believe that our distributed protocol for con-
structing neighborhood covers is of independent inter-
est. To illustrate its applicability, we show that it imme-
diately gives rise to a drastically improved protocol for
constructing sparse spanners (the running time of our
protocol is by a factor of n/(polylog(n)) smaller than
the running time of the previously best-known protocol
[ABCP93] for this task ). We believe that other appli-
cations of our efficient protocol for constructing neigh-
borhood covers will be found in future.

Remark: Although our protocol for constructing
the covers, and, consequently, the MST, is
randomized®, there is a hope to derandomize it while
maintaining similar running time. Specifically, Awer-
buch et al. [ABCP96] devised a deterministic protocol
for constructing neighborhood covers with running

time greater by a factor of 20(V1°6™) than the running
time of our randomized protocol.  Unfortunately,
their result applies only to the LOCAL model of
distributed computation. So far we were not able to
adapt their protocol to the CONGEST model, but
we believe that such adaptation should be possible.
If the latter turns out to be true, it will give rise to
a deterministic protocol for constructing the MST in

w(G,w) - 20Wlen) 1 O(y/n) rounds.

Structure of the paper: The simplest form of
our protocol for constructing the MST and its analysis
appear in Section 3. Its generalization to the scenario
where the upper bounds on the MST-radius that the
vertices accept as input are allowed to disagree appears
in Section 4. Due to space limitations, several sections
of this paper are omitted from this extended abstract.
One of the omitted sections describes our protocol for
constructing neighborhood covers, another section is
devoted to the notions of scalar and vector every-case
complexity, and one more section presents our results
regarding the MST problem in the LOCAL model
of distributed computation. Also, most proofs are
omitted. The full version of this paper can be found at
http://www.math.ias.edu/" elkin.

2 Preliminaries

Without loss of generality, we assume that the graph is
connected. We also assume that all the weights of edges
in the graphs are distinct. It implies, in particular, that

3With negligible probability over the coin tosses the protocol
may output a cyclic subgraph of the input graph.

the MST of the graph is unique. The definitions and the
results generalize readily to the case when the weights
are not necessarily distinct.

For a vertex v € V and an edge e € E, let
distc(u,e) = min{distg(u,v) | v € e}. For a vertex
u € V and a cycle C, let the wvertex-edge radius
of the cycle C' with respect to vertex wu, denoted
VzEdgRad,(C), be max{distg(u,e') | ¢ € E(C)}.
For an edge e, let Z(e) be the set of cycles C in
which the edge e is the heaviest edge. For a vertex
u € V and an edge e € FE that is adjacent to w,
let VzEdgElimRad(u,e) = min{VzEdgRad,(C) | C €
Z(e)}. (The minimum of an empty set is defined as
zero.) Intuitively, VzEdgElimRad(u,e) is the number
of rounds required to the vertex u to discover that the
edge e that is adjacent to u does not belong to the MST.
The MST-radius of a weighted graph (G = (V, E),w)
with respect to a vertex u € V, denoted pu,(G,w),
is defined by u.(G,w) max{ VzEdgElimRad(u,e) |
e € E,u € e}. The MST-radius of the graph (G =
(V, E),w) with vertex set V = {1,2,...,n} is the vector
ﬁ(G7w) = (Hl(Gaw)7#2(G7w)7 - 'JHTL(GJW))J and the
mazimum MST-radius of the graph (G,w), denoted
w(G,w), is the £y-norm of the vector [i(G,w), i.e.,
1(Gw) = max{p,(G,w) | u € V}.

For a vertex © € V and a cycle C, the wver-
tez radius of C with respect to uw is VzRad,(C)
max{distg(u,w) | w € V(C)}. The vertex radius of
the cycle C is min{ VzRad,(C) | v € V}. The cyclic
radius of the graph G, denoted v(G), is the maximum
of the vertex radii of the cycles of G.

To conclude the discussion about the parameters
that affect the every-case complexity of the MST prob-
lem, we show an example of a graph with an MST-
radius of 1, and a cyclic radius of n/2. This example
shows that the gap between the cyclic radius and the
MST-radius can be arbitrarily large.

