
Analysis of Link Reversal Routing Algorithms for Mobile Ad Hoc

Networks

Costas Busch∗ Srikanth Surapaneni† Srikanta Tirthapura‡

July 23, 2003

Abstract

Link reversal algorithms provide a simple mechanism for routing in mobile ad hoc networks.
These algorithms maintain routes to any particular destination in the network, even when the
network topology changes frequently. In link reversal, a node reverses its incident links whenever
it loses routes to the destination. Link reversal algorithms have been studied experimentally
and have been used in practical routing algorithms, including TORA [8].

This paper presents the first formal performance analysis of link reversal algorithms. We
study these algorithms in terms of work (number of node reversals) and the time needed until
the network stabilizes to a state in which all the routes are reestablished. We focus on the full
reversal algorithm and the partial reversal algorithm, both due to Gafni and Berstekas [5]; the
first algorithm is simpler, while the latter has been found to be more efficient for typical cases.
Our results are as follows:

(1) The full reversal algorithm requires O(n2) work and time, where n is the number of nodes
which have lost the routes to the destination.

(2) The partial reversal algorithm requires O(n · a∗ + n2) work and time, where a∗ is a non-
negative integer which depends on the state of the network. This bound is tight in the worst
case, for any a∗.

(3) There are networks such that for every deterministic link reversal algorithm, there are
initial states which require requires Ω(n2) work and time to stabilize. Therefore, surprisingly,
the full reversal algorithm is asymptotically optimal in the worst case, while the partial reversal
algorithm is not, since a∗ can grow arbitrarily large.

1 Introduction

A mobile ad hoc network is a temporary interconnection network of mobile wireless nodes without
a fixed infrastructure. The attractive feature of such a network is the ease with which one can
construct it: there is no physical set up needed at all. If mobile nodes come within the wireless
range of each other, then they will be able to communicate. More significantly, even if two mobile
nodes aren’t within the wireless range of each other, they might still be able to communicate
through a multi-hop path. The lack of a fixed infrastructure makes routing between nodes a hard
problem. Since nodes are moving, the underlying communication graph is changing, and the nodes
have to adapt quickly to such changes and reestablish their routes.

∗Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180; buschc@cs.rpi.edu
†Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180; suraps@cs.rpi.edu
‡Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010; snt@iastate.edu

1

Link reversal routing algorithms [9, Chapter 8] are adaptive, self-stabilizing, distributed algo-
rithms used for routing in mobile ad hoc networks. The first link reversal algorithms are due to
Gafni and Bertsekas [5]. Link reversal is the basis of the TORA [8] routing algorithm, and has also
been used in the design of leader election algorithms for mobile ad hoc networks [6]. Link reversal
routing is best suited for networks where the rate of topological changes is high enough to rule out
algorithms based on shortest paths, but not so high as to make flooding the only alternative.

In the graph representing the network, each node has a link with each other node in its trans-
mission radius. For any given destination node, the link reversal algorithms are applied on top of
this underlying graph, which they convert to a destination oriented graph (see Figure 1). The links
(edges) of the network are assigned directions, such that the resulting directed graph is acyclic
and every directed path in the graph leads to the destination. Routing on a destination oriented
network is easy: when a node receives a packet, it forwards the packet on any outgoing link, and
the packet will eventually reach the destination.∗

The task of the link reversal algorithm is to create and maintain the routes to the destination.
When two nodes move out of range from one another, the link between them gets destroyed, and
some nodes might lose their routes. The routing algorithm reacts by performing link reversals (i.e.
re-orienting some of the edges) so that the resulting directed graph is again destination oriented. In
particular, when a node finds that it has become a sink (has lost all of its outgoing links), then the
node reacts by reversing the directions of some or all of its incoming links. The link reversals due to
one node may cause adjacent nodes to perform reversals, and in this way, the reversals propagate
in the network until the routes to the destination are reestablished.

Gafni and Bertsekas [5] describe a general family of link reversal algorithms, and present two
particular algorithms: the full reversal algorithm and the partial reversal algorithm (referred to as
the GB algorithms in the rest of this paper). In the full reversal algorithm, when a node becomes a
sink it reverses the directions of all of its incident links. In the partial reversal algorithm, the sink
reverses the directions only of those incident links that have not been reversed by adjacent nodes.
The full reversal algorithm is simpler to implement, but the partial reversal algorithm may need
fewer link reversals in the typical case. Gafni and Bertsekas show that when link failures occur,
these algorithms eventually converge to a destination oriented graph. However, it was not known
how many reversals the nodes performed, or how much time it would take till convergence.

1.1 Our Results

We present the first formal performance analysis of link reversal routing algorithms. We give tight
upper and lower bounds on the performance of the full and partial reversal algorithms. We also
show a lower bound on the performance of any deterministic link reversal algorithm. Surprisingly,
from the perspective of worst-case performance, the full reversal algorithm is asymptotically optimal
while the partial reversal algorithm is not.

Our setting for analysis is as follows. Suppose topological changes occur in the network, driving
the system to a state where some nodes have lost their paths to the destination. This is called the
initial state of the network. If there are no further topological changes, the network is said to have
stabilized when it again becomes destination oriented (i.e. reaches a final state). We analyze two
metrics:

∗If there are multiple destinations in the network, then there is a separate directed graph for each destination;

here, we will assume for simplicity that there is only one destination.

2

Work: The number of node reversals till stabilization. This is a measure of the power and com-
putational resources consumed by the algorithm in reacting to topological changes.

Time: The number of parallel steps till stabilization, which is an indication of the speed in reacting
to topological changes. We model reversals so that each reversal requires one time step, and
reversals may occur simultaneously whenever possible.

Reversals are implemented using heights. A reversal algorithm assigns a height to every node
in the network. The link between adjacent nodes is directed from the node of greater height to the
node of lesser height. Formally, a node v is a sink if all of v’s adjacent links are pointing in, and v is
not the destination. A sink performs a reversal by increasing its height by a suitable amount. This
will reverse the direction of some or all of its incident links. Unless otherwise stated, we consider
deterministic link reversal algorithms, in which a sink node increases its height according to some
deterministic function of the heights of the adjacent nodes. The GB link reversal algorithms are
deterministic.

We say that a node is bad if there is no route from the node to the destination. Any other node,
including the destination, is good. Note that a bad node is not necessarily a sink.

Our main results are as follows:

Full Reversal Algorithm For the full reversal algorithm, we show that when started from an
initial state with n bad nodes, the work and time needed to stabilize is O(n2). This bound is tight.
We show that there are networks with initial states which require Ω(n2) time for stabilization.

