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Abstract. We address the question of finding sensors’ coordinates, or at least an
approximation of them, when the sensors’ abilities are very weak. In a d dimen-
sional space, we define an extremely relaxed notion of coordinates along dimen-
sion i. The ranki of a sensor s is the number of sensors with ith-coordinate less
than the i-coordinate of s. In this paper we provide a theoretical foundation for
sensor ranking, when one assumes that a few anchor sensors know their locations
and that the others determine their rank only by exchanging information. We show
that the rank problem can be solved in linear time in R and that it is NP-Hard in
R

2. We also study the usual localization problem and show that in general one
cannot solve it; unless one knows a priori information on the sensors distribution.

1 Introduction

One of the fundamental problems in sensor networks is the localization problem, i.e.,
each sensor wishes to know its exact location. In the last two years several variations of
this problem had been studied [6,13,11,7,16]. For an application to localization we refer
the reader to [17]

Since sensors are supposed to be cheap the idea of using a GPS devices in every
sensor is not practical. One possibility to reduce the cost is to divide the sensors into
two sets. One set will serve as base stations and will be equipped with a GPS. The
sensors in the second set will use the base stations in order to compute their location.
Many localization algorithms for sensor networks have been proposed. There are mainly
two groups of algorithms: range based and range free. In the range based case it is
assumed that the sensors have an estimation of the point-to-point distance or angle. In
the range free case no such assumption is made. Because of the hardware limitations
of sensors networks devices, solutions in range-free localization are being pursued as a
cost-effective alternative to more expensive range-based approaches.

In this paper we study the range free localization and ranking problems. The main
questions that arise are: Uniqueness do we have enough information so that all the
solutions that are consistent with the sensors observations are “the same”? Practical
feasibility: Can we find at least one solution in reasonable time? Distributed efficiency:
can we provide a fast distributed algorithm that solve the problem ? Best solution: Can
we find the solution which is the most consistent with the observations?
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Our Results. We define the ranking problem for the d dimensional space (Rd). For the
one dimension case, we show that with uniform power (resp. arbitrary power), one can
solve the range free ranking problem in linear time (resp. polynomial time). We also
show an instances on which any algorithm that solves the range free localization can
make large errors due to the lack of information. We also show that the best possible
approximation on the coordinate value is a 2-approximation. Last, we show that when
the sensors are identically and independently distributed (i.i.d), one can solve range free
localization with high probability and good precision.

In the 2 dimensional case we show that range free ranking is not only NP hard but
also APX hard. Our proof also implies that the range free localization is APX hard. As a
corollary we prove that finding an approximated 2 dimensional realization of a unit disk
graph is NP hard, thus answering an opened question in [13]

Related Work. Localization in Ad-hoc wireless networks and sensor networks have been
the subject of extensive research in recent years. A detailed survey of the applications
which describes a spectrum of current products and explores the latest research in that
field is provided in [8]. The average estimation was proposed in [4] and was tested by
simulation. The main differences between the average algorithm and our algorithm is
that we compute the average location on all the sensors while the algorithm in [4] uses
only the base stations (anchors). Another difference is that we use the average in order to
compute the ranking, and then we use the ranking to get a more accurate estimation. In a
later publication [5], improves his work by suggesting a novel density adaptive algorithm
(HEAP) for placing additional anchors to reduce estimation error. Another approach for
solving the localization proposed in [10] consists in sensing nodes and base stations.
Instead of single hop broadcasts, anchors flood their location throughout the network
maintaining a running hop-count at each node along the way. Nodes calculate their po-
sition based on the received anchor locations, the hop-count from the corresponding
anchor, and the average-distance per hop; a value obtained through anchor communi-
cation again the algorithm was tasted by simulation. In the paper [7] another alternate
solution performs best when an irregular radio pattern and random node placement are
considered, and low communication overhead is desired this claim was demonstrated
by simulation.

In [6] it is shown that for dimension 2 the range based localization problem is NP
hard (mainly because finding a 2 dimensional realization of a network under distance
constraints is NP hard). The authors also show how to solve the localization if the
neighborhood graph is rigid.