Consider a (2k)-vertex ladder G = (V, E)
vertex set V. = UUW, U = {ur,us,...,up}, W =
{wi,ws,...,wi}, and edge set E = E; U Ep, By =
{(uiaui—i—l)a (wiawi-i—l) | i=1,2,...,k— ]-}a E, = {ei
(uj,w;) | i@ = 1,2,...,k}, with weight function w de-
fined by w(e) = 0 for each e € Ey, and w(e;) = 4
for i = 1,2,...,k. Observe that any cycle C contains
at least one edge from the set {e; | i = 2,3,...,k}.
Observe that for any edge e € E; U {e1}, there is
no cycle C in the graph such that e is the heavi-
est edge in C. Hence, for each edge e € E; U {e1}
and any endpoint = € e, VzEdgElimRad(z,e) = 0.
For each ¢ = 2,3,...,k, VzEdgElimRad(u;,e;)
VzEdgElimRad(w;,e;) = 1. Hence, py, (G, w)
pwy (G,w) = 0, and py, (G,w) = pu,(G,w) = 1, for
i = 2,3,...,k. Hence the maximum MST-radius,
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u(G,w), is equal to 1. On the other hand, all the vertex
radii of the cycle (ui,uz,..., g, Wk, Wk—1,...,W1,U1)
are equal to k. Hence, the cyclic radius of

this graph is equal to 7.

3 The CONGEST Model

We next describe our protocols for constructing the
MST in the CONGEST (B) model.

3.1 Overview The protocol of [KP95] consists of
two parts. The first part constructs an MST-forest,
that is, a forest of subtrees (also called fragments)
of the MST. The second part “filters” the inter-
fragment edges, and leaves only those that belong to
the MST. This filtering is performed by a pipelined
convergecast of these edges through a BFS tree of the
graph, and, thus, requires at least A(G) rounds (as the
depth of the BFS tree is A(G)). Our protocol has a
similar structure to that of [KP95], and its first part
also involves constructing an MST-forest, though with
slightly different parameters. However, in its second
part, instead of performing the pipelined convergecast
through a BFS tree of the graph, our protocol performs
many pipelined convergecasts in parallel through all
trees of an appropriate neighborhood cover (the latter
is a collection of trees that satisfy certain properties).
Some properties of the trees of the cover are crucial for
our analysis. We next discuss some of them. First,
all the trees are rather shallow (the maximum depth is
bounded from above in terms of the MST-radius), and,
thus, potentially, the convergecasts can be conducted
through them efficiently. Second, every edge of the
graph belongs to a relatively small number of trees, and
thus, no edge is ever utilized in parallel by too many
convergecasts, ensuring that the network experiences
a limited number of congestions. Third, every vertex
v participates in convergecasts in each of the trees of
the cover that contain v, and combines the vth local
perspective of these convergecasts in a certain way.
The result of this process turns out to be essentially
equivalent to the result that the vertex v would obtain
from participation in a single convergecast through a
BFS tree of the entire graph. Essentially, the last
property is an instantiation of a general paradigm that
many global computations can be replaced by somewhat
more involved local ones (see [Pel00] for a comprehensive
discussion of this paradigm).

The main difficulty in implementing the above
scheme is, however, that before conducting the pipelined
convergecasts over the trees of the neighborhood cover,
this cover needs to be constructed. Neighborhood covers
play an important role in the design of distributed pro-
tocols, and were subject to extensive research [AP90a,

AP90b, AP92, ABCP93, ABCP96]. However, to-
day’s best-known distributed protocols for constructing
neighborhood covers from scratch in the CONGEST
model that apply for the entire range of the parame-
ters have super-linear running time [ABCP93, AP90b].
In this paper we present a drastically more efficient ran-
domized distributed protocol for constructing neighbor-
hood covers, and in this section this protocol is used for
constructing the MST.

3.2 Protocol for Constructing an MST We first
introduce the following definition. A k-MST forest F of
a graph (G = (V, E),w) is a collection of vertex-disjoint
trees that satisfy

L. UTG}' V(T) =V, UTe_’F E(T) CE.

2. [V(T)]

Q(k), depth(T) = O(k).
3. Each tree T' € F is a fragment (that is, a connected
subtree) of the MST of the graph (G,w).