Our result for full reversal is actually stronger. For any network, we present a decomposition of
the bad nodes in the initial state into layers which allows us to predict exactly the work performed
by each node in any distributed execution. A node in layer j will reverse exactly j times before
stabilization. Our lower and upper bounds follow easily from the exact analysis.

Partial Reversal Algorithm For the partial reversal algorithm, we show that when started
from an initial state with n bad nodes, the work and time needed to stabilize is O(n · a∗ + n2),
where a∗ corresponds to the difference between the maximum and minimum height of the nodes in
the initial state. This bound is tight. We show that there are networks with initial states which
require Ω(n · a∗ + n2) time for stabilization.

The a∗ value can grow unbounded as topological changes occur in the network. Consequently, in
the worst-case, the full reversal algorithm outperforms the partial reversal algorithm. This suggests
that it might be worth rethinking the popular partial reversal algorithm to see if it can have good
average case and worst case performance.

Deterministic Algorithms We show a lower bound on the worst case work and time till sta-
bilization for any deterministic reversal algorithm. We show that for any deterministic reversal
algorithm, there exist networks and initial states with n bad nodes such that the algorithm needs
Ω(n2) work and time till stabilization. As a consequence, from the worst-case perspective, the full
reversal algorithm is work and time optimal, while the partial reversal algorithm is not.

Equivalence of Executions We show that for any deterministic reversal algorithm, all dis-
tributed executions of the algorithm starting from the same initial state are equivalent: (1) each
node performs the same number of reversals till stabilization in all executions, and (2) the resulting

3

final state of the network upon stabilization is the same. As a result, the work of the algorithm as
a whole is independent of the execution schedule.

1.2 Related Work

Link reversal algorithms were introduced by Gafni and Bertsekas in [5]. In that paper the authors
provide a proof that shows that a general class of link reversal algorithms, including the partial
and full reversal algorithms, eventually stabilize when started from any initial state.

The TORA [8] algorithm (Temporally Ordered Routing Algorithm) builds on a variation of the
GB partial reversal algorithm, and adds a mechanism for detecting and dealing with partitions in the
network. The practical performance of TORA has been studied in [7]. Another link reversal routing
algorithm is the LMR [3, 4] algorithm (Lightweight Mobile Routing Algorithm). An overview of
link reversal routing algorithms can be found in [9, Chapter 8]. A performance comparison of
various ad hoc routing algorithms, including TORA, is presented in [1]. Further surveys can be
found in [10, 11].

A mobility aware leader election algorithm is built in [6] on top of TORA, and the authors
present partial correctness proofs (TORA does not have any) showing the stability of the algorithm.
None of the above works have any formal analysis of the performance of link reversal algorithms.

The rest of the paper is organized as follows. Section 2 contains a description of the GB partial
and full reversal algorithms. In Section 3 we show that the equivalence of executions of a given
deterministic algorithm. Sections 4 and 5 contain the analyses of the full and partial reversal
algorithms respectively. In Section 6, we show the general lower bound for deterministic link
reversal algorithms. Finally, in Section 7, we conclude with a discussion and open problems.

2 Link Reversal Algorithms

We assume that each node has an unique integer id, and denote the node with id i by vi. The nodes
have heights which are guaranteed to be unique (ties broken by node ids), and are chosen from a
totally ordered set. The destination has the smallest height. Since any directed path in such a graph
always proceeds in the direction of decreasing height, the directed graph will be acyclic (DAG). If
the graph is destination oriented, all directed paths end at the destination. There could possibly be
multiple paths from any node to the destination. Note that the graph remains a DAG even when
topological changes occur. If the underlying graph is connected, the link reversal algorithms bring
the directed graph from its initial state to a state where it is destination oriented. In our analysis,
we only consider connected graphs. We now describe the GB algorithms, adapting the discussion
from [5], and then define the class of deterministic algorithms.

Full Reversal Algorithm In the full reversal algorithm, when a node becomes a sink it simply
reverses the directions of all its incoming links (see Figure 1). The algorithm can be implemented
with heights as follows. The height hi of node vi is the pair (ai, i) (the second field is used to break
ties). The height of the destination (say vd) is (0, d). Heights are ordered lexicographically. If vi is
a sink, then its height upon reversal is updated to be larger than the heights of all its neighbors.
Let N(vi) denote the set of adjacent nodes to vi. Formally, the height of vi after its reversal is
(max{aj | vj ∈ N(vi)} + 1, i).

4

(0,3)

(0,4) (0,6)

(0,DEST)

(0,2)(0,1)

(0,5)

(0,3)

(0,4) (1,6)

(0,DEST)

(0,2)(0,1)

(0,5)

(2,3)

(0,4) (1,6)

(0,DEST)

(0,2)(0,1)

(2,5)

(2,3)

(0,4) (3,6)

(0,DEST)

(3,2)(0,1)

(2,5)

(4,3)

(0,4) (3,6)

(0,DEST)

(3,2)(4,1)

(2,5)

destination orienteddestination disoriented Full Reversal

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(1,−1,2)(0,4,1)

(1,0,5)

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(1,0,5)

(0,2,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(0,2,5)

(0,2,3)

(0,5,4) (0,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(0,2,5)

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(1,−1,2)(1,−2,1)

(1,0,5)

destination disoriented destination orientedPartial Reversal

Figure 1: Sample executions of the GB full and partial reversal algorithms

Partial Reversal Algorithm In the partial reversal algorithm, every node vi other than the
destination keeps a “list” of its neighboring nodes vj that have reversed links into vi. If vi becomes
a sink then it reverses the directions of the links to every neighbor vj which was not present in
this list, and empties the list. If no such vj exists (i.e. the list contains all its neighbors), then vi

empties the list and reverses all its links (see Figure 1). This can be implemented using heights in
the following way.

The height hi of each node vi is the triple (ai, bi, i). Essentially, the field ai represents the height
of vi, and bi implements the list of nodes which have reversed since the last reversal of vi. The
height of the destination vd is (0, 0, d). Heights are ordered lexicographically. If node vi is a sink
then, when it reverses, its height is updated to be bigger than the height of every neighbor which
is not in the list. Formally, let h̄i = (āi, b̄i, i) denote the height of vi after its reversal. We have,
āi = min{aj | vj ∈ N(vi)}+ 1. Moreover, b̄i = min{bj | vj ∈ N(vi) and āi = aj} − 1, if there exists
a neighbor vj with āi = aj, otherwise, b̄i = bi. Note that if an adjacent node of vi is in the “list”
of vi before vi reverses, then it must be that āi = aj. In that case, b̄i will be smaller than the bj of
any node in the list, and the links from these nodes towards vi are not reversed.

