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Abstract. We show that for any randomized broadcast protocol for radio networks, there
exists a network in which the expected time to broadcast a message is Ω(D log(N/D)), where D is
the diameter of the network and N is the number of nodes. This implies a tight lower bound of
Ω(D logN) for any D ≤ N1−ε, where ε > 0 is any constant.
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1. Introduction. Traditionally, radio networks have received considerable at-
tention due to their military significance. The growing interest in cellular telephones
and wireless communication networks has reinforced the interest in radio networks.
The basic feature of radio networks, which distinguishes them from other networks, is
that a processor can receive a message only from a single neighbor at a certain time.
If two (or more) neighbors of a processor transmit concurrently, then the processor
would not receive either messages.

In many applications, the users of the radio network are mobile, and therefore
the topology is unstable. For this reason, it is desirable for radio-networks algorithms
to refrain from making assumptions about the network topology, or about the infor-
mation that processors have concerning the topology. In this work we assume that
none of the processors initially have any topological information, except for the size
of the network and its diameter.1 See [Tan81, Gal85, BGI92, BGI91] for a discussion
on this model and related models.

We study broadcast protocols; those protocols are initiated by a single processor
(the originator) that has a messageM it wishes to propagate to all the other processors
in the network. In many of the radio-networks applications (e.g., cellular phones)
broadcast is a central primitive which is frequently used, for example, to perform a
network-wide search for a user.

Bar-Yehuda, Goldreich, and Itai [BGI92] present a randomized broadcast algo-
rithm, that runs in expected O(D logN + log2N) time slots, where N is the number
of processors in the network and D is its diameter. In contrast, they show that for any
deterministic broadcast algorithm there are networks of constant diameter on which
the algorithm needs Ω(N) time slots.
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Alon et al. [ABLP91] made the first step towards proving the optimality of the
upper bound of [BGI92]. Their result can be viewed as a graph-theoretic result; they
show that there exist networks of diameter D = 3 on which any schedule needs at
least Ω(log2N) time slots. This lower bound shows that there are networks on which
broadcast requires this many time slots, and it matches the known upper bounds
[BGI92, CW87], in the case of constant-diameter networks.

In this work we complete the picture by proving an Ω(D log(N/D)) lower bound.
Our result is of a different nature; we show that for any randomized broadcast algo-
rithm and parameters N and D, there is an ordering of the N processors in a network
of diameter D such that the expected number of time slots, used by the algorithm,
is Ω(D log(N/D)). For D ≤ N1−ε this gives an Ω(D logN) lower bound. Hence,
it proves the tightness of the upper bound of [BGI92] for all N and D ≤ N1−ε.
Moreover, the lower bound holds even if each of the N processors is allowed to use a
different program (e.g., the processors can use their IDs). In a recent work, Gaber and
Mansour [GM95] have shown that for every network, there exists a schedule whose
time is O(D+ log5N). The scheduler there needs to get the topology of the network
in advance, in order to build the schedule. The result of [GM95] shows that the lower
bound presented here must rely heavily on the lack of topological knowledge at the
processors.

Broadcast in radio networks has received considerable attention in previous works.
[CW87] present a deterministic sequential algorithm that, given the network, finds
in polynomial time a legal schedule that requires at most O(D log2N) time slots.
Broadcast that is based on using a spanning tree was suggested in [CK85a, CK87]. In
[BII93] it is shown how to reduce the amortized cost per broadcast by using a breadth-
first-search (BFS) tree. Simulation of point to point networks on radio networks is
found in [CK85b, ABLP92, BGI91].

An important issue in the study of radio networks is whether collisions can be
detected; namely, whether a listener can distinguish between the case when none of
its neighbors transmit and the case when two or more of them transmit. In our model
it is assumed that the listener cannot distinguish between the two cases (say, it hears
noise in both cases). There is another common model in which it is assumed that
the two cases are distinguishable (say, if no neighbor transmits, the listener hears
silence, while if two or more neighbors transmit, the listener hears noise). A discus-
sion justifying both models can be found in [Gal85, BGI92]. Willard [Wil86] studies
a broadcast problem in a single multiaccess channel under this second model (i.e.,
when collision detection is available). He shows matching upper and lower bounds of
Θ(log logn) expected time slots2 in this model. Our main lemma implies an Ω(logn)
lower bound for the same problem in our model. Again, this lower bound holds even if
the processors use different programs. Hence, we demonstrate a provable exponential
gap between these two models.

