
Provably Competitive Adaptive Routing
Baruch Awerbuch∗, David Holmer, and Herb Rubens

Department of Computer Science
Johns Hopkins University

Baltimore, MD
Email: {baruch,dholmer,herb}@cs.jhu.edu

∗ Supported by NSF grants ANIR-0240551
and CCR-0311795.

Robert Kleinberg†

C.S.A.I.L.
Massachusetts Institute of Technology

Cambridge, MA
Email: rdk@csail.mit.edu

† Supported by a Fannie and John Hertz Foundation
Fellowship. Part of this work was done while the

author was an intern at Microsoft Research.

Abstract— An ad hoc wireless network is an autonomous
self-organizing system of mobile nodes connected by wireless
links where nodes not in direct range communicate via inter-
mediary nodes. Routing in ad hoc networks is a challenging
problem as a result of highly dynamic topology as well as
bandwidth and energy constraints. In addition, security
is critical in these networks due to the accessibility of the
shared wireless medium and the cooperative nature of ad hoc
networks. However, none of the existing routing algorithms
can withstand a dynamic proactive adversarial attack. The
routing protocol presented in this work attempts to provide
throughput-competitive route selection against an adaptive
adversary. A proof of the convergence time of our algorithm
is presented as well as preliminary simulation results.

I. BACKGROUND

The basic service offered by every node in an ad-hoc
network is that of routing packets from their source to
their ultimate destination. In general, routing protocols are
susceptible to a wide variety of attacks. For example, a
malicious node may perform a denial of service attack by
selectively jamming some areas of the network.

A great deal of work has been done in terms of
guaranteeing practical security considerations in existing
network protocols. In practice, adversarial attacks observed
and documented in ad hoc networks might not be overly
sophisticated. The ease of access to the medium has
allowed extremely basic attacks to cause a great deal of
damage. Consequently, such attacks can be thwarted by
simple yet effective methods.

Existing work in the literature considered a number of
strong adversary models. For example, [1] considers a
random fault pattern; [2] deals with a static fault pattern
and [3] deals with an oblivious (non-adaptive) pattern.

Our goal is to design routing protocols for networks that
are provably tolerant of arbitrary adaptive DOS attacks.
The adversary that we will consider selectively attacks
packets on a given node or link. This adversary benefits
from knowledge of the traffic pattern (including packet
contents); this includes all current traffic and all past traffic
history.

As a result, the algorithms and analysis techniques used
in the previous work will not apply. Existing methods

that do not ignore sophisticated adaptive attacks either use
brute force (flooding) or assume the existence of some
trusted servers or routers. We do not wish to make such
restrictive assumptions. As a result, the task of designing a
throughput-competitive routing algorithm is much harder.

It may appear that our adversarial routing model may
lead to impractical algorithms in benign (non-adversarial)
settings. However, routing algorithms similar to the one
studied here were developed and tested in real network
environments by British Telecomm and NTT for both
wired and wireless networks with superior results [6], [20],
[9], [7], [17], [18], [5], [10]. AntNet, a particular such
algorithm, was tested in routing for data communication
networks [6]. The algorithm performed better than OSPF,
distributed Bellman-Ford with various dynamic metrics,
and various modifications of shortest path with a dynamic
cost metric [4], [17].

Our contribution: We propose a new algorithm for adap-
tively selecting routing paths in a network with dynamic
adversarial edge failures, and we give a rigorous mathe-
matical analysis of this algorithm, proving that its packet
loss will match the minimal cumulative loss of any path,
up to an additive error which is sublinear in the number of
trials. The general framework we propose is appropriate
for analyzing routing protocols for networks operating
under the extremely strong adversarial model specified
above. Such strong models have not been considered in the
literature to the best of our knowledge. In fact, adaptive
dynamic denial of service attacks are sufficient to break
most existing algorithmic work. (In Section III, we briefly
explain why DoS attacks are so devastating.)

What distinguishes the present work is our insistence
on proving that under completely arbitrary adversarial be-
havior, with essentially no assumptions about the network,
the packet loss of our protocol will essentially match the
minimal cumulative loss (i.e., sum of losses of individual
links) of any path. While it may seem counter-intuitive
that such a goal can be achieved, the key is that although
we assume an arbitrary dynamic adversary, we compare
the algorithm against the best static path; if the adversary
works hard to damage the algorithm’s throughput, it must

necessarily inflict a large cumulative loss on every path in
the network.

At this point, one could debate whether such sophis-
ticated adversaries are ever going to surface in reality,
or whether they are only monsters in our imagination.
Our counter-argument is that if, as we theorize, ubiquitous
wireless networks become the underlying fabric that binds
our society together, we cannot afford not to plan against
an adversary with arbitrary powers.

The rest of this paper is organized as follows. In Sections
II and III, we review some of the existing work in this
area and survey some of the challenges which illustrate
why our problem is not solved by simpler approaches.
In Sections IV we outline the main ideas underlying
our algorithm, which is specified precisely in Section V,
analyzed mathematically in Section VI, and experimentally
tested in Section VII. The algorithm contains some tunable
parameters, e.g. a “sampling rate” δ and a “learning rate” β.
Adjusting β allows one to smoothly interpolate between the
greedy algorithm (β near 0) and algorithms which are less
responsive but more robust against an adaptive adversary
(β near 1). The mathematical analysis in Section VI
indicates that setting β very close to 1 guarantees good per-
formance against an arbitrary adaptive adversarial attack;
however in many circumstances (e.g. random edge failures)
greedy approaches achieve faster convergence, which leads
one to expect superior performance from a smaller value of
β in such circumstances. These theoretical considerations
are substantiated by the experiments in Section VII, where
the algorithm is tested in a variety of network topologies
with random edge failures, and smaller values of β indeed
achieve faster convergence.