Deterministic Algorithms A deterministic reversal algorithm is defined by a “height increase”
function g. We assume that the heights are chosen from some totally ordered universe, and that
the heights of different nodes are unique. If node v is a sink whose current height is hv, and
adjacent nodes v1, v2 . . . vd have heights h1, h2 . . . hd respectively, then v’s height after reversal is
g(h1, h2 . . . hv). The GB full and partial reversal algorithms are deterministic.

3 Equivalence of Executions

In this section, we prove some properties about general reversal algorithms. The main result of
this section is that for any deterministic reversal algorithm, all executions that start from the same
initial state are essentially equivalent. We first prove a basic lemma that holds for any reversal
algorithm, whether deterministic or not. This result is also proved in [5], however we believe our
proof is simpler.

5

Lemma 3.1 For any reversal algorithm starting from any initial state, a good node never reverses
till stabilization.

Proof: If v is a good node, then by definition there exists a path v = vk, vk−1, . . . v1, vo = s where
s is the destination, and there is a edge directed from vi to vi−1 for i = 1 . . . k. For every i = 0 . . . k,
we prove that node vi never reverses, using induction on i.

The base case (i = 0) is obvious since the destination s = v0 never reverses. Suppose the
hypothesis is true for i = l < k. Then vl never reverses, so that the edge between vl+1 and vl is
always directed from vl+1 to vl. Thus, there is always an outgoing edge from vl+1, which implies
that vl+1 never reverses.

When started from an initial state, the algorithm reverses nodes until no more reversals are
possible, and the network is destination oriented. The execution of a reversal algorithm is a sequence
of reversals. A full execution starts in an initial state and ends in a destination oriented graph. At
each step of the execution, the algorithm non-deterministically chooses any of the current sinks and
reverses it, according to some strategy. Clearly, there are many possible executions starting from
the same initial state, since there is a choice of many possible reversals at each execution step. For
a deterministic reversal algorithm, a reversal r can be viewed as a tuple r = (v, h,H) where v is
the sink executing the reversal, h is v’s height before reversal, and H is the set of the heights of all
of v’s neighbors before the reversal.

Any execution imposes a partial order on the reversals. The partial order induced by execution
R = r1, r2, . . . , rk where ri = (vi, hi,Hi), is defined as a directed graph in which the nodes are
the reversals ri, i = 1, . . . , k. In this graph, there is a directed edge from ri = (vi, hi,Hi) to
rj = (vj , hj ,Hj) if (1)vj is a neighbor of vi, and (2)rj is the first reversal of vj after ri in execution
R. We will refer to this graph as the dependency graph of the execution. Intuitively, if there is a
directed path between reversals ri and rj in the dependency graph, then the order of reversals ri

and rj cannot be interchanged in the execution. Moreover, if there is no directed path from ri to rj

and vice versa, then these two reversals are independent and can be performed in parallel (in the
same time step). We define the depth of a reversal in the dependency graph as follows. A reversal
which does not have any incoming edges has depth 0. The depth of any other reversal r is one more
than the maximum depth of a reversal which points to r. The depth of the dependency graph is
the maximum depth of any reversal in the graph.

We say that two executions are equivalent if they impose the same dependency graph. We will
show that all executions of a link reversal algorithm are equivalent. We first show a lemma which
will be of use in further proofs.

Lemma 3.2 If a node is a sink, it remains a sink even if other nodes in the network reverse.

Proof: If a node v is a sink, then clearly none of its neighbors can be sinks at the same time.
The only node which can change the direction of the incoming links to v is v itself. Reversals by
other nodes in the network do not affect this.

The following is the main theorem of this section.

Theorem 3.3 Any two executions of a deterministic reversal algorithm starting from the same
initial state are equivalent.

6

Proof: Consider two executions starting from the same initial state, say R = r1, r2, . . . , rk and
S = s1, s2, . . . , sl. Let pR and pS be the dependency graphs induced by R and S respectively. In
order to show that P and R are equivalent, we need to show that pR and pS are identical. We will
show by induction that for for every k = 0, 1 . . ., the induced subgraph of pR, consisting of vertices
at depths ≤ k, is identical to the similar induced subgraph of pS consisting of vertices at depths
≤ k.

Base case k = 0: Consider any reversal in pR at depth 0, say r = (v, h,H). Since r does not have
any incoming edges in pR, v must be a sink in the initial state of the network. From Lemma 3.2,
v must also reverse in S. Since h and H are the heights of v and its neighbors respectively in the
initial state, the first reversal of v in S is also (v, h,H), and is at depth 0. Similarly, we can show
that every reversal at level 0 in pS is a reversal at level 0 in pR. This completes the proof of the
base case.

Inductive case: Suppose the hypothesis was true for all k < l. We show that it is true for k = l.
Consider any reversal r = (v, h,H) at depth l in pR. We show that this reversal is also present in
pS with the same set of incoming edges. Let V be the set of vertices that are pointing into r in pR.
Once all reversals in V are executed, node v is a sink in execution R. From the inductive step, all
reversals in V are also present in pS and hence in S.

Case 1: r is the first reversal of v in R. Then, the reversal of every node in V will also cause v
to be a sink in S. So, v will reverse in S. Its height before reversal in S is h, since the height has not
changed from the initial state. Consider the heights of the neighbors of v in S during v’s reversal.
These are the same as H. The reason is as follows. The neighbors of v who haven’t reversed so far
in S have the same height as in the initial state. The other neighbors are present in V and hence
their heights are the same as in H. Thus, there is a node (v, h,H) at level l in pS whose incoming
edges are the same as in pR.

Case 2: r is not the first reversal of v in R. This case can be treated similar to Case 1.
Thus, we have shown that every node in level l of pR is present in level l of pS, with the same

incoming edges. The same argument goes the other way too: every node in pS is present in pR.
This proves the inductive case for k = l, and concludes the proof.

It is easy to see that the dependency graph uniquely determines the final state and the work
needed by each processor. Therefore, we derive the following corollaries from Theorem 3.3.

Corollary 3.4 For all executions of a deterministic reversal algorithm starting from the same
initial state: (1) the final state is the same, and (2) the number of reversals of each node is the
same.

Corollary 3.5 The time of execution of a deterministic reversal algorithm is lower-bounded by the
depth of the dependency graph corresponding to the initial state, and is the minimum possible when
all the sink nodes reverse simultaneously.