The rest of this paper is organized as follows: section 2 contains some necessary
definitions. Section 3 contains the proof of the main lemma in the uniform case, where
all the processors use the same program. Section 4 contains the proof of the main
lemma in the nonuniform case, where processors may use different programs. The

2Willard shows an Ω(log log n) lower bound in the single multiaccess channel model. Although
this bound applies to a different model, it should be noted that his bound is also significantly
restricted by the types of algorithms for which it applies. In particular, he requires independence
between the decision whether to transmit in a certain time slot and the decisions made in previous
time slots. In our case such a restriction is unacceptable, as the upper bound of [BGI92] has such
dependencies. Also, he does not handle the case where each processor uses a different program.
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proof for this case is based on a probabilistic reduction to the uniform case. Finally,
in section 5, we prove the main theorem. The proof involves constructing a “difficult”
network in a probabilistic way.

2. Preliminaries. A radio network is described by an undirected graphG(V,E),3

where N = |V | and D is the diameter of the graph. The nodes of the graph represent
processors of the network, and an edge between nodes v and u implies that v can send
messages to u (and vice-versa). The neighborhood of a node u includes all the nodes
v such that there is an edge (u, v) in E.

The time is viewed as divided into slots (or rounds). In any given slot, a node
(processor) can either transmit some message (a string in {0, 1}∗) or not (i.e., re-
main silent). A radio network has the property that if two or more nodes in the
neighborhood of a node u transmit at the same time slot, then none of the messages
is received at u. More formally, we can define the set of possible transmissions as
W = {0, 1}∗ ∪{silent}. If exactly one of the node’s neighbors transmits at time t and
the message that this neighbor transmits is some m ∈ {0, 1}∗, then m is received by
the node. In any other case (i.e., if either none of the neighbors transmits or more
than one neighbor transmits) this node hears silent. The history of length ` of a node
is a vector in W ` which consists of its view of the first ` rounds.

Each processor Pi in the radio network uses a probabilistic program. This program
defines whether the processor will transmit at the next time slot j or not. As we are
not concerned with the computational power of the processors we can simply view
this program as a probability distribution, which may depend on the history. More
formally, for each processor Pi and step j there is a probabilistic function Γji : W j−1 →
W that, based on the history, determines the action of Pi in step j (i.e., whether it
remains silent, or else the value of the message it sends). The program of Pi is a
collection Γi = (Γ1

i ,Γ
2
i , . . .) that defines the actions of Pi in each step. A protocol

PN,D is simply a collection of N such programs, one per processor. A protocol is
uniform if all processors use the same program. Otherwise, if each processor has
a different program, the protocol is nonuniform. The above definition allows the
protocols to use the values of N and D. On the other hand, the protocol “does not
know” the topology of the graph, meaning that the same protocol must work for all
graphs of N nodes and diameter D.

A broadcast protocol is a protocol that is initiated by a single processor, called
originator, that holds a message M . Any other processor is inactive (i.e., it remains
silent) until receiving a message for the first time. The aim of the protocol is that
each processor in the network will receive a copy of the message M .

3. Uniform processors. In this section we prove the main lemma for the uni-
form case, where all processors use the same program. It shows that if there are
n processors4 arranged in a clique, then there exists a t (2 ≤ t ≤ n) such that if
t processors wish to transmit (we call these t processors the participants), then the
expected number of rounds (time slots) until a round in which exactly one of them
transmits is Ω(log n). In fact, we show that this is the case for most of the t’s of
the form t = 2i. Note that the assumption that the topology is not known to the
processors, in the context of this lemma, means that t, the number of processors that

3None of the results presented in this work will be changed if the network is a directed one.
However, it is common in this area to assume that the network is undirected.