Paper Organization. In Section 2 we give the basic definitions and notations. In Section
3 we prove our results for ranking in one dimension, we use the ranking problem to get
estimation for the location when the sensors are uniformly distributed. In section 4 we
study ranking and localization in dimension 2 and higher.

2 Model and Notation

Let the sensor set be S, sensors will be denoted s. In R
d we denote the real location of

a sensor s by (s(1), . . . , s(d)).
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We assume that each sensor has a unique label name(s). In the one dimensional
case the rank of sensor s is the number of sensors that have a smaller coordinate than
s : rank1(s) = |{s′ ∈ S : s′(1) < s(1)}|, and in the d dimensional case we have one
ranking function per dimension : ranki(s) = |{s′ : s′(i) < s(i)}|.

The digraph associated to the sensor network has as vertices the sensors and contains
an arc (s, s′) whenever s can transmit to s′, this digraph will be denoted G and we will
assume that it is connected. The out-neighbors set of a sensor s will be denoted N(s).
The number of hops h(s, s′) from s to s′ is the distance from s to s′ in the graph G.
We assume, unless specifically stated, that all sensors can transmit in a ball of radius
r, according to some norm (usually the l2 one), i.e. a sensor u can transmit to all the
sensors v such that |u − v| ≤ r. According to our hypothesis, the associated digraph G
is a Unit Disk Graph 1 (UDG) of R

d for the chosen norm (usually l2). This implies that
G is a symmetric digraph, and we will identify it with its underlying graph.

We say that two sensors s, s′ are equivalent if N(s) = N(s′). Since in the range free
model two equivalent sensors cannot be distinguished, we assume that we do not have
equivalent sensors (this is not restrictive since equivalence can be detected and one can
elect one sensor per equivalence class). We also assume that communication is carried
out in a synchronous manner, i.e., all the vertices are driven by a global clock. Messages
are sent at the beginning of each round, and are received at the end of the round. (Clearly,
our lower bounds hold for asynchronous networks as well). Since we work above the
MAC layer we allow any set of communication to be performed during a round. The
algorithms can be modified for asynchronous using standard techniques.

To conclude note that according to our model the only information that an algorithm
can extract from the sensors observation is the graph G and the location of the base
stations.

3 One Dimensional Case

In many practical cases i.e., in industrial line, road net, narrow street, along a fence or
border we can assume that the sensors are placed in a one dimension environment. As
we will see, the one dimensional case is much easier than the two dimensional one.

Without loss of generality, we assume in this section that the sensors are placed in
the unit interval and that there are only two base stations placed at 0 and 1; we denote
them respectively B0, B1.

Consider first the more general case, in which the sensor range may vary. Each sensor
s knows its transmission range r(s). The graph G associated to the sensor network is then
almost like an interval graph (see [9] for a definition). Theoretically to solve ranking or
localization one would gather all the sensor observations: that is the adjacency matrix of
the network G and the sensor ranges and then try to find 1 dimensional representation
of G in which vertex B0 is mapped on 0 and vertex B1 on 1 and where the interval of
transmission associated to sensor s has length r(s). Using the same ideas that allows

1 Unit disk graphs are intersection graphs: each vertex is represented by a disk and two vertices
are adjacent if the disks overlap. Note that in our case 2 nodes are connected if the center of one
disk is included in the other disk, and vice versa. However, there is a simple reduction between
the 2 models: if we divide the radius by 2, we get the unit disk graph model.
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to recognize interval graphs (see [9]), one can easily find a solution to the localization
problem (note that in section 3.4 we will see that finding a solution reduces to solving
a simple linear program). This implies that ranking is unique and can be computed in
polynomial time, still the actual localization of the sensors remains very uncertain.

In the next subsections we use the following definitions. Let Ai be an algorithm that
computes the estimated location of a sensor si. For each sensor i we denote by At

i(x)
the result of the algorithm Ai in the t iteration. In two dimensions we use the At

i(x) and
At

i(y) for the x, y coordinates that are computed by the algorithm Ai in the t iteration.