Proof: Suppose the depth of the partial order graph was d. There exists a directed path of length
d in the dependency graph. No two reversals on this path can execute in parallel, and the time
taken for the all reversals in this path to complete is at least d + 1. Hence d + 1 is a lower bound
on the time for the execution.

Now, if all sink nodes reversed immediately, we have the invariant that after k time steps, all
the reversals at depth k − 1 have completed. Thus, the execution would be complete in time d + 1,
which is the minimum possible.

7

4 Full Reversal Algorithm

In this section, we present the analysis of the full reversal algorithm. Our analysis is exact. We
present a decomposition of the bad nodes in the initial state into layers which allows us to predict
exactly the work performed by each node in any distributed execution till stabilization. From these,
the worst case bounds follow easily.

4.1 State Sequence for Full Reversal

We show that starting from any initial state, there exists an execution which consists of consecutive
segments, such that each bad node reverses exactly once in each segment.

Lemma 4.1 Consider a state I in which a node v is bad. Then, node v will reverse at least one
time before it becomes a good node.

Proof: If v is a sink, then clearly node v has to reverse at least one time. Now consider the case
where v is not a sink in state I. Suppose, for contradiction, that node v becomes good without
performing any reversals after state I. Let E be an execution which brings the graph from state
I to a state Ig in which node v is good. A non-reversed node is any node w such that in state I
node w is bad, while in state Ig node w is good, and w didn’t reverse between I and Ig. In state
Ig, node v is good; thus, in Ig there must exist a directed path v, v1, . . . , vk−1, vk, k ≥ 1, in which
all nodes are good, while in state I, v1, . . . , vk−1 are bad, and vk is good.

We will show that nodes v1, . . . , vk−1 are non-reversed. Consider node v1. Assume for contra-
diction that node v1 has reversed between states I and Ig. Since in Ig there is a link directed from
node v to node v1, and v1 has reversed, it must ne that node v has reversed at least one time;
a contradiction. Thus, node v1 is non-reversed. Using induction, we can easily show in a similar
fashion that nodes v2, . . . , vk−1 are also non-reversed. Since nodes v1, . . . , vk−1 are non-reversed, it
must be that in state I there is a directed path v, v1, . . . , vk−1, vk. Thus, in state I node v is a good
node. A contradiction.

Lemma 4.2 Consider some state I which contains bad nodes. There exists an execution E which
brings the system from state I to a state I ′, such that every bad node of state I reverses exactly
one time in E.

Proof: Assume for contradiction that there is no such execution E in which each bad node
reverses exactly one time. There must exist an execution Ef which brings the system from state I
to a state If such that the following conditions hold: (i) there is at least one bad node in I which
hasn’t reversed in Ef ; let A denote the set of such bad nodes of I; (ii) any other bad node v of I,
with v 6∈ A, has reversed exactly one time; let B denote the set of such bad nodes of I; (iii) the
number of nodes in set B is maximal.

From condition (iii), it must be that all the nodes that are sink in state If belong to set B,
that is, only nodes of set B are ready to reverse in If , since B is maximal. From Lemma 4.1, we
have that each node of set A is bad in state If . We will show that at least one node in A is a sink
in state If , which violates condition (iii).

Assume for contradiction that no node of A is a sink in If . Then, each node in A has an
outgoing edge in If . These outgoing edges from A cannot be towards nodes in B, since the nodes
in B have reversed their edges, while the nodes in A haven’t. Moreover, these outgoing edges

8

cannot be towards good nodes of state I, since this would imply that nodes in A are good. Thus,
these outgoing edges must be toward nodes in set A. Since each node in set A has an outgoing
edge in set A, it must be, from the pigeonhole principle, that there is a walk in which a node in
A is repeated. Thus, there is a cycle in the graph, violating the fact that the graph is acyclic. A
contradiction. Thus, it must be that a node in A is a sink. A contradiction.

Consider some initial state I1 of the graph which contains bad nodes. Lemma 4.2 implies that
there is an execution E = E1, E2, E3, . . ., and states I1, I2, I3, . . ., such that execution segment Ei,
i ≥ 1, brings the network from a state Ii to a state Ii+1, and in Ei each bad node of Ii reverses
exactly one time. The node-state of a node v is the directions of its incident links. We show that
each execution segment leaves the node-state of bad nodes unchanged (when the bad nodes are not
adjacent to good nodes).

Lemma 4.3 At a state Ii, i ≥ 1, any bad node not adjacent to a good node will remain in the same
(bad) node-state in Ii+1.

Proof: Let A(v) denote the set of nodes adjacent to v in state Ii. Since all nodes in A(v) are bad
in state Ii, each of them reverses in execution Ei. Moreover, v also reverses in Ei. These reversals
leave the directions of the links between v and A(v) in state Ii+1 the same as in state Ii.

4.2 Layers for Full Reversal

Consider the nodes of the network in some state I which contains bad nodes. We can partition the
bad nodes into layers LI

1, L
I
2, . . . , L

I
m, as follows (see Figure 2). A bad node v is in layer LI

1 if the
following conditions hold: (i) there is an incoming link to node v from a good node, or (ii) there
is an outgoing link from node v to a node in layer LI

1. A node v is in layer LI
k, k > 1, if k is the

smallest integer for which one of the following hold: (i) there is an incoming link to node v from a
node in layer LI

k−1, or (ii) there is an outgoing link from node v to a node in layer LI
k. From the

above definition, it easy to see that any node of layer LI
k, where k > 1, can be connected only with

nodes in layers LI
k−1, LI

k and LI
k+1. The nodes of layer LI

1 are the only ones that can be connected

with good nodes. The links connecting two consecutive layers LI
k−1 and LI

k can only be directed

from LI
k−1 to LI

k. Note that the number of layers m is m ≤ n, where n is the number of bad nodes
in the network.

Destination

Good Nodes

LI
1

LI
2

LI
3

LI
jLI

m

Layers of Bad Nodes A Layer

Figure 2: Partitioning the nodes into layers

Consider now the states I1, I2, . . . and execution segments E1, E2, . . ., as described above. For
each of these states we can divide the bad nodes into layers as described above. In the next results,

9

we will show that the layers of state I1 become good one by one, at the end of each execution
segment Ei, i ≥ 1. First we show that the first layer of state Ii becomes good at the end of
execution Ei.

Lemma 4.4 At the end of execution Ei, i ≥ 1, all the bad nodes of layer LIi

1 become good, while
all the bad nodes in layers LIi

j , j > 1, remain bad.