The notion of a k-MST forest is related to the
notion of a (o, p) spanning forest of [KP95]. Trees T' € F
of (o,p) spanning forest F have to satisfy properties
(1) and (2) with |V(T)| > o and depth(T) < p, but
may not satisfy property (3). It was demonstrated in
[KP95] that a k-MST forest of an n-vertex graph G
can be constructed in O(k-log* n) rounds of distributed
computation in the CONGEST(B) model for B
Q(logn).

Fix k to be a positive integer parameter. The first
step of our protocol is to construct the k- MST forest.

For the following discussion we need the notion
of matroid. Suppose we are given a universe A of
elements, and a collection S of subsets that is closed
under inclusion, i.e., that A € S and B C A implies
that B € S§. The sets of S are called the independent
sets of the matroid, and a set A € S is called mazimal
independent set if for every element e € A\ A, the set
AuU{e} ¢ S. The collection (along with the universe) is
called a matroid if for any two sets A, B € S such that
|B| = |A| + 1, there exists an element e € B such that
AU{e} € S. (This property is usually called replacement
property.)

One of the properties of matroids (that follow from
the definition) is that all maximal independent sets are
of the same size, and this size is called the rank of the
matroid, denoted rank(A,S). X

Given a k-MST forest F, consider the collection E
of inter-fragment edges, i.e., edges (u,w) € E such that
u € V(T),w € V(T") for some pair of distinct fragments
T,T" € F. Observe that the set of inter-fragment edges
forms a multigraph with fragments serving as vertices,
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and inter-fragment edges serving as the edges of the
multigraph. Denote this multigraph G = (V, E).

Observe that the collection of acyclic subsets of the
edge set of a multigraph forms a matroid of rank |V|—1
with universe A = E. Observe also that we are given
a non-negative weight function w : £ = A —» R*, and
we are interested in computing a maximal independent
set (henceforth, MIS) A of this matroid of minimum
weight, ), . 4w(e). Such independent set is precisely
the set of edges that together with the edges of the
forest F form the MST of the graph G. Suppose also
that the elements of the universe of this matroid are
initially distributed with possible duplications among
the vertices of a tree 7.

In [GKP93] a distributed protocol was devised for
computing the MIS with minimum weight of a ma-
troid (A,S) in this scenario. Their protocol works in
the CONGEST (logn) model, and its worst case run-
ning time is O(depth(r) + rank(A,S)). We general-
ize their protocol to CONGEST (B) model, and show
that its running time in this more general model is
O(depth(t) + W). The proof of this state-
ment is omitted from this extended abstract. Our gen-
eralized protocol for this task will be referred henceforth
Protocol Pipeline. It follows that under the assump-
tion that the inter-fragment edges of G are distributed
among the vertices of 7, the MST for G can be con-
structed in O(depth(r) + ‘%‘ -logn) rounds.

Throughout the rest of the section we assume that
all the vertices accept as input the maximum MST-
radius u, i.e., for every vertex v € V, i, = p. The
generalization to the scenario when these upper bounds
are allowed to disagree can be found in Section 4.
To construct an MST given a k-MST forest, we use
Protocol Pipeline in parallel on many auxilary trees.

The collection C of auxilary trees that is required
for our protocol has to satisfy the following properties
with W = u(G,w) and k = O(logn).

1. For each tree 7 € C, depth(r) = O(W - k).

2. Each vertex v € V appears in at most O(k - n'/*)
different trees 7 € C.

3. For each vertex v € V there exists a tree 7 € C that
contains the entire W-neighborhood of the vertex v, i.e.,
P (v) C V(7).

Such a collection of trees is called sparse (K, W)-
neighborhood cover (henceforth, (k,W)-cover) of the
graph G. For a cover C and a vertex v € V, let the cover-
degree of the vertex v in the cover C, denoted covdeg. (v),
be the number of clusters of the cover C that contain
the vertex v. The (mazimum) cover-degree of the cover
C, denoted covdeg(C), is max{covdegpo(v) | v € V}.
We devise a new randomized protocol for constructing
(k, W)-neighborhood covers with maximal cover-degree

O(k-n'/*-log n) with running time O(x2-log n-n'/*-W).
Our construction is based on a parallel algorithm for
constructing pairwise covers due to [Coh93], and adapts
some techniques from [ABCP96]. The formal descrip-
tion of our construction of covers is omitted from this
extended abstract.