3.1 Ranking

The fact that one can solve the ranking problem is mainly due to the fact that there is a
natural ordering in R (and not in R

2). Indeed the 1 dimensional representations of the
graph G can be partitioned into 2 classes, in the first one a sensor s gets rank r(s) and
in the other n − r(s). We break this left-right symmetry since we know that station B0
has rank 0.

We now describe a fast distributed algorithm that solves the ranking problem when
the sensors range is uniform in O(h(s1, B1)) time steps.

The general idea of the algorithm is to use the fact that different sensors see different
environments. Furthermore, if all the sensors start with being in the neighborhood of the
base station in B0 eventually sensors that are near B1 will have a bigger average. Our
algorithm works in � 1

r � phases.

Lemma 3.1. If 0 ≤ a1 ≤ a2 ≤ a3 ≤ ... ≤ ai ≤ ... ≤ ai+j ≤ ... ≤ ai+j+k then
∑i+j

n=1 an

i+j ≤
∑i+j+k

m=i am

j+k , and equality only if a1 = ai+j+k.

Proof. By induction on i + j + k, if i + j + k = 1 then the lemma holds. Assume that

i + j + k = n + 1. If a1 = 0 then
∑i+j

n=1 an

i+j ≤
∑i+j

n=2 an

i+j−1 and we can use the induction.
If a1 > 0 we can define a new variable a′

k = ak − a1 and we get that a′
1 = 0 so we can

use the previous argument.

In order to prove the correctness of the algorithm we need the following definition. Let
the set of sensors Γi = {s : h(s, B1) ≤ i} be the sensors that are in hop-distance ≤ i
from B1.

Lemma 3.2. At
j(X ) > 0 if and only if s ∈ Γt.

Proof. The proof is by induction on the number t. For t = 1, the only sensors that don’t
change their estimation of their location are the ones that receive the transmission from
B1. This is exactly Γ1. The rest of the sensors still estimate their location to be 0.

Now assume the lemma holds for t = k. From lemma 3.1 we get that for all sj ∈ Γk,
Ak+1

j (X ) > 0. Now let s ∈ S \ Γk+1 since N(s) ∩ Γk = ∅ and using the induction
hypothesis we get that At

j(X ) = 0. It remains to prove that for all sj ∈ Γk+1 \ Γk,

Ak+1
j (X ) > 0. In this case the lemma follows from the fact that N(s) ∩ Γk �= ∅ and

lemma 3.1.

Using the previous lemma we get a bound on the time stop0 signal is sent.
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Initialize si,
A0

i (X )← 0
rank(si) = ∅
stop← 0

While (stop = 0)

At+1
i (X )←

∑
xj∈N(xi)

At
j(X )

|N(xi)|
if (∃sj ∈ N(si) ∧ rank(sj) �= ∅ ∧ rank(si) = ∅ )

then rank(si)← rank(sj) + |{k ∈ N(si) : At
j(X ) < At

k(X ) < At
i(X )}|

if (B0 ∈ N(si) ∧ ∀j ∈ N(si),At
i(X ) < At

j(X ) )
then rank(si)← 0

transmit At+1
i (X )

transmit rank(si)
If( receive stop0∧ receive stop1)

then stop← 1
t← t + 1

if(si receive stopk signal)
then transmit stopk signal

Fig. 1. Pseudo code for algorithm for sensor si

Transmit the location i
If(∀j ∈ N(Bi),At

j(X ) > 0)
then transmit stopi signal.

Fig. 2. Pseudo code for algorithm for base station Bi

Corollary 3.3. B0 transmit the stop0 at time h(B0, B1) + 1

The next lemma shows that after n iterations Γn is sorted.

Lemma 3.4. After t = h(s1, B1) iterations, if xi < xj then 0 < At(xi) < At(xj).