4Note that we use here n (and not N) as the number of processors. This will be convenient while
using the lemma in the proof of the theorem.
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are trying to transmit, is not known to any processor. We can view the scenario as
having a family of networks with n+1 nodes, composed from a clique of size n and an
originator which is connected to t of the nodes in the clique. The (unknown) topology
is chosen to be one of these networks.

For a broadcast protocol Π, we call a round successful if exactly one processor
transmits. Let E(TΠ

` ) denote the expected number of rounds until the first successful
round, given that the number of participants is 2` (the expectation is taken over the
probabilistic choices of the processors).

Lemma 1. Let Π be a broadcast protocol, let the network be as above, and let n
be an upper bound on the number of participants. Then,

E`[E(TΠ
` )] = Ω(logn),

where E` denotes the expectation when ` is chosen uniformly from the range 1 ≤ ` ≤
log n.

Proof. The first observation that we make is that the lemma deals only with the
first success. This, in a sense, allows us to get rid of the dependency in the history—
we can assume that the (probabilistic) decision as to which rounds a processor tries
to transmit is made at the beginning of the protocol. This is done by letting each of
the 2` processors choose whether to transmit in round s or not in the same way as it
chooses in the original protocol, when all previous rounds were unsuccessful. Clearly,
as far as the first success is concerned, this modification has no effect on the protocol.
Also, as only the first success is considered, it does not matter what the values of the
messages that the processors try to transmit are. Hence, the decision of a processor
on whether to transmit in round s may depend on the round number, s, and the
probabilistic choices of the processor in the first s− 1 rounds, but it does not depend
on choices made by other processors.5 Therefore, we can think about the processors
as if they choose in advance, for every round s = 1, 2, . . ., whether they will try to
transmit.6

For simplicity of notation, we assume that n is a power of 2. Define

ps,`
4
= Pr(failure in rounds 1, . . . , s− 1 and success in round s|2` participants).

As the events described in the definition are disjoint (for fixed ` and different s’s),
and assuming that the protocol succeeds with probability 1 (no matter what ` is), we
have for all `

∞∑
s=1

ps,` = 1.(1)

At some point in the proof below, it will be inconvenient if ps,` depends on events
that happen in previous rounds. However, we can get rid of this dependency simply
by writing

ps,` ≤ Pr( success in round s|2` participants).(2)

5The message M that the processors need to broadcast also influences their decisions. However,
it can be thought of as part of the program used by the processors.

6To avoid measurability concerns, it is convenient to assume that the protocol is such that s is
in the range 1, . . . , F , for some finite F . If this is not the case, we can always choose F such that
the probability of choosing only in the range 1, . . . , F is arbitrarily close to 1. This will cause minor
changes in our proof.
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The next claim gives a bound on the sum of the success probabilities in a given
round. Intuitively it says that you cannot have high probability of success in (a fixed)
round s for more than a few values of 2`. This would imply that since the number of
participants is unknown, Ω(logn) rounds would be required to reach a success for all
numbers of participants. Formally, we make the following claim.

Claim 2. For any s,

logn∑
`=1

Pr(success in round s | 2` participants) < 2.

Proof. Fix s. As already discussed, we assume that the processors make all their
choices in advance. The history of choices of a processor is a string in {0, 1}s−1, where
the value of the ith bit means trying (“1”) or not trying (“0”). Define

q(s)
4
= Pr(trying in round s) =

∑
history h

Pr(h) · Pr(trying in round s|h).

Note that q(s) does not depend on `. We assume, without loss of generality, that
q(s) > 0 (rounds with q(s) = 0 can be omitted from the protocol). Recall that a
successful round is one in which exactly one processor is trying to transmit. Therefore,

Pr(success in round s | 2` participants) = 2` · q(s) · (1− q(s))2`−1.