The first step of our protocol for constructing the
MST given a k-MST forest is to construct a (logn, u)-
cover of the graph. As was already mentioned, this
requires O(log® n - p) rounds.

Let C denote the constructed (logn, u)-cover. Con-
sider some tree 7 € C. Its vertex set V(7) induces a
subgraph of G, G™ = G(V(7)). Let F be the k-MST
forest. Let 7 = F|y(;) be the restriction of the forest
F to the vertex set V(7). Observe that F7 is not nec-
essarily a k-MST forest of G”, because each fragment
(tree) T of F may form several disconnected fragments
(trees) Ty, T5,...,T; for some p = 1,2,.... For each
fragment T' € F, let T denote the forest with vertex set
V(T)NV(r) and edge set {e = (u,w) € E(T) | u,w €
V(r)}. R

Consider the multigraph G” that is obtained out
of G™ by contracting each (not necessarily connected)
fragment 77 (such that T € F) to a supervertex.
For each inter-fragment edge (u,w) with v € V(I7),
w € V(TY), there is an edge labeled (u,w) between T
and T§ in G7.

Next, Protocol Pipeline is invoked on each tree 7
of the cover C to compute the MST of the multigraph
G™. We refer to this stage of the computation as
Protocol Pipe_ M ST. Observe that for each tree 7 € C,
the acyclic sets of edges of the multigraph G7 form a
matroid of rank equal to the number of supervertices of
the multigraph G7 minus 1. As each fragment T € F
yields at most one (not necessarily connected) fragment
7 = (V(r) NV(D), {e = (u,w) € B(T) | u,w € V(r)},
it follows that the number of supervertices of G is
at most the number of fragments of the k-MST forest
F, that is, O(n/k). Hence, the rank of the matroid
is O(n/k), and, therefore, Protocol Pipeline would
compute the MST of G™ in O(depth(r) + %ﬂ) =
O(p -logn + "',;f’#) rounds, if this computation would
proceed uninterruptedly.

However, each vertex may participate in O(log® n)
trees 7 € C, and, therefore, on each round O(log®n)
different executions of Protocol Pipeline may try to
utilize the same edge. Hence, the running time of
Protocol Pipe_M ST is at most by a factor O(log®n)
greater than it would be for a single execution of
Protocol Pipeline, that is, O(u - log® n + %533—")

The last step of our protocol is to form the MST of
the graph G out of the k-MST forest F, and the MST's
of the multigraphs G7, for each tree 7 € C.
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This is done locally by each vertex v in the following
way. For each edge e = (u,w) that is incident to the
vertex v, the edge e is taken into the MST if it belongs
to one of the following two sets:

(1) The set of edges of the k-MST forest F.

(2) {e = (vyw) | V7 € C st. v,w € V(7),e €
MST(G")}.

The first condition means that the constructed MST
contains the edge set of the k- MST forest F. The second
condition means that an inter-fragment edge e belongs
to the constructed MST if it belongs to the MST of each
multigraph G7 such that the vertex set V(7) contains
both its endpoints.

We refer to the above protocol for constructing
MST given a k-MST forest F, Cover_MST.

LEMMA 3.1. If e = (u,w) is an inter-fragment edge
that belongs to the MST of G, then it belongs to the
MST of each multigraph G7 such that both its endpoints
u and w belong to the vertex set V(7).

A cover C' is said to coarsen the cover C, if for every
cluster C' € C, there exists a cluster C' € C' such that
C C (C'. Unlike the previous lemma that does not
depend on the properties of the constructed cover C,
the next lemma heavily exploits the assumption that
the cover C coarsens a (k, u)-neighborhood cover.

LEMMA 3.2. Let e = (u,w) be an inter-fragment edge
that does not belong to the MST of G. Let C be a cover
that coarsens a (K, u)-neighborhood cover. Then there
exists a tree T € C with u,w € V (1), such that e does
not belong to the MST of the multigraph GT.