Proof. The proof is by induction on the number of hops from the base station. We claim
that after n iterations Γn is sorted. First we see that Γ1 is sorted after the first iteration.
Since all sensors in Γ1 see B1 and all the other values are 0, and so from lemma 3.1 the
sensors in Γ1 are sorted after applying the first iteration. Now assume that Γn is sorted at
time t = n. For si ∈ Γn+1 \ Γn, since An

i (X ) = 0. From the induction hypothesis we
get that for all j ∈ Γn, An

i (X ) > 0. From the fact that the graph GN is connected we
get that N(si)

⋂
Γn �= ∅. Now using lemma 3.1, we get that all sensors in Γn+1 − Γn

will be sorted at time n + 1. Sensors in Γn will still be sorted as long as they compute
their average at the same time step.

The next lemma shows that the algorithm stops after 2h(B0, B1) + 1 iterations.

Lemma 3.5. After t = 2h(B0, B1) + 1 iterations, the algorithm stops and if s1 < s′
1

then rank(s) < rank(s′)
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Proof. By corollary 3.3 B0 sends the stop0 signal at time h(s1, B1) + 1 and B1 sends
the stop1 signal at time 2. In order for the sensors to stop computing their new location
they have to receive both these signals. It follows that none of the sensors sets its stop to
1 before time h(s1, B1)+1, and the last of the stop signals is set at time 2h(B0, B1)+1,
since this is the time that it takes for the signal stop0 to reach the last sensors. Note that all
the sensors set their ranks before time h(B0, B1)+1(before signal stop0 was sent). From
lemma 3.4 we get that the ranks are consistent i.e., if s1 < s′

1 then rank(s) < rank(s).
Now the stop1 signal and the ranks spread at the same speed and arrive at the last sensors
at time h(B0, B1). So the signal that makes the sensors set their stop signals is actually
stop0.

Theorem 3.5.1. In one dimension the ranking problem can be solved in linear time.

3.2 Uniqueness of Localization

We remark that knowing only the graph G we can get a 2 approximation of the local-
ization, indeed if h(s, B0) = k then s(1) is at least k−1

2 · r and at most k · r. We show
now that even if it is easy to find a localization of the sensors that is consistent with the
observations, there exist instances for which one can find two consistent localizations in
which the coordinates may differ by more than 1/6 (and since the sensors are in [0, 1]
this is about 16% of the network width).

Note that sensor localization is not “hard”algorithmically, it’s simply impossible
since we miss information.

Theorem 3.6. For any algorithm A that solves the localization problem in one dimen-
sion there exists a location of sensors x1, x2, ..., xn such that the error of the estimation
|xi − A(xi)| for some i is bigger than 1/6.

Proof. Let ρ be the radius of the sensors. We put n = 1
ρ+ ρ+ε

2
points in the interval [0, 1].

This means that nρ + n
2 (ρ + ε) = 1. We consider two different scenarios, G and G′.

The location in G is:

xi =






i · ρ i ≤ n
2

nρ
2 + k(ρ + ε) + ρ i = n

2 + (2k + 1)
nρ
2 + k(ρ + ε) i = n

2 + 2k.

Similarly, the location of G′ is:

xi =






k(ρ + ε) + ρ i = (2k + 1) ≤ n
2

k(ρ + ε) i = 2k ≤ n
2 .

n
4 (ρ + ε) + (i − n

2 ) · ρ i ≥ n
2

If we let ε small enough, both locations give the same neighborhood graph and we can’t
differentiate them. We see that forcing ε → 0, for i = n/2, in G, xi is placed on 2/3 and
in G′, xi is placed in 1/3. Since the distance between them is 1/3, the best estimation
we can do will give an error of 1/6. This proves the theorem.



164 Z. Lotker, M. Martinez de Albeniz, and S. Pérénnes

3.3 Approximated Localization Under Distribution Assumption

We now use the rank in order to get a location estimator under the assumption that
the sensors distribution is known. We illustrate the idea with an example that uses the
uniform distribution.