We get

logn∑
`=1

Pr(success in round s|2` participants) =
logn∑
`=1

2`q(s)(1− q(s))2`−1

= q(s)
logn∑
`=1

2`(1− q(s))2`−1

≤ 2 · q(s)
n−1∑
j=1

(1− q(s))j

= 2 · q(s) · 1− (1− q(s))n
q(s)

< 2

which completes the proof of the claim.
Let k be a parameter (to be fixed later). We are interested in

∑k
s=1 ps,`, which

is intuitively the probability that, given that there are 2` participants, the algorithm
succeeds in one of the first k rounds. Using equation (2) and Claim 2, we get

logn∑
`=1

k∑
s=1

ps,` ≤
k∑
s=1

logn∑
`=1

Pr(success in round s|2` participants) < 2k.(3)

By definition,

E`[E(TΠ
` )] =

logn∑
`=1

1
log n

∞∑
s=1

ps,` · s ≥
k

log n

logn∑
`=1

∞∑
s=k

ps,`.
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By equation (1), this equals

k

log n

logn∑
`=1

(
1−

k−1∑
s=1

ps,`

)
,

which, by equation (3), is greater than

k

log n
· (log n− 2(k − 1)).

By choosing k = 1
4 log n, we have that

E`[E(TΠ
` )] ≥ 1

8
log n+

1
2
,

which completes the proof of the lemma.7

4. Nonuniform processors. In this section we prove the main lemma for the
nonuniform case, where the n processors may use different programs. The main idea
of the proof is to “reduce” the nonuniform case to the uniform one, and use the result
of the previous section (Lemma 1).

Lemma 3. Let Π be a protocol for n distinct processors P1, . . . , Pn that run
(possibly) different programs. Let E(TΠ

` ) denote the expected number of rounds until
the first successful round, given that a random set of 2` processors participates (the
expectation is taken over the choice of the set and the probabilistic choices made by
the processors). Then

E`[E(TΠ
` )] = Ω(logn),

where ` is chosen uniformly from the range 1 ≤ ` ≤ log n.
Proof. As argued in the previous section, as only the first successful round is

considered, each program can be thought of as a “schedule”—a choice of a subset of
rounds in which the processor will transmit. Processor Pi chooses its schedule from a
distribution µi.

We now define, based on the (possibly different) programs used by P1, . . . , Pn, a
new program that will be used by each of L uniform processors Q1, . . . , QL: processor
Qj chooses (uniformly) at random 1 ≤ i ≤ n and simulates the program of processor
Pi. Namely, it chooses a schedule s with probability 1

n

∑n
i=1µi(s), where µi(s) is

the probability that processor Pi chooses the schedule s. We denote by c(Qj) the
processor Pi that Qj chose to simulate. We emphasize that all the Qj ’s run the same
program (i.e., they are uniform), and that different Qj ’s may choose to simulate the
same processor Pi (we will choose L “small enough” so that this will happen only
with a “small” probability).

The following claim says that, given that all the c(Qj)’s are distinct forQ1, . . . , Q2` ,
then the probability distribution of the schedules chosen by the Qj ’s is the same as
that of a random set of 2` processors Pi.

Claim 4. Let Q = {Q1, . . . , Q2`}. For every Qj ∈ Q, let c(Qj) be a random
processor Pi. If ∀j1 6= j2 : c(Qj1) 6= c(Qj2), then P = {c(Qj)|Qj ∈ Q} is a random

7In the original version of this paper [KM93], we proved a slightly better lower bound of 1
4 logn;

however, the proof here is simpler.
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set of 2` processors (in P1, . . . , Pn), and the following holds: for every choice of 2`

schedules ~s2` = (s1, . . . , s2`),

Pr[~s2` |processors Q run ] = Pr[~s2` |processors P run ].

The following claim is the main tool in the reduction from the nonuniform case
to the uniform case.

Claim 5. Let Q be as above and let Q′ = {Q′1, . . . , Q′2`} be a set of 2` processors.
Each processor Q′j runs the program of Qj at the odd steps and the [BGI92] program
at the even steps. (Note that the [BGI92] program is also a uniform protocol, and
therefore, so is the program run by the processors Q′.) Let β` be the probability that
∀j1 6= j2, c(Qj1) 6= c(Qj2). Let TQ

′

` be the random variable indicating the time
of first success when the 2` identical programs in Q′ run, and recall that TΠ

` is the
random variable indicating the time of first success when a random subset of 2` distinct
programs Pi1 , . . . , Pi2` run. Then,

E[TQ
′

` ] ≤ 2β`E[TΠ
` ] + 8(1− β`) log n.