II. EXISTING WORK

a) Algorithmic Work: The only algorithmic results
that possibly work under this strong adversarial model
are based on a computational learning framework [12],
[8]. Near optimal learning algorithms, with reliable global
information for finding a shortest path in a graph, where at
each time a different known cost is assigned to each edge,
were studied in [12], [8]; these solutions have an expo-
nential computational overhead. Schemes with polynomial
computational overhead were recently suggested by [21],
[11]. The solutions in [12], [8] and [21], [11] correspond
to “link-state” routing, and to the case where the adversary
can exercise DOS attacks with a dynamic but non-adaptive
failure pattern. Byzantine behavior causes such algorithms
to collapse. Most recently, “on-demand” routing against an
oblivious adversary was suggested in [3]. In this model,
an adversary cannot cheat and the pattern of cheating and
blocking is assumed to be oblivious, i.e., this work does
not handle dynamic DOS attacks.

b) Reinforcement Learning: The “Swarm Intelli-
gence” paradigm is an approach to routing in distributed
networks of cooperative agents, inspired by studying the

process by which swarms of ants converge to the optimal
route to a food source by progressively reinforcing the
successful paths using pheromone secretions. Interest in
applications of ant-based routing in mobile ad-hoc net-
works (MANETs) has risen, and many recent papers have
addressed the subject [14], [4]. Gunes et al [15] considers
an ant-based approach to routing in MANETs, with a
completely reactive algorithm. Marwaha et al. [16] studies
a hybrid approach using both AODV and reactive ant-based
exploration. Baras et al [4] describes a new algorithm that
utilizes the inherent broadcast nature of wireless networks
to multicast control and signaling packets (ants). ARAMA
[14] uses an analogous approach. Work on the Swarm
Intelligence paradigm is described in [13], [6], [20], [9],
[7], [17], [18], [5], [10], [14], [4].

III. RESEARCH CHALLENGES

c) Past performance is no guarantee of future suc-
cess: The problem is that we are making decisions in
an online environment, where the online algorithm needs
to forward packets by selecting routes while having only
information regarding past packets, and no information
regarding the future conditions. We make no assumptions
about the adversary’s behavior or the sequence of fault
patterns generated. Moreover, it is also assumed that there
may be a powerful adversary generating the worst possible
input sequence for the online algorithm. A fundamental
question regarding online algorithms is how to evaluate
their performance. It is rare, and in some cases outright
impossible, that one deterministic algorithm always out-
performs another deterministic algorithm. One classical
method has been to assume a model where the future
resembles the past (i.e. a stochastic model) regarding
packet losses, and to compare the performance of different
algorithms on the same model. However, in an adversarial
setting, there is no reason why the adversary should follow
the rules of any particular stochastic model. If anything,
a malicious adversary will do exactly the the opposite of
what our model would predict. (There is no reason to hope
that the adversary will not know our model.)

One may be tempted to think that converging to the
best fixed route may be easily accomplished by utilizing
a “greedy” heuristic: keep track of past error rates on
different links, and simply select the path with the smallest
overall failure rate, namely the sum of the failure rates of
its links. For example, existing work on routing in overlay
networks, such as RON [1] runs a greedy strategy for
windows of a specific size. The intuition is very strong:
one extrapolates the past failure pattern into the future.
This may work if the failure pattern is static or if there is
a statistical model of failures. However this method will
fail quite spectacularly in the case of dynamic adversaries.
For example, consider 100 options for choosing a relay
point between the sender and receiver, which define 100
different paths. At time i, path i (modulo 100) is under the
control of the adversary, and is failing all packets; at all

other times the path is perfect. The greedy algorithm will
always pick the worst path, even though at any moment in
time only 1% of the paths are faulty.

To see the principal flaw in this greedy strategy, consider
the performance of an investor who tries to follow the
best-performing stock on the stock market, with the naive
assumption that “past performance is a guarantee of future
results.” In fact, in an adversarial setting (e.g. the stock
market) it may very well be the case that past performance
correlates negatively with future results, and algorithms
must not be fooled into this easy trap.

d) Our path selection must withstand competitive
analysis: In general, there may not be an ideal fault-
free path, yet we can define the best path in terms of
accumulated loss on that path. Our goal is to make path
selections, such that our overall performance is comparable
to that of the “best path.”

Our goal is thus to find a robust randomized algorithm
that works well on all inputs, in the sense that the expected
behavior of our algorithm is comparable to the optimum
fixed path on each input. The goal of this paper is to
introduce novel routing algorithms for route selection in
an adversarial environment that are provably optimal, in
the sense that the total number of messages lost in our
algorithm exhibits a very small additive gap with respect
to the optimum prescient route assignment. The optimum
assignment is determined with complete knowledge of the
adversary’s actions in the past, present, and future, and
with unlimited computational power. We are seeking an
algorithm which meets a performance guarantee based on
competitive analysis [19]. In other words, we compare the
performance of our online algorithm to that of the best
static offline selection. (One can think of this “best static
offline selection” as the path chosen by an offline algorithm
which must select a fixed path and use it during all time
steps.) Our results bound the difference between the cost
of the best static offline selection and the selections made
by our online algorithm; this difference is referred to in
the literature as regret.

For example, consider a wireless network in which each
user has on average 200 neighbors, and in which there
is at least one fixed path of 7 hops between sender and
receiver having an average link fault rate of 0.01 %, i.e.
99.99% of the time the whole path is reliable. The only
problem is to select one out of around 2007 possible paths,
while only having information about past experiments over
these paths. In this case, one can construct a counter-
example in which the greedy algorithm may never succeed
in delivering a single message, i.e. it has a 100% fault
rate, in spite of always selecting the best of the 2007 paths
so far! The explanation for this counter-intuitive fact is
that any deterministic algorithm can be easily fooled by
an adversary, forcing it to pick a path that always fails.