Assume that the sensors are i.i.d distributed, we can use the ranking algorithm
combined with the distribution of the order statistics to solve the localization problem.
Naturally the localization of the sensor with rank i will be E[x(i)] which is the expectation
of the i-order statistics. We remark that the variance of the i-order statistics has been well
studied (for a background on this subject we refer the reader to [1]. For example assume
the sensors are placed by a uniform distribution in the [0, 1]. In this case it is well known
that the ith order statistics has a Beta(i, n− i+1) distribution. Therefore the algorithm
will compute the location of the sensor with rank i as being i

n+1 , and the variance of this

location is i(n+1−i)
(n+1)2(n+2) . Simple calculation shows that the middle sensor with rank n+1

2

has the maximum variance, which is equal to 1
4(n+2) , this variance is extremely small

compared to the 1/6 error that one can made in the deterministic case.
For a general distribution, one needs simply to compute an estimation of E[x(i)] and

to output it as coordinate. The quality of this rank based estimator will depend on the
variance of the i-order statistic.

3.4 Best Localization

According to section 3.2 we have many solutions that are consistent with the observation.
Therefore we can not hope to find the sensor coordinates, but we may find a “best
solution”. Many different quality measures may be chosen. The most natural measure
would be to choose the mean of all the solutions. We start with some definitions. A
solution of the localization problem can be identified with a vector of R

n. Let si denote
the sensor with rank i, we associate to a solution A the vector v(A) of R

n defined by
v(A)i = si(1) (v(S)i is the coordinate of si in the solution). The solution set happens
to be a convex polytope P , indeed a vector v represents a solution if and only if :

– ∀i, j, |vi − vj | ≥ r if si cannot transmit to sj ;
– ∀i, j, |vi − vj | ≤ r if si can transmit to sj

– v1 = 0, vn = 1, ∀i, vi ≥ 0, vi ≤ 1.

This system is non linear but if one assumes that the sensors are ranked the sign of
vi − vj is known and the system becomes linear. The mean v of all solutions minimizes
the expectancy of

∑
v∈P |v − v|2, assuming that all the solutions v ∈ P are equally

likely.
Finding the average solution reduces to computing the center of mass of polytope P .

This problem is believed to be NP hard, but one can get a good approximation of the
center of mass by sampling the points of the polytope and taking the sample average. In
order to get in polynomial time a good sample of the polytope one can simply start from
a point inside the polytope and walk randomly using a hit and run walk [12].

In our case we can get a better result, since the solution polytope is very particular.
Indeed one can show that its vertices are integral and use Fourrier Motzkin [15] method
to compute the integral

∫
x∈P

x exactly in polynomial time.



Range-Free Ranking in Sensors Networks and Its Applications to Localization 165

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

X4 X5X3

X1 X4 X5

X1 X2 X3

TT

X2X1

T T T

X1 X2 X3

X1 X4 X5

X1 X2 X5

X1 X2 X5

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

X4 X5X3

X1 X2 X5

X1 X4 X5

X1 X2 X3

TT

X2X1

T TF

X1 X2 X3

X1 X4 X5

X1 X2 X5

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

��

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

X4 X5X3

X1 X2 X5

X1 X4 X5

X1 X2 X3

TT

X2X1

T TF

X1 X2 X3

X1 X4 X5

X1 X2 X5

Fig. 3. Exempla of a Flip Game for the formula (x1∨x2∨x3)∧ (x1∨x4∨x5)∧ (x1∨x2∨x5)

Theorem 3.6.1. In the one dimensional case one can compute the average solution to
the localization problem in time O(n4).

4 Two Dimensional Case

In this section we sketch the proof that it is NP-hard to solve the ranking and the
localization problem in dimension 2. We also show that there exists no polynomial
algorithm computing a localization that is approximately consistent with the observations
unless P = NP , this implies that finding an approximated drawing of unit disk graphs
is NP hard. This problem was mentioned as open in [14]; indeed the exact drawing
problem was known to be NP hard [3], but the proof was much more complex than the
one we give and could not be extended to the approximated case.

Note that we just give the main ideas of our proofs, a detailed version will be given
in the final version.