In the above claim we mixed the given (unknown) protocol with the [BGI92] pro-
tocol. This is because we have no guarantee about the running time of the simulation,
in the case when some Qj ’s choose to simulate the same Pi. For example, a protocol
that lets processor Pi transmit at time slot i would not terminate if all the Qj simulate
the same processor Pi.

Proof. Let unique be the event that ∀Qj1 , Qj2 ∈ Q′, c(Qj1) 6= c(Qj2). Then,

E[TQ
′

` ] = E[TQ
′

` |unique] · Pr[unique] + E[TQ
′

` |not unique] · Pr[not unique].

By definition, Pr[unique] = β`. By Claim 4,

E[TQ
′

` |unique] ≤ 2E[TΠ
` ],

where the additional factor of 2 is due to the interleaving of the two protocols. In
the case when the choices of c(Qj) are not unique, we cannot use the properties of
the original protocol. However, we can use the fact that the [BGI92] protocol has the
expected time until the first success of at most 4 log n. Therefore,

E[TQ
′

` |not unique] ≤ 8 log n,

which completes the proof of the claim.
The next claim says that with “high probability” the choices c(Qj) are unique.
Claim 6. Let β` be the probability that ∀j1 6= j2, c(Qj1) 6= c(Qj2), and assume

that 2` ≤ n1/4. Then,

β` > 1− 1√
n
.

Proof. Note that

Pr[j1 6= j2 and c(Qj1) = c(Qj2)] =
1
n
.



LOWER BOUND FOR BROADCAST IN RADIO NETWORKS 709

Therefore,

β` = Pr[∀j1 6= j2 : c(Qj1) 6= c(Qj2)] ≥ 1−
(

2`

2

)
1
n
.

Since 2` ≤ n1/4 the lemma follows.
Let L = n1/4. By Claims 5 and 6,

E[TQ
′

` ] ≤ 2β`E[TΠ
` ] + (1− β`)8 log n ≤ 2E[TΠ

` ] +
8 log n√

n

or

E[TΠ
` ] ≥ 1

2
E[TQ

′

` ]− 4 log n√
n

.

We now take the expectation over all values 1 ≤ ` ≤ logL and get

E`[E[TΠ
` ]] ≥ 1

2
E`[E[TQ

′

` ]]− 4 log n√
n

.

By Lemma 1,

E`[E[TQ
′

` ]] = Ω(logL) = Ω(log n),

which implies that

E`[E[TΠ
` ]] = Ω(logn),

as desired.

5. Main theorem. In this section we prove the main theorem. We show that
for every broadcast algorithm that does not know the topology of the network, for
every N and every D, there exist networks of N processors and diameter D such that
the expected running time of the algorithm (until all processors receive the message)
is Ω(D log(N/D)). This implies a similar lower bound for the worst case running
time, when a small probability of error is allowed (which is the scenario in which the
upper bound of [BGI92] is described).

Given an algorithm and the values N and D, we construct a network as follows.
Let n = N/D, and assume for simplicity that n is a power of 2. We construct
a complete layered network of D + 2 layers. The first layer (layer 0) contains one
node, s, which will be the originator of the broadcast. Each of the next D layers
(layers 1, 2, . . . , D) consists of ni = 2`i ≤ n nodes, where `i is chosen uniformly (and
independently for each layer i) in the range 1, . . . , log n. The last layer contains all
the other nodes (so that the total number of nodes will be N). Each node in layer i
is connected to all nodes in layers i− 1 and i+ 1. (See Figure 1.)

Recall that the topology of the network is not known to the processors. (If the
topology was known, then an efficient uniform protocol would be to let a processor
at layer i broadcast with probability 1/ni, with expected time O(D). A nonuniform
protocol that knows the topology simply lets one node in each layer transmit.) The
algorithm can depend, however, on other information that the processors have, in
particular, the history, the number of steps, etc. (As mentioned, other information
which is independent of the graph, such as the message M to be broadcast, the
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Fig. 1. Structure of the network.

processors’ IDs, or the value of a clock, can be thought of as encoded into the programs
of the processors.)