In contrast, the “competitive” randomized algorithm that
we are seeking should be able to “zero in” on the reliable

path, or at least get comparable performance. The algo-
rithm we are seeking should guarantee, for any adversarial
behavior (subject to the adversary’s “pledge” to keep some
path of length 7 hops being 99.99% reliable on each link),
a fault rate of just below 7 · 0.01% = 0.07% over long
sequences.

e) Randomness is not a guarantee of success: An-
other “quick fix” is to try to select a random path. There is
a misconception that selecting one of many node-disjoint
paths, or selecting a random path, will somehow guarantee
success. (The stock-market equivalent of this belief is
asserting that a stock index such as the NASDAQ 100
cannot go down by much.) There is something appealing
about random strategies in the sense that they allow the
spreading of risk; what is wrong with the above quick fix
is that there is no attempt to adapt the probabilities after
receiving feedback about different paths. In fact, it is easy
to generate counter-examples in which either one of these
policies fails. For example, consider a faulty edge leading
into a dense subnetwork. If one generates paths at random
by assigning equal probability to traversing each edge in
the network, one is very likely to select this faulty edge.

f) Multiple paths do not guarantee success: It has
been generally recognized that sending packets along mul-
tiple paths is more fault-tolerant than sending packets over
a single path. However, it is easy to come up with an
example involving a collection of edge-disjoint paths such
that each specified path has at least one fault, and yet
a random path is likely to not have any fault with high
probability.

In conclusion, while there exist different heuristics that
can alleviate the problems caused by certain adversaries,
the challenge is to utilize and combine these techniques
in such a way that one can guarantee near-optimal perfor-
mance even against very powerful adaptive adversaries.

IV. PROPOSED APPROACH

A. Solution Outline

In our routing approach, we act as follows: the process
of route detection and fault avoidance is carried out by a
distributed process of “learning” fault-free paths, in spite of
deceptive techniques pursued by adversaries. In the course
of the routing process, each node creates and adjusts a
probability distribution on that node’s set of neighbors. The
probability associated with a neighbor is a local estimate
of the the relative likelihood of that neighbor forwarding
and eventually delivering the packet to the destination. The
algorithm is similar to the one in [3]; however its analysis
is different.

B. More details of our approach

The choice of the routing path used in the algorithm is
best explained by working backwards from the destination
towards the source. It is also easiest to imagine a “fictional”

distributed algorithm running at the individual nodes, the
purpose of which is to send messages to the source; in
reality the whole route is determined by the source, and
messages travel from the source toward the destination.

Imagine that each node selects a parent edge towards
the source. The set of all parent edges forms a tree rooted
at the source. The packets are sent on the unique path
in this tree from the sender (the root) to the receiver,
and are acknowledged by the receiver. (We refer to such
acknowledgements as positive ACK’s.) Each node on the
path between the sender and the receiver sets a timer after
forwarding the packet. If a positive ACK is not received
before the timer expires, then that node assumes the packet
was lost and instead sends back a negative acknowledge-
ment (negative ACK, or simply NACK) to the source.
Proper calibration of the timers leads to a single aggregated
ACK message traversing each link, reporting on the status
of the downstream portion of the path, i.e., we do not have
hop-by-hop ACK’s resulting in overhead growing linearly
in the length of the path. Note that these acknowledgements
are separate from acknowledgments used by upper-layer
protocols (e.g. TCP) and are used solely for the purposes
or our routing algorithm.

Using these acknowledgements, a lost packet decom-
poses the path into two parts: the part from the source
to the last node that succeeded in acknowledging the
packet, and the rest of the path that failed to return an
acknowledgement. We now adjust the choice of parent
edges as follows. The part of the path that succeeds
in acknowledging reinforces its confidence in the parent,
while the other part of the path reduces its confidence.
The parent will be chosen probabilistically based on the
confidences acquired. The intuition is that confidence in
the parent reflects not only the reliability of the link
between child and parent, but also the fact that the parent
is “intelligent” enough to pick the right grandparent, and
so on.

We wish to stress that these probabilistic confidence
measures are being maintained and updated at the source,
not at the nodes in the interior of the path. Upon receiving
a positive ack from the destination or a negative ack from
an intermediate node, the source has the full picture of
both portions of the path and emulates the adjustments of
probabilities on behalf of the nodes on the path. Thus,
counter-intuitively, it will often be the case that nodes
beyond the failing edge have never seen some of the
packets that were destined for them, and are not aware
that their “confidence” in their parent is being degraded.

By using a probability distribution over the parent edges
we generate a probability distribution over all source-
rooted trees, such that the probability of each tree grows
exponentially as a function of its performance. This dis-
criminates against edges which are frequently controlled by
the adversary, and reinforces edges where the adversary is
very often absent.

Now, we proceed step by step in explaining the different
phases taken by our algorithm to assign probabilities to
each edge of the network graph.

g) Transforming a graph into a layered directed
graph: The first step is to transform the original undirected
network graph G(V, E) (e.g., see Fig. 1,2) into a directed
layered graph, with the destination being in layer 0 of this
graph while the source is at the other “end” of the graph.
Note that the same process is repeated for each destination.

s

a

r

b

c

Fig. 1. The original network w.r.t. receiver r (in layer 0)

s3 s2

c2

a3 a2

b2

s4 s1

c1

r0

Fig. 2. The Layered graph w.r.t. receiver r (in layer 0)

Informally, all we are doing here is inserting into each
packet a TTL (time-to-live) counter, and using a separate
routing table for each destination and each TTL counter
value. We will say that the packet arrived to a node in
layer i if it has TTL value equal to i hops. Thus, all the
nodes that can potentially reach the destination in i hops
(or less), for 0 ≤ i ≤ H are represented in layer i of the
graph (e.g., that’s why node b is not on layer 1 in Fig. 1).
Here H is the upper bound on hop count of a routing path
(i.e. the original TTL value). The directed edges connect
the representative nodes in layer i to representative nodes
in layer i−1. Suppose that a packet starts at source s, and
while traversing the network carries a hop count. When
the packet arrives at node v after traversing i hops, we
consider the packet as if it arrives at “virtual” node vH−i.