Proof. Consider an edge e = (u, w) that does not belong
to the MST of G. Observe that

VzEdgElimRad(u,e) < py(G,w) < p. By definition
of VzEdgElimRad(u,e), there exists a cycle Cy € Z(e)
such that VzEdgRad,(Cy) = VzEdgElimRad(u,e) < p.
As Cy € Z(e), the edge e belongs to E(Cp), and the
endpoints u and w of e belong to V(Cy). By definition
of neighborhood cover, and since the cover C coarsens a
(k, p)-neighborhood cover, it follows that there exists a
tree 7 € C such that the entire p-neighborhood of the
vertex u is contained in V(7). It follows that the vertex
set of the cycle Cy is contained in V(7) as well, and, in
particular, u,w € V(T). The cycle Cp induces a cycle
C{ in the multigraph G7, and as the edge e is an inter-
fragment edge with both endpoints in V(7), it is the
heaviest edge of the cycle Cj. It follows that the edge
e does not belong to the MST of the multigraph G7,
proving the lemma. [

COROLLARY 3.1. Given a k-MST forest F of an n-
vertex graph (G,w), Protocol Cover_ M ST constructs

the MST of (G,w) with probability 1 — O(1/poly(n)) in
O(p-log® n + g log®n) rounds.

Proof. Suppose that the neighborhood cover was con-
structed by Protocol Cover correctly. This happens
with probability 1 — O(1/poly(n)).

Consider an edge e of the MST of G. If it is
an inter-fragment edge (with respect to the forest F),
then by Lemma 3.1 and by condition (2) of Protocol
Cover_M ST, it belongs to the tree 7y that was con-
structed by Protocol Cover_M ST.

If the edge e = (u,w) is not an inter-fragment
edge, then there exists a fragment T' € F such that
u,w € V(T). By definition of the k-MST forest, T is a
connected subtree of the MST, and, therefore, it spans
all the vertices of V(T'). Hence, for any edge €' = (v, 2)
of the MST with both endpoints v and z in V(T), the
edge e’ belongs to the edge set of the fragment. Hence,
in particular, e € E(T), and, therefore, it belongs to the
tree 79 that was constructed by the protocol.

Consider an edge e = (u,w) that does not belong
to the MST. If the edge is inter-fragment with respect
to the forest F, then by Lemma 3.2 and condition (2),
the edge e does not belong to 79. Consider the case
that both endpoints u and w of the edge e belong to
the same fragment of 7. As the edge does not belong
to the MST, it does not belong to the k- MST forest F.
Hence, it was not inserted into the tree 7g.

It follows that the tree 79 is precisely the MST of
the graph.

Regarding the running time, observe that construct-
ing the neighborhood cover requires O(u-log® n) rounds.
Recall that running Protocol Pipeline in parallel on
all the trees 7 of the neighborhood cover C requires
O(p - log®*n + e log®n) rounds. The corollary fol-
lows. 1

logs/2 n

Set k = /5 - m. Let Protocol Fast_MST

denote the protocol that computes k-MST forest for k =
k(n, B) as above, using the protocol due to [GKP93],
and then invokes Protocol Cover_M ST. Recall that
computing the k-MST forest requires O(k - log*n)
rounds. We conclude

THEOREM 3.1. Protocol Fast_MST computes the
MST of an n-vertex graph (G = (V,E),w) from
scratch assuming that every verter v accepts as in-
put the mazimum MST-radius u(G,w) of the graph

in O - log®n + /n/B - logn - \/log*n) rounds

of distributed computation with success probability

1= O(1/poly(n)).
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4 Extensions of Protocol Fast_MST

In this section we generalize Protocol Fast_-M ST to
work in the scenario when each vertex v € V' accepts as
input only an upper bound ji, of the maximum MST-
radius p, and not the maximum MST-radius itself. (For
different vertices u,w € V, the upper bounds fi,, fiu
may disagree.) Let 4 = max{j, | v € V}. We will
argue that in this scenario the MST of the input graph
can be constructed in O(j + /%) rounds.

We start with describing the generalized protocol,
to which we refer as Protocol Gen_Fast. Like in Pro-
tocol Fast_M ST, the first part of Protocol Gen_Fast
is to construct the k-MST forest. The second part
of Protocol Gen_Fast is an invocation of Protocol
Gen_Cov_M ST, that generalizes Protocol Cover M ST.
Protocol Gen_Cov_M ST proceeds as follows. It starts
with initializing the cover C to be an empty set, i.e.,
each vertex v initializes its local set C(v) of clusters of
the cover C that contain v as an empty set. From now
on these sets will only grow, and once a cluster gets
into one of these sets, it is never removed from it. Also,
initially all the vertices marked as not terminated.