We discuss the uniform case, in the sense that all the processors at layer i have the
same protocol. The extension to the nonuniform case employs the techniques of the
previous section, and the proof is the same but the notation becomes cumbersome.
(In particular, in the nonuniform case, at each layer i we will choose not only ni but
also a random set of ni processors.) The main property of this construction is the
following. For all i and all runs of the protocol, all the processors in layer i have the
same view; every message received at one of these processors is received by all other
processors at the same time. Therefore, the broadcast progresses in a layer-by-layer
fashion. Moreover, this implies that all the processors in layer i choose schedules
according to the same distribution µ (the choice of µ depends on the history, but all
the processors of layer i share the same history), which allows us to use Lemma 1.

Finally, before going into the details, we make one more assumption that makes
our argument simpler. We give the processors of layer i, at the time they get the
first message from a processor in layer i− 1, all the other messages they will get from
layer i − 1 in the future, as well as the actual values of `1, . . . , `i−1. As this extra
information can only help the processors to make the broadcast faster, we are allowed
to make this assumption.

Let ti be the random variable indicating the number of rounds from the time the
processors of layer i get the message (and become active) until their success (the first
time that a single processor in layer i transmits). We need to show that for some
choice of `1, . . . , `D we get EΠ(

∑D
i=1 ti) = Ω(D log(N/D)), where the expectation is

taken over the random choices of the algorithm Π. Certainly, it is enough to show
that E`1,...,`D,Π(

∑D
i=1 ti) = Ω(D log(N/D)). By linearity of expectation, we get

E`1,...,`D,Π

(
D∑
i=1

ti

)
=

D∑
i=1

E`1,...,`D,Π(ti).

So all we have to bound now is E`1,...,`D,Π(ti). Clearly, the choice of `i+1, . . . , `D has
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no influence on the expectation of ti; i.e.,

E`1,...,`D,Π(ti) = E`1,...,`i,Π(ti).

Also, by the discussion above, with every history (which depends on the random
choices made in the first i − 1 layers, including the choice of `1, . . . , `i−1) we can
associate a probability distribution µ used by the processors in layer i to choose their
schedules. (Note that since we assume that the processors of layer i get all the future
information with the first message, they can make all their random choices at this
time.) Therefore, we can write

E`1,...,`i,Π(ti) =
∑

b1,...,bi−1

E`i,Π(ti|`1 = b1, . . . , `i−1 = bi−1)·Pr[`1 = b1, . . . , `i−1 = bi−1].

(4)
It remains to bound the expression E`i,Π(ti|`1 = b1, . . . , `i−1 = bi−1). As men-

tioned, we allow the processors at layer i to have access to b1, . . . , bi−1 (the actual
values of `1, . . . , `i−1). Therefore, we need to evaluate E`i,Πi(ti), where Πi is the pro-
tocol at layer i, with the additional information about the lower layers. By Lemma 1,
for each such Πi,

E`i,Πi(ti) ≥ c log n

for some constant c. Therefore, for every b1, . . . , bi−1, we have

E`i,Π(ti|`1 = b1, . . . , `i−1 = bi−1) ≥ c log n,

which by (4), implies

E`1,...,`i,Π(ti) ≥ c log n.

This implies

E`1,...,`D,Π

(
D∑
i=1

ti

)
= Ω(D log n) = Ω(D log(N/D)),

which completes the proof of our main theorem.
Theorem 7. For any nonuniform broadcast protocol, for every number of pro-

cessors N and every diameter D, there exists a network in which the expected time to
complete a broadcast is Ω(D log(N/D)).

When D ≤ N1−ε, the above proof shows a lower bound of Ω(D logN). Combining
our result with the results of Alon et al. [ABLP91] and Bar-Yehuda, Goldreich, and
Itai [BGI92], we have the following tight result.

Corollary 8. For any nonuniform broadcast protocol, for every number of
processors N and every diameter D, there exists a network in which the time to
complete a broadcast is Ω(log2N + D log(N/D)). Furthermore, there is a (uniform)
protocol that requires only O(log2N +D logN) expected time (which is tight for D ≤
N1−ε).

Note that unlike [ABLP91] we show that for any protocol there exists a network
for which the lower bound holds, while they prove that there exists a network on
which any protocol requires the lower bound.
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