The reader can easily see that a directed leveled graph G′

of depth H simulates any communication where packets
traverse a bounded number of hops H ≤ |V |. Thus, for
the rest of this description, without loss of generality, we
consider our network graph to be leveled, directed, acyclic,

and we consider every node to be reachable from the
source.

h) Establishing a feedback mechanism : As we al-
ready said, we request that each packet be acknowledged
using a secure acknowledgement scheme by the destina-
tion. The purpose of these ackowledgements is to identify
nodes that drop packets. The adversary can definitely
interfere with either the packet or the ACK propagation
process. However, any adversarial action can be sum-
marized as follows: the source has received a negative
acknowledgement from some intermediate node, indicating
the downstream edge on the path (we call it the separator)
that appears to have failed. All the edges on the path from
sender to receiver prior to the separator are called lucky.
All the edges on the path from sender to receiver beyond
the separator edge are called unlucky.

i) Quantitatively ranking the incoming edges: Once
the source receives a NACK from a node, it views this as
a positive ack from all edges prior to the node sending
the NACK, and as a NACK from all the edges beyond
this node. As in [3], the source ranks the edges based on
the percentage of “luck” they bring. Luck is the ratio of
positive ACK’s from the edge, and the total number of
ACK’s (positive and negative) associated with this edge.
Each node will be selecting the best edge in terms of
“luck” on its path towards the sender. Let us call such
edge a “parent edge”. The set of parent edges forms a
routing tree rooted at the source. In reality, routing from
the source to the destination is performed over the tree from
its root (source) towards the destination, from parents to
their children on the path.

The next question is how to set edge weights as a
function of each edge’s “luck”. The greedy strategy (which
does not work) would be to set edge weights in decreasing
order of luckiness. Instead, it turns out that setting edge
weights based on the exponent of luckiness — i.e. assigning
weight βx, where β is a parameter between 0 and 1, and
x is the number of times that an edge has been unlucky —
will essentially yield optimal performance. The value of β
is crucial for the performance of our algorithm. Low values
of β result in our decision sequence resembling that of the
greedy algorithm, and thus will be vulnerable to adversarial
attacks. On the other hand, values of β which are close to
1 will cause the algorithm to respond slowly to changes.
The optimal value of β can be determined using the “best
expert” framework from machine learning (see [12], [8]).
The mathematical analysis in Section VI indicates that the
optimal value of β for withstanding arbitrary adversarial
attacks is essentially 1− 3

√
m/HT , where m is the number

of edges in the network, H is an upper bound on the path
length, and T is the length of time that the protocol has
been running.

j) Choosing a random path from the source: When
the source wishes to select a path to the destination along
which to route packets, it emulates the following process

in the layered graph: the destination at layer 0 selects a
parent node in layer 1 randomly according to its probability
distribution on incoming edges. This node, in turn, uses
its probability distribution on incoming edges to sample
a parent node in layer 2, and so on up the layers of the
graph until the source is reached. The path from source
to destination is chosen to be the reverse of this path.
An equivalent (but less computationally efficient) way of
sampling this random path would be to have every node
in the layered graph sample a random parent using its
probability distribution, resulting in a tree of edges directed
outward from the source; the source then designates a path
to the destination which is the unique such path contained
in this directed tree.

k) Sampling unexplored territory: A subtle but im-
portant component of the algorithm is its ability to sample
edges in the network, since this is the only way it is able to
detect changes in the adversarial fault pattern, and to sam-
ple relatively “stale” portions of the network. This means
that the algorithm is occasionally (and probabilistically)
deviating from the optimal routes in order to make sure
that feedback is obtained from each edge in the network.

This deviation is accomplished by forcing the algorithm
to pass, with a small probability which is completely under
our control, over a completely random edge e = (u, v) in
the layered graph, using a different path-sampling process.
The portion of the path from the source to e is computed
as above, i.e. we start at u and work our way backward to
the source, level by level, using the designated probability
distribution at each node along the way to sample the next
edge. The portion of the path from e to the destination
may be taken to be an arbitrary path, e.g. a fixed route
determined at the outset.

Let us give some intuition on why this is desirable. By
allowing β to be small the algorithm will move quickly to
the least fault path, but will only utilize even slightly less
reliable paths with low probability. In order to ensure that
the algorithm is making correct decisions, it continuously
needs to gain up-to-date feedback on the other paths in
the network. This is accomplished by random sampling. If
every data packet were used as a sampling packet, meaning
the sampling rate was 100%, the algorithm would have
extremely high loss rates from exploring faulty paths, but
would have extremely accurate estimates of the current
reliability of paths in the network. On the other hand, if the
algorithm only samples paths with 1% of its traffic, then
it will be slightly slower in detecting changes, but will be
sending a higher percentage of its packets over links that
do not fail.

V. SPECIFICATION OF THE ALGORITHM

Our algorithm is a variant of the algorithm in [3] for
adapting to a reliable network path. We will use the
following notations. We are given a directed graph with
specified sender s and receiver r. Time steps run from 1

to T and are denoted by t. Cost functions Ct : E → {0, 1}
are specified by an adaptive adversary. The interpretation
of Ct is that 1 represents an edge failure, 0 represents an
edge which does not fail. In each time step the algorithm
chooses a path πt from s to r and is charged a cost of 1
if any edge of this path failed, 0 otherwise. The algorithm
receives feedback regarding the location of the first edge
failure (i.e. the one nearest to s) if there were any edge
failures.