Proof: First we show that the bad nodes of layer LIi

1 become good. There are two kinds of bad
nodes in layer LIi

1 at state Ii: (i) nodes which are connected with an incoming link to a good node,
and (ii) nodes which are connected with an outgoing link to another node in layer LIi

1 . It is easy to
see that there is a direct path from any type-ii node to some type-i node, consisting from nodes of
layer LIi

1 . Since all bad nodes reverse exactly once in execution Ei, all type-i nodes become good
in state Ii+1. Moreover, from Lemma 4.3, the paths from type-ii nodes to type-i remain the same
in state Ii+1. Thus, the type-ii nodes become also good in state Ii+1. Therefore, the bad nodes of
layer LIi

1 become good in state Ii+1.
Now we show that the bad nodes in layers LIi

j , j > 1 remain bad in state Ii+1. From Lemma

4.3, in state Ii+1, the links connecting layers LIi

1 and LIi

2 are directed from LIi

1 to LIi

2 . Thus, in
state Ii+1, there is no path connecting nodes of layer LIi

2 to good nodes. Similarly, there is no path
from the nodes of layer LIi

j , for any j > 2, to good nodes. Thus all nodes in layers LIi

j , j > 1,
remain bad.

We now show that the basic structure of layers of the bad nodes remains the same from state
Ii to state Ii+1, with the only difference that the first layer of Ii+1 is now the second layer of Ii.

Lemma 4.5 L
Ii+1

j = LIi

j+1, i, j ≥ 1.

Proof: From Lemma 4.4, at the end of execution Ei, all the bad nodes of layer LIi

1 become good,
while all the bad nodes in layers LIi

j , j > 1 remain bad. From Lemma 4.3 all bad nodes in layers

LIi

j , j > 1, remain in the same node-state in Ii+1 as in Ii. Therefore, L
Ii+1

j = LIi

j+1, j ≥ 1.

From Lemmas 4.4 and 4.5, we have that the number of layers is reduced by one from state Ii to
state Ii+1. If we consider the layers of the initial state I1, we have that all the bad nodes in the layers
become good one by one at the end of executions E1, E2, E3, . . . with the order LI1

1 , LI1
2 , LI1

3 ,
Since at each execution Ei all the bad nodes reverse exactly one time, we obtain the following:

Lemma 4.6 Each node in layer LI1
j , j ≥ 1, reverses exactly j times before it becomes a good node.

From Corollary 3.4, we know that all possible executions when started from the same initial
state require the same number of reversals. Thus, the result of Lemma 4.6, which is specific to the
particular execution E applies to all possible executions. Therefore, we obtain the following result.

Theorem 4.7 For any initial state I, and any execution of the full reversal algorithm, each node
in layer LI

j , j ≥ 1, reverses exactly j times before it becomes a good node.

10

4.3 Bounds for Full Reversal

From Theorem 4.7, we have that for any initial state I, each node in layer LI
j reverses exactly j

times until it becomes good. Thus, the total number of reversals of the nodes of layer j is j · |LI
j |.

If there are k layers, the total number of reversals is
∑k

j=1 j · |LI
j |. If I contains n bad nodes, there

are in the worst case at most n layers (each layer contains one bad node). Thus, each node reverses
at most n times. Since there are n bad nodes, the total number of reversals in the worst case is
O(n2). Moreover, since a node reversal takes one time step and in the worst case all reversals are
executed sequentially, the total number of reversals gives an upper bound on the stabilization time.
Thus, we have:

Corollary 4.8 For any graph with an initial state with n bad nodes, the full reversal algorithm
requires at most O(n2) work and time until stabilization.

L
I

1
L

I

2
L

I

3
L

I

4
L

I

5
L

I

6

Dest.

Figure 3: Graph G1 with 6 bad nodes

Actually, the upper bound of Corollary 4.8 is tight in both work and time in the worst case.
First we show that the work bound is tight. Consider a graph G1 with an initial state in which the
destination is the only good node and the remaining nodes are bad and partitioned into n layers
such that each layer has exactly one node (see Figure 3). From Theorem 4.7, each node in the ith
layer will reverse exactly i times. Thus, the sum of all the reversals performed by all the bad nodes
is n(n + 1)/2. Therefore, we have the following corollary.

Corollary 4.9 There is a graph with an initial state containing n bad nodes such that the full
reversal algorithm requires Ω(n2) work until stabilization.

L
I

2
L

I

3
L

I

4
L

I

5
L

I

1

Dest.
v1 v2 v3 v4

Figure 4: Graph G2 with 8 bad nodes

We will show that the time bound of Corollary 4.8 is tight (within constant factors) in the worst
case. Consider a graph G2 in an initial state in which there are n bad nodes, such that it consists of
m1 = bn/2c+ 1 layers. The first m1 − 1 layers contain one node each, while the last layer contains
m2 = dn/2e nodes. The last layer m1 is as follows: there are m2 nodes v1, v2, . . . , vm2

. Node vi has
outgoing links to all nodes vj such that j < i. The node of layer m1 − 1 has an outgoing link to
node v1 (see Figure 4).

From Theorem 4.7, we know that each node in layer m1 requires exactly m1 reversals before it
becomes good. Since there are m2 nodes in layer m1, m1 ·m2 = Ω(n2) reversals are required before

11

these nodes become good. All these reversals have to be performed sequentially, since the nodes of
layer m1 are adjacent, and any two of these nodes cannot be sinks simultaneously. We obtain the
following corollary.

Corollary 4.10 There is a graph with an initial state containing n bad nodes such that the full
reversal algorithm requires Ω(n2) time until stabilization.

5 Partial Reversal Algorithm

In this section, we present the analysis of the partial reversal algorithm. We first give a general
upper bound, and then present lowers bounds for a class of worst case graphs.

5.1 Upper Bounds for Partial Reversal

According to the partial reversal algorithm, each node vi has a height (ai, bi, i). We will refer to ai

as the alpha value of node vi. Consider an initial state I of the network containing n bad nodes.
We say that a bad node v of state I is in level i if the shortest undirected path from v to a good
node has length i. Note that the number of levels is between 1 and n. Let amax and amin denote
the respective maximum and minimum alpha values of any node in the network in state I. Let
a∗ = amax − amin.

Lemma 5.1 When a node in level i becomes good, its alpha value does not exceed amax + i.

Proof: We prove the claim by induction on the number of levels. For the induction basis, consider
a node v in level 1. If the alpha value of v becomes at least amax + 1, then v must have become a
good node, since its height is more that the height of the adjacent nodes which are good in state I
(these good nodes don’t reverse, and thus their alpha values remain the same in any state of the
network). We only need to show that during its final reversal, the alpha value of v will not exceed
amax + 1. According to the partial reversal algorithm, the alpha value of v is equal to the smallest
alpha value of its neighbors plus one. Moreover, the smallest alpha value of the neighbors cannot
be greater than amax, since in I, v is adjacent to good nodes which don’t reverse in future states.
Thus, the alpha value of v will not exceed amax + 1, when v becomes a good node.