Protocol Gen_Cov_M ST proceeds in phases. On
phase j = 1,2,..., all the vertices v that are not
terminated, and such that fi, > 2/~! invoke Protocol
Cover with k logn (the k-parameter will stay
unchanged throughout the protocol), and W = W; =
27, Let C’ denote the constructed cover. Each vertex v
as above adds all the clusters of C7 that contain it into
its local set C(v). Note that in this stage of the protocol,
the vertices maintain a cover |J;_, C¢. We denote the
latter cover as C’.

Next, all the vertices v that participated in the
execution of Protocol Cover on this phase invoke a
modified variant of Protocol Pipe_M ST on the cover
CJ. Specifically, recall that during Protocol Pipe_ M ST
(see Section 3) the edges of the graph are pipelined
through the different trees of the cover C/. Recall also
that in Protocol Fast_M ST the sets of edges that are
pipelined through the trees of the cover form a matroid
of rank O(n/k). The latter is not necessarily true in
Protocol Gen_Fast, because the W-parameter of the
constructed cover C/ may be not large enough to ensure
the acyclicity of the pipelined sets of edges. Therefore,
using Protocol Pipe M ST as is would result in an
untolerably high running time.

Instead, this protocol is run with an additional
threshold parameter ¢ = O(n/k), and whenever a vertex
needs to pipeline ¢’ items with ¢’ > ¢ items, it discards
some arbitrary t' — ¢ of them. We refer to this modified
version of Protocol Pipe_M ST as Protocol Gen_Pipe.
Observe that whenever Protocol Gen_Pipe runs on a
matroid of rank O(n/k), it never needs to apply the

threshold condition, and, therefore, its execution in this
case is identical to the one of Protocol Pipe MST.
In other words, whenever the W-parameter of the
constructed cover is large enough, Protocol Gen_Pipe
behaves identically to Protocol Pipe M ST. Also, in
either case the running time of Protocol Gen_Pipe is at
most O(depth(7) + %ﬁ—"), where 7 is the tree on which
it was invoked (that is, the same upper bound as for
Protocol Pipe_ M ST).

If throughout the execution of phase j the vertex v
was informed that one of the vertices in its vicinity is
already terminated, then v will terminate at the end of
the current phase. Also, if the index j of the current
phase satisfies 2 - i, > 2/ > fi,, then the vertex v
will also terminate at the end of the current phase.
In both cases v will produce its output prior to the
termination. In the former case (when a terminated
vertex was discovered in the vicinity of v) the output of
v will be the output of (j—1)st phase restricted to v, and
in the latter case the output of v will be the output of jth
phase restricted to v. Also, on the last round of each
phase the vertices update their neighbors of whether
they decide to terminate. However, the vertices that
are informed on this stage that one of their neighbors
terminate, will terminate only at the end of the next
phase; otherwise, either the process of informing the
neighbors could require O(A(G)) rounds, which exceeds
our time limits, or some vertices would have terminated
neighbors that they would not know about.

Finally, there are two possible ways for a vertex v to
be informed throughout phase ¢ that one of the vertices
in its vicinity is terminated is as follows. First, through-
out the execution of Protocol Cover the vertex v may
turn out to be explored by the same BFS exploration
as some terminated vertex w, and then all the vertices
of this exploration are informed that w is terminated
(incurring only a constant overhead in running time).
Second, when Protocol Gen_Pipe performs pipelined
broadcasts and convergecasts through the trees of the
cover Ct, it may discover a terminated vertex in one of
the trees of the cover C*~! C (¢ (since a terminated
vertex in a cover C¢ = C*\ C*~! would be discovered
through the execution of Protocol Cover), and one of
these trees may contain v. In this case, again, all the
vertices of the tree in which a terminated vertex was en-
countered through the execution of Protocol Gen_Pipe
are informed, and the overhead in the running time is
again at most constant.

Note that Protocol Gen_Pipe performs pipelined
broadcasts and convergecasts through the trees of this
constructed cover, and, so, if the all the vertices of one
these trees were not terminated throughout the con-
struction of the cover, they will still be not terminated
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throughout the execution of Protocol Gen_Pipe.

This completes the description of the modified
protocol Gen_Fast. Its analysis is omitted from this
extended abstract.
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