As explained above, we first transform the network
graph into a leveled directed graph G = (V, E) with sender
s and receiver r, and with H levels altogether, as described
in section IV-B. The algorithm runs in phases of length τ ;
later we will specify τ so as to optimize the regret. (The
optimal value of τ will be roughly 3

√
(m/H)2T .) A typical

phase will be denoted by φ.

For each vertex v, the algorithm maintains a black box
BEX(v), which runs an online learning algorithm, namely
the Weighted Majority Algorithm of [12]. (For pseudocode,
see Figure 5.) This algorithm depends on a parameter
β = 1 − ε, where ε will be specified later after the
analysis of the algorithm. (The optimum ε will be roughly
3

√
m/HT .) The black box BEX(v) outputs a probability

distribution pφ on the incoming edges of v during each
phase φ. This probability distribution does not change
during the phase. (Roughly speaking, pφ(e) is proportional
to βc(e) where c(e) is the cost of edge e in the phases
preceding φ.) At the end of a phase, BEX(v) receives as
input a vector containing a “simulated cost” C̃φ(e) ∈ [0, 1]
for each incoming edge e of v. The black box satisfies the
following performance guarantee:

∑

φ

∑

e

pφ(e)C̃φ(e) ≤
∑

φ

C̃φ(e0) + O

(
εT

τ
+

log(∆)

ε

)
.

(1)
(Here ∆ is the in-degree of v, and e0 denotes any fixed
incoming edge of v.) Roughly speaking, this means that the
random edges output by BEX(v) perform nearly as well as
any single incoming edge e0, if performance is measured
according to the simulated cost C̃φ.

Every time step t within a phase φ is classified as either
a sampling step or an exploitation step, according to the
outcome of an independent random coin toss with proba-
bility δ of determining a sampling step. In an exploitation
step each vertex v independently chooses an incoming edge
using the distribution specified by BEX(v); this edge set de-
fines an arborescence directed away from s, and we choose
the path joining s to r in this arborescence. In a sampling
step, we choose an edge e = (v, w) in G uniformly at
random. We choose a random arborescence directed away
from s using the same rule as in an exploitation step. We
take the path in this arborescence from s to v, join it with
the edge e, and the join it with “our favorite” path from w
to r. (Our favorite path may be, for example, the path from
w to r in some fixed arborescence directed toward r. The
only important thing is that this path does not depend on e,

only on w.) The sampling step is judged to be “successful”
if there were no edge failures on the sub-path from s to
w, otherwise unsuccessful.

The simulated cost of an edge e in a phase φ is the
number of unsuccessful sampling steps for that edge,
divided by the expected total number of sampling steps. To
express this symbolically in terms of a formula, let At be
the random arborescence chosen at time t using the black-
box at each vertex, let πt(v) denote the path from s to v in
this arborescence, and let Ct(v) denote the maximum of
Ct(e) over all edges in πt(v). Finally let χt(e) denote the
event that t is a sampling step for e and let σt(e) denote
the event that t is an unsuccessful sampling step for e.
Then for an edge e = (v, w),

C̃φ(e) =

∑
t∈φ σt(e)

δτ/m
.

The pseudo-code for all steps in the algorithm is specified
in Figures 3, 4, 5.

for φ = 0, 1, . . . , bT/τc
for t = τφ + 1, . . . , τ (φ + 1)

/* Choose routing paths for phase φ. */
Call ROUTE procedure to obtain path πt

and distinguished edge et.
π+

t ← ACK’ed sub-path of πt.
if et 6= null and et 6∈ π+

t

σt(et)← 1
σt(e)← 0 for all other edges e.

end
for e ∈ E, /* Compute simulated edge costs. */

C̃φ(e)← (
∑

t∈φ
σt(e)/(δτ/m).

for (u, v) ∈ E /* Update edge probabilities */
νφ+1(u, v)← BEXφ(v)[u, v].

end /* End main loop */

Fig. 3. Routing algorithm.

Function ROUTE
TR ← a fixed tree in G directed toward r.
for v ∈ V

Sample a random incoming edge in(v) using
probabilities νφ(·, v).

TS ← {in(v) : v ∈ V }.
Flip coin with δ probability of heads.
if heads /* Exploration */

Choose et = (v, w) uniformly at random from E;
Π(v)← the path from s to v in TS ;
Π̃(w)← the path from w to r in TR;
πt ← Π(v) · (v → w) · Π̃(w)

else /* Exploitation */
et ← null;
πt ← the path from s to r in TS;

return (πt, et)

Fig. 4. Path generation procedure ROUTE with parameter δ.

Function BEXφ(v)[u, v]
/* Sum weights of incoming edges to v. */
W ←

∑
(w,v)∈E

βC̃φ(w,v)

/* Return probability of edge (u, v). */
return βC̃φ(u,v)/W

Fig. 5. BEXφ(v): Black box BEXφ(v) with parameter β using scores
C̃φ(v, w); picks edge (v, u) with prob. νφ(v, u).

VI. ANALYSIS

A. Overview

Our goal is to prove, for every vertex v, that the random
path πt(v) is nearly the optimum path from s to v, up to
a regret term which depends on the distance from s to v.
This claim will be established by induction on the distance
from s to v, the base case s = v being trivial.

In order for this idea to work, we need a provable
relationship between our simulated costs and the true costs.
Proving this in the context of an adaptive adversary is
trickier than in the oblivious case, which explains why we
have a subtler definition of C̃φ than in [3].