For the induction hypothesis, let’s assume that the alpha value of any node in level i, where
1 ≤ i < k, does not exceed amax+i, when that node becomes good. For the induction step, consider
layer Lk. Let v be a node in level k. Clearly, node v is adjacent to some node in level k − 1. From
the induction hypothesis, the alpha value of every node in level k− 1 can not exceed amax +(k− 1)
in any future state from I. If the alpha value of v becomes at least amax + k, then v must have
become a good node, since its height is more than that of the adjacent nodes in level k − 1 when
these nodes become good. We only need to show that during its final reversal, the alpha value of
v will not exceed amax + k. According to the partial reversal algorithm, the alpha value of v is not
more than the smallest alpha value of its neighbors plus one. Moreover, the smallest alpha value of
the neighbors cannot exceed amax +(k− 1) which is the maximum alpha value of the nodes in level
k − 1 when these node become good. Thus, the alpha value of v will not exceed amax + k, when v
becomes a good node.

12

At each reversal, the alpha value of a node increases by at least 1. Since the alpha value of a
node can be as low as amin, Lemma 5.1 implies that a node in level i reverses at most amax−amin+i
times. Furthermore, since there are at most n levels, we obtain the following corollary.

Corollary 5.2 A bad node will reverse at most a∗ + n times before it becomes a good node.

Considering now all the n bad nodes together, Corollary 5.2 implies that the work needed until
the network stabilizes is at most n · a∗ + n2. Since in the worst case the reversal of the nodes may
be sequential, the upper bound for work is also an upper bound for the time needed to stabilize.
Thus we have:

Theorem 5.3 For any initial state with n bad nodes, the partial reversal algorithm requires at
most O(n · a∗ + n2) work and time until the network stabilizes.

We would like to note that there are scenarios that result in initial states, such that, the a∗

value may be arbitrarily large. For example, while topological changes occur in the network, two or
more adjacent nodes may alternate between bad and good nodes, which may cause them to increase
their height to high alpha values. At the same time, some nodes in the network may remain good,
with low alpha values. In such a scenario, a∗ is large.

5.2 Lower Bounds for Partial Reversal

In a state of a network, we say that a node is a source if all the links incident to the node are
outgoing. A full reversal is a reversal in which a node reverses all of its links. Note that after a full
reversal, a node becomes a source. We show that bad nodes which are sources always perform full
reversals whenever they become sinks.

Lemma 5.4 Consider any state I of the network in which a bad node v is a source with alpha
value a. In a subsequent state I ′, in which node v becomes a sink for the first time after state I,
the following occur: (1) v performs a full reversal, and (2) after the reversal of v, the alpha value
of v becomes a + 2.

Proof: In state I, since v is a source, all the adjacent nodes of v have alpha value at most a.
Between states I and I ′, each adjacent node of v has reversed at least once. We will show that in
state I ′, the alpha value of each adjacent node of v is a + 1.

Let w be any adjacent node of v. First, we show that the alpha value of v in I ′ is at least a+1.
If in I ′ the alpha value of w is less than a then v must have an outgoing link towards w, and thus
v cannot possibly be a sink in I ′, a contradiction. Therefore, in I ′ the alpha value of w, has to be
at least a. Next, we show that this alpha value cannot be equal to a. If the alpha value of w in
I ′ is a then it must be that the alpha value of v in I was less than a (since w reversed between I
and I ′). When w was a sink the last time before I ′, w must have been adjacent to another node
u with height a − 1. When w reversed, its alpha value became a, but its incoming link from v
didn’t change direction since u had a smaller alpha value. Thus v cannot possibly be a sink in I ′, a
contradiction. Therefore, the alpha value of w in I ′ cannot be equal to a, and it has to be at least
a + 1.

Next, we show that the alpha value of v cannot be greater than a + 1. When w reverses, its
alpha value is at most the minimum alpha value of its neighbors, plus one. Therefore, since v is a
neighbor of w with alpha value a, when w reverses its alpha value cannot exceed a + 1.

13

Therefore, the alpha value of w in state I ′ is exactly a + 1. This implies that in I ′ all the
neighbors of v have alpha value a + 1. Thus, when v reverses, it performs a full reversal and its
alpha value becomes a + 2.

Here, we consider special cases of graphs in which the bad nodes are partitioned into layers in
a particular way as we describe below. Consider a graph with an initial state I containing n bad
nodes such that the bad nodes are partitioned into an even number m of layers L1, L2, . . . , Lm−1, Lm

in the following way. The odd layers L1, L3, . . . , Lm−1 contain only nodes which are non-sources,
while the even layers L2, L4, . . . , Lm contain only nodes which are sources. The nodes in layer L1

are the only bad nodes adjacent to good nodes. Let G denote the set of good nodes adjacent to
layer L1. Nodes in layer Li may be adjacent only to nodes of the same layer and layers Li−1 and
Li+1, such that each node of Li is adjacent to at least one node of Li−1 and at least one node of
Li+1.

†

Let amax and amin denote the respective maximum and minimum alpha values of any node in
the network in state I. Let a∗ = amax − amin. State I is such that all good nodes in the network
have alpha value amax, while all the bad nodes have alpha value amin. First we show an important
property.

Lemma 5.5 When the network stabilizes, the alpha values of all the nodes in layers L2i−1 and L2i,
1 ≤ i ≤ m/2, are at least amax + i.

Proof: Let I ′ denote the state of the network when it stabilizes. We prove the claim by induction
on i. For the basis case, where i = 1, we consider layers L1 and L2. In state I, all the nodes of
layer L1 have only incoming links from G. In state I ′, there must exist a set S, consisting from
nodes of L1, such that the nodes in S have outgoing links towards G.

Let v be a node in S. In state I ′, the alpha value of v is at least amax, since the nodes in G have
alpha value amax. Moreover, we can show that the alpha value of v in I ′ is not amax. Assume for
contradiction that this value is amax. When node v reversed and obtained the alpha value amax, it
cannot possibly have reversed its links towards G, since for these links, v adjusted only its second
field on its height. Thus, in state I ′ node v is still bad, a contradiction. Therefore, in state I ′, node
v has alpha value at least amax + 1; thus, in state I ′, all nodes in set S have alpha value at least
amax + 1.