We first give a sketch of the hardness proof. As in [2], we use a reduction to a
specific form, a 3Sat, the Jigsaw that we use is also directly inspired from this work.

The Symmetric 3Sat problem in which one wishes to satisfy not only any clause C
of a formula F but also all the symmetric clauses C (eg. at least one literal is false in
any clause) is NP Hard.

A Jigsaw Game to Emulate Symmetric 3Sat

The next Jigsaw that we will call Flip game is a game which emulates a symmetric 3Sat
instance with a formula F . For an example of the game see figure 3.
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– The Jigsaw is made with one horizontal axis on the y = 0 axis; on this axis n
vertical rigid bars B1, B2, . . . , Bn can rotate (more exactly for each bar we can use
the y = 0 symmetry).

– The bar Bi represents the variable xi, and can be set up to represent the setting
xi = TRUE or down xi = FALSE.

– The half plane y > 0 is divided in to m strips S1, S2, ..., Sm, each strip Si repre-
senting the clause Ci.

– symmetrically, the half plane y < 0 is divided in to m strips S1, S2, . . . , Sm, the
strip Si representing the clause Ci.

– On each bar are attached flippers , a flipper is a rigid structure that can be flapped
by symmetry around the bar axis.

– Flippers are attached to the bar with the following rules :
If xi is non negated in clause j we put a flipper on bar Bi in the up-strip j
If xi is negated in clause j we put a flipper on bar Bi in the down-strip j
If xi does not appear in clause j we put one flipper in the down-strip and the
up-strip j.
The space between two bars can contain at most one flipper.

The Flip game consists in rotating the bars and flipping the flippers so that flippers do
not overlap.

Lemma 4.1. The Flip game is NP-Hard.

Proof. Consider a winning position, we associate to it a Truth setting (xi is true is the bar
Bi is up). Since any strip can hold at most n − 1 non overlapping flippers, we conclude
the bars are set so that in each strip we find at most n−1 flippers. The number of flippers
in any up (resp. down) strip i is respectively n minus the number of true literals (minus
the number of false literals) in clause Ci. Hence flippers are non overlapping only if the
associated truth setting satisfies F and F .

Conversely, given any truth setting that satisfies the formula F we can set the bars
according to it, them we have enough room to set the flippers in non overlapping position
by flipping then left or right.

Emulating the Flip Game
Overall Argument

Consider a flip game, and any winning position drawn in the plane. We will associate to
this drawing a sensor network with uniform transmission range 1, the key point is that
the associated graph G does not depends on the winning position of the flip game.

Now, assume that we are given the graph G, due to rigidity constraints we can
easily recover the flip game structure and moreover if we want to draw G and respect
the sensor observations we have to draw it as a flip game in a winning position. Indeed
the only freedom that we have when we try to draw G corresponds exactly to the
possible moves of the flip game, and due to the sensors observations we cannot drawn
overlapping flippers. Hence if we manage to draw G we have been able to find a
winning position of the flip game.
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two star that are rigid Unique possible configuration two star that can flip

c
5

4 3

6

7

1

2

Fig. 4. Example of the three simple gadgets, the first is the rigid 7-star; this star has 7 leaves, note
that in our drawing 2 points are placed at the center (the center of the star and one leave). The
second gadget show how to connect two rigid 6-star and get a rigid shape. The last gadgets is the
flipper gadget.

To emulate the flip game with sensors we will first force the sensors to be on the
hexagon lattice using rigid graph structures; second we will maintains the jigsaw game
degree of freedom. For this we use two gadgets; we call the first the rigid gadget, since it
create a rigid bounding box which forces all the sensor to be set on the hexagon lattice.
We call the second gadget flipper.

In what follows, we consider a drawing of a graph G modulo R
2 isometries (for l2

that is rotations translation ), eg isometric drawings are considered as identical. When
d(u, v) = 1 we may choose to have [u, v] in E(G) or not. We call rigid any graph which
admits up to isometries one unique drawing.