The bound on the algorithm’s performance is expressed
in terms of two notions of cost for a path π from s to r.
For such a path, we define BCOSTt(π) to be 1 if any
edge of π failed at time t, and 0 otherwise. We define
ACOSTt(π) to be the total number of edge failures on π
at time t. Finally, we define

BCOST (π) =
1

T

T∑

t=1

BCOSTt(π)

ACOST (π) =
1

T

T∑

t=1

ACOSTt(π).

Thus, BCOST (π) measures the average number of times
the path π failed, and ACOST (π) measures the average
cumulative number of edge failures on π.

Theorem 6.1: For appropriate choices of the parameters
τ, ε, δ, the algorithm’s performance satisfies the bound

E(BCOST (algorithm)) ≤ E(ACOST (π))

+ O

((
H2m log(mT) log(∆)

T

)1/3
)

.

Note that this implies that for T sufficiently large, i.e.
for T = ω(H2m log(mT) log(∆)), the actual cost of the
algorithm E(BCOST (algorithm) will only be marginally
larger than the benchmark cost E(ACOST (π)). The fol-
lowing subsections will prove the theorem, and Section VII
will examine what this asymptotic bound means in prac-
tice.

B. Characterization of C̃φ

For a random variable Y , let Et(Y) denote the condi-
tional expectation of Y , conditioned on all of the algo-

rithm’s random decisions before time t.

Lemma 6.2: For each edge e = (v, w) and each time
step t, Et(σt(e)) ≤

δ
m [Et(Ct(e)) + Et(Ct(v))] .

Proof: From the definition of σt(e) we have

σt(e) = χt(e) max{Ct(e), Ct(v)}.

Hence

Et(σt(e))

= Et(χt(e)) · Et(max{Ct(e), Ct(v)} ‖χt(e) = 1)

≤ (δ/m)Et(Ct(e) + Ct(v) ‖χt(e) = 1).

The lemma now follows, because the random variables
Ct(e) and Ct(v) are independent of χt(e). In the case
of Ct(e), this is simply because the algorithm’s decision
of whether or not t will be a sampling step for e is
independent of the adaptive adversary’s choice of edge
costs at time t. In the case of Ct(v), it is also because the
random path πt(v) is sampled from a distribution which
does not depend on whether t is a sampling step for edge
e.

Corollary 6.3:

τE(C̃φ(e)) ≤ [E(Ct(e)) + E(Ct(v))] .

Lemma 6.4: For a vertex v, let E−(v) be the set of
incoming edges of v. For a time step t in phase φ,

Et(Ct(πt(v))) =
m

δ

∑

e∈E−(v)

pφ(e)Et(σt(e))

 .

Proof: Both sides are equal to the probability of
an edge failure on a random path sampled according to
the following rule: choose a random incoming edge at v
according to the probability distribution pφ, let u be the
other endpoint of this edge, and join the edge to the random
path πt(u).

The other thing we need to know about C̃φ before
continuing with the analysis is that it is bounded above
by a constant, with high probability.

Lemma 6.5: If τ ≥ m log(mT)/δ then with probability
at least 1−1/mT , C̃φ(e) < 5 for all edges e and all phases
φ.

Proof: Under the hypothesis on τ the expected
number of sampling steps for any edge in any phase is at
least log(mT). The true number of sampling steps for edge
e in phase φ is a sum of independent Bernoulli random
variables, so Chernoff’s bound tells us that

Pr

∑

t∈φ

χt(e) > 5 log(mT)

<
[
e4/55

]log(mT)
< e−2 log(mT) = (1/mT)2.

Using the fact that σt(e) ≤ χt(e), this immediately
gives an upper bound of (1/mT)2 on the probability that

C̃φ(e) > 5. Summing over all pairs (e, φ), we obtain the
result stated in the lemma.

In the following analysis, we will assume throughout
that C̃φ(e) is bounded above by 5. The probability that
this assumption fails is < 1/mT , and in the event that it
fails the total cost of all paths is at most T , so this event
contributes at most 1/m to the algorithm’s expected cost
and may therefore be ignored.

C. Local performance guarantee

The induction step of the analysis is a local performance
guarantee relating the average cost of πt(w) to the average
cost of πt(v), where v is an upstream neighbor of w in G.

Lemma 6.6: If e = (v, w) is any edge of G, then

1

T

T∑

t=1

E(Ct(πt(w))) ≤
1

T

T∑

t=1

E(Ct(πt(v)))

+ 1
T

∑T
t=1 E(Ct(e)) + O

(
ε + τ log(∆)

εT

)
.

Proof: The performance guarantee for BEX(w) en-
sures that

τ

T

∑

φ

∑

e∈E−(w)

pφ(e)C̃φ(e)

≤
τ

T

∑

φ

C̃φ(e0) + O

(
ε +

τ log(∆)

εT

)
.

Take the expectation of both sides of this inequality. Using
Lemma 6.4, the expectation of the left side is

τ

T

T∑

t=1

∑

e∈E−(w)

pφ(e)E(σt(e))

 m

τδ

=
1

T

(
T∑

t=1

E(Ct(πt(w)))

)
.

Using Corollary 6.3, the expectation of the right side is
bounded above by

1

T

T∑

t=1

E(Ct(πt(v)))

+
1

T

T∑

t=1

E(Ct(e)) + O

(
ε +

τ log(∆)

εT

)
.

D. Global performance guarantee

Let π be any static path from s to r. Denote the nodes of
π by s = v0, v1, . . . , vH = r, and let πj denote the subpath
of π joining s to vj . Using induction on j, Lemma 6.6
implies the following regret bound for each j:

1

T

T∑

t=1

E(Ct(πt(vj))) (2)

≤
1

T

T∑

t=1

∑

e∈πj

E(Ct(e)) + O

(
εj +

τ log(∆)j

εT

)
.