Now, consider the rest of the nodes in layers Lj , j ≥ 1. Let w be any such node. In state I ′,
w is good, and thus there exists a directed path from w to a good node in G. This path has to
go through the nodes of S; thus each node in the path must have alpha value at least amax + 1,
which implies that w has alpha value at least amax + 1. Therefore, in state I ′, all nodes in L1 and
L2 (including S) have alpha value at least amax + 1.

Now, let’s assume that the claim holds for all 1 ≤ i < k. We will show that the claim is true
for i = k. We consider layers L2k−1 and L2k. In state I all the nodes of layer L2k−1 have only
incoming links from L2k−2. In state I ′, there must exist a set S, consisting from nodes of L2k−1,
such that the nodes in S have outgoing links towards L2k−2. The rest of the proof is very similar
with the induction basis, where now we show that the nodes in S in state I ′, have alpha values at
least amax +k, which implies that all nodes in L2k−1 and L2k have alpha value at least amax +k.

We are now ready to show the main result which is the basis of the lower bound analysis.

†If i = 1, substitute G for Li−1. If i = m, don’t consider Li+1.

14

Theorem 5.6 Until the network stabilizes, each node in layers L2i−1 and L2i, 1 ≤ i ≤ m/2, will
reverse at least b(a∗ + i)/2c times.

Proof: Consider a bad node v of L2i. Node v is a source in state I. Lemma 5.4 implies that
whenever v reverses in the future, it reverses all of its incident links and therefore it remains a
source. Moreover, Lemma 5.4 implies that every time that v reverses its alpha value increases by
2. From Lemma 5.5, we know that when the network stabilizes, the alpha value of v is at least
amax + i. Since in state I the alpha value of v is amin, node v reverses at least b(a∗ + i)/2c times
after state I. Similarly, any node in L2i reverses at least b(a∗ + i)/2c times.

Consider now a bad node w of L2i−1. Node w is adjacent to at least one node u in layer L2i. In
state I, node u is a source, and it remains a source every time that u reverses (Lemma 5.4). Since
u and w are adjacent, the reversals of u and w should alternate. This implies that node w reverses
at least b(a∗ + i)/2c times, since node u reverses at least b(a∗ + i)/2c times. Similarly, any node in
L2i−1 reverses at least b(a∗ + i)/2c times.

L1 L2 L3 L4 L5 L6

Dest.

Figure 5: Graph G3 with 6 bad nodes

Next, we give the lower bound on work. This lower bound implies that the work bound of
Theorem 5.3 is tight in the worst case. Consider a graph G3 which is in state I as described above,
such that the destination is the only good node and there are n bad nodes, where n is even (see
Figure 5). From Theorem 5.6, each node in the ith layer will reverse at least b(a∗ + di/2e)/2c times
before the network stabilizes. Thus, the sum of all the reversals performed by all the bad nodes is
at least

∑n
i=1b(a

∗ + di/2e)/2c, which is Ω(n · a∗ + n2). Thus, we have the following corollary.

Corollary 5.7 There is a graph with an initial state containing n bad nodes, such that the partial
reversal algorithm requires Ω(n · a∗ + n2) work until stabilization.

Dest.

L1 L2 L3 L4 L5 L6

v1

v3

v2

Figure 6: Graph G4 with 8 bad nodes

Now, we give the lower bound on time. The lower bound implies that the time bound of
Theorem 5.3 is tight in the worst case. Consider a graph G4 in a state I as described above, in
which there are n bad nodes, where n/2 is even. The graph consists of m1 = n/2 + 2 layers. The
first m1 − 2 layers contain one node each, while layer m1 − 1 contains m2 = n/2 − 1 nodes, and
layer m1 contains 1 nodes. The layer m1 − 1 is as follows: there are m2 nodes v1, v2, . . . , vm2

. Node
vi has outgoing links to all nodes vj such that j < i (see Figure 6).

15

From Theorem 5.6, we know that each node in layer m1−1 requires at least k1 = b(a∗ + d(m1−
1)/2e)/2c reversals before it becomes a good node. Since layer m1 − 1 contains m2 nodes, at least
k1 ·m2 = Ω(n ·a∗ +n2) reversals are required before these bad nodes become good nodes. All these
reversals have to be performed sequentially, since the nodes of layer m1 − 1 are adjacent, and any
two of these nodes cannot be sinks simultaneously. Thus, we have the following corollary.

Corollary 5.8 There is a graph with an initial state containing n bad nodes, such that the partial
reversal algorithm requires Ω(n · a∗ + n2) time until stabilization.

6 Deterministic Algorithms

We now show a general lower bound on the worst case number of reversals for any deterministic
reversal algorithm. In this proof, we have assumed that the heights of the nodes can be unbounded;
the reversal algorithms in the literature also make the same assumption. We say that a bad node
v is in level i if the shortest undirected path from v to a good node is i.

Theorem 6.1 Given any height increase function g, and any network graph G, there exists an
assignment of heights to the nodes in G such that a node in level d reverses at least d − 1 times.

Proof: (Sketch) We assign the initial heights as follows. Let ` be the maximum node level. Nodes
in level ` are all assigned the lowest possible heights. For the other levels 1 till `− 1, we guarantee
that the initial heights will satisfy the following condition: if node v is at a higher numbered level
than node w, then v gets a lower height than w.

We show the result for one particular execution schedule E which proceeds as follows (Theo-
rem 3.3 generalizes the result to any execution). If the system is not yet destination oriented, then
next reverse the node with the smallest height in the graph (except for the destination). The node
with the smallest height is surely a sink, and hence a candidate for reversal.

We divide E into `−1 stages, numbered 1 to `−1. Stage i consists of all reversals in E starting
from the first reversal in level (` − i + 1) until, but not including the first reversal in level ` − i.

In Lemma 6.4, we show that there exists an assignment of heights to nodes in levels ` − 1 till
1 which satisfies the following condition: for i = 1 . . . ` − 1, each node in levels (` − i + 1) till `
reverses at least once in stage i. Thus, a node in level d reverses at least once in every stage from
(`− d + 1) till `− 1 (both limits inclusive), and thus at least d− 1 times. This completes the proof
sketch.

Before proving Lemma 6.4, we will need two other lemmas.

Lemma 6.2 If at the start of stage i, the height of every node in levels 1 till ` − i is greater than
the height of every node in levels (` − i + 1) till `, then each node in levels (` − i + 1) till ` will
reverse at least once in stage i.