Standard ball packing argument shows that the 7-star is rigid see figure 4, so if the
graph G contains a 7 star it must drawn like on figure 4 up to translation or rotation.

Using those as basic blocks we can create rigid graphs of any shape on the hexagon
lattice. We Remark that whenever we fix two vertices a and b of a rigid subgraph there
are at most two ways to draw it, that are symmetric along the line (a, b).

Our graph is made from rigid components, components that are attached to the
remaining of the structure by either 2 points (u, v) (so they can rotate along the (a, b)
axis) or one point u (the can rotate around u) see figure 5.

We describe here how to simulate a Flip game (see figure 5, and figure 6 for an
examples).

– We start defining our graph by making a large rigid bounding box. Inside we add
a line of hexagons. At two opposite points of the box, this line is flexible but since
it contains exactly enough hexagons to connect the two points, it must be drawn
straight. We call this line the horizontal bar (see fig...). Note that each hexagon of
the line still has the freedom to rotate around the y axis. Bars will be attached to
those hexagons allowing them to rotate.

– Each Bar is built from a vertical line of hexagons, this line is associated to a rigid
structure that force it to be drawn straight. On each bar each hexagon can be rotated
around the bar axis.
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Fig. 5. Example of a Flip Game emulation

- Flippers are simply rigid structures that are attached to the bars, note that they can
be flipped.

4.1 Range-Free Localization in Two Dimension Is APX

From our proof, it follows that we cannot approximate the ranking (that is find approxi-
mated ranks that correspond to localizations that are consistent with the data). Indeed, in
our reduction ranking and localization are the same problem since the sensors are forced
to be on the hexagonal lattice.

We now extend our result and sketch the proof that finding a localization that is
almost consistent with the observations is NP hard.

Definition 1. A localization is an ε approximated solution if s can transmit to s′ when
d(s, s′) ≤ r, s cannot transmit to s′ if d(s, s′) ≥ (1 − ε)r.

The above definition simply means that the location of the sensors is such that the
transmission range r is more or less respected.

Theorem 4.1.1.

– In dimension 2, there exists an ε > 0 such that finding an ε approximated localization
is NP hard.

– finding an ε approximated realization of a unit disk graph is NP hard.

Assume that we allow non edges to have length 1 − ε then the structures that we use
are not perfectly rigid. But one can show that if ε is fixed and small enough the drawing
of the rigid structures remains unique (up to isomorphism) and to some move of ε′ that
are sufficiently small so that disjoint structures cannot overlap. To avoid the small moves
to add up and to bend the lines we use the next gadgets:

– We want to force the flippers of a given strip to be drawn in the same horizontal
area, in order to bound the non rigidity drift we add on each bar and each strip a
device that force the chunk i of two adjacent bars to be drawn in the same area (cf
figure 7 ).
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Bounding Box

Horizontal Bar

filpper

Fig. 6. The big picture

Shapes specific to strip i

Fig. 7. Synchronizing bars with specific shapes

– We choose the flippers of adjacent bars large enough on the horizontal side so that
they would overlap if they are flapped on the same size.
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Assume that L is the distance of bars when they are rigid, L is also the horizontal
size of a flipper. Since we have m strips, when the bars are not rigid the distance
between them in some strip is at most L(1+ε′)+ε′m. We need it to be less than 2L
in order to prevent two flippers to be drawn on the same side. If we choose L = m
both conditions are satisfied for ε′ ≤ 1/2.

5 Conclusion

In this paper we introduced the range free ranking problem. We showed that from a
complexity point of view there is a big difference between ranking in one dimension and
ranking in two dimensions. We also shown that in one dimension there is an important
difference between worst case scenario and a random scenario, for example in the random
uniform case the error (variance < 1

4(n+2) ) is a function of the number of sensors while
the error in the worst case can be of 16% of the total network width. This result shows
that in the random case it is better to include the sensors in the averaging process, and
not to depend only on the anchors (base stations). We also proved some hardness results,
and one implies that drawing approximately unit disk graphs is NP hard.
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