Applying (2) for j = H , and adding in the expected cost
of the sampling steps, which is bounded above by δT , we
obtain

E(BCOST (algorithm)) ≤ E(ACOST (π))

+ O

(
εH +

τ log(∆)H

εT
+ δ

)
.

Recall that τ is constrained to be at least m log(mT)/δ.
We optimize the right side by setting

ε =

(
m log(mT) log(∆)

HT

)1/3

δ = εH

τ = m log(mT)/δ

which leads to the bound asserted in Theorem 6.1.

VII. IMPLEMENTATION RESULTS

In order to substantiate the claims made in this work,
simulations were conducted to investigate the convergence
time of the algorithm. The simulations were conducted
by developing a simple program which would simulate
the decision-making process of the algorithm and examine
its performance against adversarial inputs. The simulation
consisted of a source selecting a path to the destination at
each time step. An adversarial model would then select
which nodes at the current time step were faulty. The
packet would traverse the graph and receive positive feed-
back from the destination if there were no faulty nodes
on the path, or from the last non-faulty node before the
packet was dropped. Using this feedback the algorithm
would adjust its probabilities and compute a new path for
the next packet.

Source Destination

0.05

0.10 0.04

0.03

1 3

5

42

0

Fig. 6. Simple Simulation Topology

A. Simple Configuration

The first set of simulations consisted of 10,000 packets
which were sent from the source to the destination. The
nodes were arranged as indicated in figure 6. The inter-
mediary nodes are labelled 0 through 5 and their fault
rates are indicated. At every time step each node was
probabilistically selected to fail based on the node’s fault
rate. On this particular simple configuration the optimal
path would be from the source to node 1, from node 1 to
node 3, and then from node 3 to node 5. The results of

Beta = 0.5 Sample Rate = 0.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001

Packets Sent

P
e

rc
e

n
t

o
n

 L
in

k 0 to 1

0 to 2

1 to 3

1 to 4

2 to 3

2 to 4

3 to 5

4 to 5

Fig. 7. Simple Configuration Results

Beta = 0.1 Sample Rate = 0.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001

Packets Sent

P
e

rc
e

n
t

o
n

 L
in

k 0 to 1

0 to 2

1 to 3

1 to 4

2 to 3

2 to 4

3 to 5

4 to 5

Fig. 8. Simple Configuration Results

the simulation are the source’s estimated link preference
metrics at every time step. The experiment was run for
different values of β, which is the base of the exponent
described in the algorithm specification. As the value of β
decreases, the algorithm responds faster to changes and is
able to converge faster. However, as the algorithm responds
faster it begins to resemble the greedy algorithm which has
vulnerabilities. In order to explore the effects of β on the
convergence time of the algorithm, multiple experiments
were run with the same adversarial input. The results are
indicated in Figures 7,8, and 9. These figures show the
probability of the source selecting a specific edge at every
time step.

With β=0.5 the results show that the source is slowly
realizing which path is correct and is sending a majority
of its traffic over the correct sequence of nodes. Notice that
once the algorithm converged it was sending approximately
90% of its traffic across the first hop to node 1 which was
experiencing a 5% loss rate and only 10% of its traffic
to node 2 which had a 10% loss rate. While this seems
reasonable, notice the convergence when β=0.1 or, better
yet, 0.05. With these values the source is able to completely
differentiate between nodes and converge quickly on the
best path. Since the algorithm is continuously exploring

Beta = 0.05 Sample Rate = 0.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001

Packets Sent

P
e
rc

e
n

t
o

n
 L

in
k 0 to 1

0 to 2

1 to 3

1 to 4

2 to 3

2 to 4

3 to 5

4 to 5

Fig. 9. Simple Configuration Results

Beta = 0.05 Sample Rate = 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001

Packets Sent

P
e
rc

e
n

t
o

n
 L

in
k 0 to 1

0 to 2

1 to 3

1 to 4

2 to 3

2 to 4

3 to 5

4 to 5

Fig. 10. Simple Configuration Results

sub-optimal paths with a small fraction of its traffic, this
low value of β allows it to react quickly as the adversary
changes its fault pattern. While the optimal algorithm
might know the fault pattern ahead of time, the algorithm
we present is able to follow it very closely. If the speed
at which the adversary moves is slightly slower then our
decision making process, then our algorithm would in fact
follow the optimal at every step.

In order to investigate the effects of the sampling per-
centage on the convergence time an additional experiment
was done using the same simple configuration described
above, but with the sampling rate decreased from 10%
to 1%. The results of this experiment are indicated in
Figure 10. It appears that the lower sampling rate inhibits
the algorithm’s ability to converge as rapidly as the 10%
sampling rate indicated in Figure 9.

0

4

5

7

8

9

10

11 14

16

17

19

20

21

22

23

24

25

1

2

3 6 15

13

DestinationSource

12 18

Fig. 11. Large Simulation Topology

Beta=0.05 Sample Rate=0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

Packets Sent

P
e
rc

e
n

t
o

n
 L

in
k

Fig. 12. Large Simulation Results

Beta=0.05 Sample Rate=0.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

Packets Sent

P
e

rc
e

n
t

o
n

 L
in

k

Fig. 13. Large Simulation Results

B. Large Configuration

The previous example provided a demonstration of the
effects of various parameters on the performance of our
algorithm. While the previous example showed the conver-
gence of the algorithm, it is somewhat less interesting since
the example consisted of a small set of both nodes and
links. In this second example we consider a network with
25 nodes forming a graph of 10 layers, with 3 nodes in each
layer (except at the source and destination). The topology
of the network is indicated in Figure 11. In this example
there is exists an optimal path from the source to the
destination which experiences no loss. This optimal path
is indicated in Figure 11 by the bold line. All other links
in the network exhibit 10% loss, meaning that when we
sample them, they successfully forward the packet 90% of
the time. As a result, this should make it more difficult for
our algorithm to discover the optimal path since the non-
optimal paths in the network only experience marginal loss.
This simulation consisted of a source attempting to deliver
10,000 packets to the destination. The graphs in Figures 12
and 13 show the results when we are performing random
sampling with 1% and 10% of our packets respectively. In
this experiment the value of β was set to 0.05.