Proof: We prove this by contradiction. Suppose a node v in level `v where (` − i + 1) ≤ `v ≤ `
did not reverse during stage i. This implies that v’s height remained unchanged during stage i.
The very first reversal after stage i is a reversal of a node in level ` − i, say w. Thus w reverses
before v in the execution, though w’s height was greater than that of v. This contradicts the way
we chose our execution schedule, which mandated that the lowest height node reversed first.

16

Lemma 6.3 At the end of stage i, the heights of nodes in levels (`− i + 1) till ` do not depend on
the heights of nodes in levels 1 till (` − i − 1).

Proof: Proof by contradiction. Consider two nodes, u and v at levels `u and `v respectively.
Suppose 1 ≤ `u ≤ (`− i− 1) and (`− i+1) ≤ `v ≤ `, and at the end of stage i, v’s height depended
on u’s height. Then, there must have been a sequence of reversals u1, u2, . . . , uj , v such that u1 was
adjacent to u, u2 adjacent to u1 and so on and finally uj adjacent to v. But, this is impossible
since no node which was adjacent to u has reversed so far. Thus, at the end of stage i, v’s height
cannot depend on u’s height.

Lemma 6.4 There exists an assignment of heights to nodes such that, for each i = 1 . . . `, every
node in levels (` − i + 1) till ` reverses at least once in stage i. This assignment is specific to the
function g.

Proof: We show that there exists an assignment of heights such that for each i = 1 . . . `, at the
beginning of stage i, the precondition for Lemma 6.2 is satisfied. From Lemma 6.2, it follows that
all nodes in levels ` − i + 1 till ` reverse at least once in level i.

Base Case: For i = 1, the precondition for Lemma 6.2 is true, since we guarantee that the
initial heights decrease with increasing levels.

Inductive Case: Suppose the precondition was true for i = k. Then, we know from Lemma 6.3
that at the end of stage k, the heights of nodes in levels (`−k+1) till ` do not depend on the heights
of nodes in levels 1 till (` − k − 1). We now assign the heights of every node in level (` − k − 1) to
be a value greater than the maximum height in levels ` − k till `. We don’t assign specific heights
to nodes in levels k′ where k′ < (l − k − 1) yet, but guarantee that their heights will be greater
than the current maximum height in levels (` − k) till `. By this assignment, the precondition for
Lemma 6.2 is satisfied for stage i = k + 1, and the Theorem follows by induction.

Theorem 6.1 applies to any graph. Consider the list graph G1, shown in Figure 3 with n bad
nodes. There is one node in each level 1 till n − 1. From the above theorem, the lower bound for
the worst case number of reversals of any reversal algorithm on the list is 1+ 2+ . . . n− 1 = Ω(n2).
Thus we have the following corollary.

Corollary 6.5 There is a graph with an initial state containing n bad nodes such that any deter-
ministic reversal algorithm requires Ω(n2) work until stabilization.

We can derive a similar lower bound on the time needed for stabilization. For this, we use the
graph G4 with n bad nodes, shown in Figure 6. The structure of the graph, and the parameters
m1 and m2 are the same as defined in Section 5. From Theorem 6.1, we know that each node in
layer m1−1 of G4 requires at least (m1−2) reversals before it becomes a good node. Layer m1−1,
contains m2 nodes. Therefore, at least (m1 − 2) · m2 = Ω(n2) reversals are required before these
nodes become good nodes. All these reversals have to be performed sequentially, since the nodes of
layer m1 − 1 are adjacent, and no two of these nodes can be sinks simultaneously. Thus, we have
the following corollary.

Corollary 6.6 There is a graph with an initial state containing n bad nodes such that any deter-
ministic reversal algorithm requires Ω(n2) time until stabilization.

17

7 Discussion

We presented a worst-case analysis of link reversal routing algorithms in terms of work and time.
We showed that for n bad nodes, the GB full reversal algorithm requires O(n2) work and time,
while the partial reversal algorithm requires O(n · a∗ + n2) work and time. The above bounds
are tight in the worst case. Furthermore, we showed that the worst-case work and time of any
deterministic algorithm is Ω(n2).

Since a∗ can grow arbitrarily large, the full reversal algorithm outperforms the partial reversal
algorithm in the worst case. It would be interesting to find a variation of the partial reversal
algorithm which is as good as full reversal in the worst case. Another research problem is to
analyze the average performance of link reversal algorithms.

It would be also interesting to extend our analysis to non-deterministic algorithms. An example
of such an algorithm is TORA, in which the height of a sink upon reversal may depend on the
current real time. Other classes of algorithms are randomized algorithms, in which the new height
of a sink is some randomized function of the neighbors’ heights.

Acknowledgments We would like to thank the anonymous referees for their comments.

References

[1] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance com-
parison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the 4th
Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBI-
COM ’98), pages 85–97, New York, Oct. 25–30 1998. ACM Press.

[2] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. An efficient communication strategy for
ad-hoc mobile networks. In Proceedings of the 15th International Symposium on Distributed
Computing (DISC ’01), number 2180 in LNCS, pages 285–199. Springer-Verlag, 2001.

[3] M. S. Corson and A. Ephremides. A distributed routing algorithm for mobile radio networks.
In Proceedings of the IEEE Military Communications Conference (MILCOM ’89), October
1989.

[4] M. S. Corson and A. Ephremides. A distributed routing algorithm for mobile wireless networks.
ACM/Baltzer Wireless Networks Journal, 1(1):61–82, February 1995.

[5] E. M. Gafni and D. P. Bertsekas. Distributed algorithms for generating loop-free routes in
networks with frequently changing topology. IEEE trans. on commun., COM-29:11–18, 1981.

[6] N. Malpani, J. L. Welch, and N. Vaidya. Leader Election Algorithms for Mobile Ad Hoc
Networks. In Proceedings of the 4th international workshop on Discrete algorithms and methods
for mobile computing and communication, Aug. 11, 2000.

[7] V. Park and M. S. Corson. A performance comparison of the temporally-ordered routing
algorithm and ideal link-state routing. In Proceedings of IEEE International Symposium on
Systems and Communications, June 1998.

18

[8] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile
wireless networks. In IEEE Infocom ’97 - 16th Conference on Computer Communications.
IEEE, 1997.

[9] C. E. Perkins. Ad Hoc Networking. Addison Wesley, 2000.

[10] R. Rajaraman. Topology control and routing in ad hoc networks: A survey. SIGACT News,
June 2002.

[11] R. Samir, C. Robert, Y. Jiangtao, and S. Rimli. Comparative performance evaluation of routing
protocols for mobile, ad hoc networks. In Proceedings of IEEE the Seventh International
Conference on Computer Communications and Networks (IC3N ’98), Oct. 1998.

19