The results indicate that the algorithm is able to suc-

cessfully converge on the optimal path after approximately
1000 packets are sent. Once the algorithm learned the best
path it was able to send approximately 99% of its traffic
successfully to the destination. The graph visually indicates
this by showing the source’s link preferences at every time
step. When the simulation begins the source considers all
of the links in the network to be equal and then learns their
reliability by sending traffic across the links and receiving
feedback. As the number of packets (or trials) increases, the
source’s knowledge of the network continuously becomes
more accurate. This is evident as the reliable paths become
separated from the less reliable paths and are selected with
nearly 100% probability. Since the source is continuously
sampling the less desirable edges it is able to respond
quickly to changes in the adversarial fault pattern.

CONCLUSION

Through mathematical analysis and simulation results
we have presented an online adaptive routing algorithm
and have shown the algorithm’s competitive performance
under a strong adversarial model consisting of dynamic
proactive adversarial attacks, where the network may be
completely controlled by adaptive adversaries.

The results of this work affirm the validity of our
approach and motivate the need for future work in this
direction. We intend on implementing this protocol in a
more realistic simulation environment and exploring the
effects of both mobility and more sophisticated active
adversarial attacks on the algorithm.

REFERENCES

[1] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and
Robert Morris. Resilient overlay networks. In Proceedings 18th
ACM SOSP, Banff, Canada, 10 October 2001.

[2] Baruch Awerbuch, Dave Holmer, Cristina Nita-Rotaru, and Herb
Rubens. An on-demand secure routing protocol resilent to byzantine
failures. In Wireless Security Workshop Proceedings, September
2002.

[3] Baruch Awerbuch and Yishay Mansour. Online learning of reliable
network paths. In PODC, 2003.

[4] John S. Baras and Harsh Mehta. Dynamic adaptive routing in
manets. In Proc. Annual ARL CTA Symposium, 2003.

[5] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz, and
G. Theraulaz. Routing in telecommunications networks with
“smart” ant-like agents. In Intelligent Agents for Telecommunica-
tions Applications ’98 (IATA’98), 1998.

[6] G. Di Caro and M. Dorigo. AntNet: a mobile agents approach to
adaptive routing. Technical Report IRIDIA/97-12, Université Libre
de Bruxelles, Belgium, 1997.

[7] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmer-
getic control for communications networks. Journal of Artificial
Intelligence Research, 9:317–365, 1998.

[8] Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David
Haussler, Robert E. Schapire, and Manfred K. Warmuth. How to use
expert advice. In Proc. 25th ACM Symp. on Theory of Computing,
pages 382–391, 1993. To appear, Journal of the Association for
Computing Machinery.

[9] P. Druschel D. Subramaniam and J. Chen. Ants and reinforcement
learning : A case study in routing in dynamic networks. In
Proceedings of IEEE MILCOM, Atlantic City, NJ, 1997.

[10] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant
System: Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics Part B: Cybernetics,
26(1):29–41, 1996.

[11] Adam Kalai and Santosh Vempala. Efficient algorithms for the
online decision problem. In Proc. of 16th Conf. on Computational
Learning Theory, Wash. DC, 2003.

[12] Nick Littlestone and Manfred K. Warmuth. The weighted majority
algorithm. Information and Computation, 108:212–261, 1994. A
preliminary version appeared in FOCS 1989.

[13] M. Littman and J. Boyan. A distributed reinforcement learning
scheme for network routing. In Proceedings of the International
Workshop on Applications of Neural Networks to Telecommunica-
tions. Alspector, J., Goodman, R. and Brown, T. X. (Ed.), pages
45–51, 1993.

[14] U. Sorges M. Gunes and I. Bouazizi. The ant colony based routing
algorithm for manets. In Proc. of the 2002 ICPP Workshop on
Ad Hoc Networks (IWAHN 2002), pages 79–85. IEEE Computer
Society Press, 2002.

[15] U. Sorges M. Gunes and I. Bouazizi. “ara -” the ant colony based
routing algorithm for manets. In Proc. 2002 ICPP Workshop on
Ad Hoc Networks (IWAHN 2002), pages 79–85. IEEE Computer
Society Press Stephan Olariu edt., 2002.

[16] C. K. Tham S. Marwaha and D. Srinivasan. Mobile agents based
routing protocol for mobile ad hoc networks. In in Proceedings of
IEEE Globecom,, 2002.

[17] R. Schoonderwoerd, O. E. Holland, and J. L. Bruten. Ant-like
agents for load balancing in telecommunications networks. In Proc.
1st ACM Intl. Conference on Autonomous Agents, Marina del Rey,
California, pages 209–216, 1997.

[18] Ruud Schoonderwoerd, Owen E. Holland, Janet L. Bruten, and Leon
J. M. Rothkrantz. Ant-based load balancing in telecommunications
networks. Adaptive Behavior, 5(2):169–207, 1996.

[19] Sleator and Tarjan. Amortized efficiency of list update and paging
rules. Comm. ACM, 28(2):202–208, 1985.

[20] Devika Subramanian, Peter Druschel, and Johnny Chen. Ants
and reinforcement learning: A case study in routing in dynamic
networks. In IJCAI (2), pages 832–839, 1997.

[21] Eiji Takimoto and Manfred K. Warmuth. Path kernels and multi-
plicative updates. In COLT Proceedings, 2002.

