
A Theory of Clock Synchronization

Abstract

EXTENDED ABSTRACT

Boaz Patt-Shamir* Sergio Raj sbaumt

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

We consider the problem of clock synchronization

with uncertain message delays and bounded clock

drifts. To analyze this classical problem we introduce

a characterization theorem for the tightest achievable

estimate of the readings of a remote clock in any given

execution of the system. Using this theorem, we ob-

tain the first optimal on-line distributed algorithms

for clock synchronization. The algorithms are opti-

mal for all executions, rather than only worst cases.

The general algorithm for systems with drifting clocks

has high space overhead, which is unavoidable, as we

show. For systems with drifi-free clocks (i. e., clocks

that run at the rate of real time), we present a remark-

ably simple and eficient algorithm. The discussion

focuses on the variant where one of the clocks shows

real time, but we present results also for the case

where real time is not available from within the sys-

tem. Our approach encompasses various models, such

as point-to-point or broadcast channels, perfect or

faulty communication links, and it has fault-detection

capabilities.

*Supported by Air Force Contract AFOSR F49620-92-J-
0125, ONR contract Nooo14-91-J-1o46, NSF contracts CCR-
9114440 and 9225124, DARPA contracts NOO014-92-J-1799
and NOO014-92-J-4033, and a special grrmt from IBM. Email:
boaz@theory. lcs .udt. edu.

tm~ail: ra-jsbaun@theory. 1.s .mit. edu. On Ieave from

Institute of Mathematics, U. N.A.M. Partly supported by
DGAPA Projects.

Permission to co y without fee all or part of this material is
%?granted prowd that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
titie of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

STOC 94- 5/94 Montreal, Quebec, Canada
0 1994 ACM 0-89791 -663-8/94/0005..$3.50

1 Introduction

Clock synchronization is one of the most basic prob-

lems in distributed computing. Roughly speaking,

the goal is to ensure that physically dispersed proces-

sors will acquire a common notion of time, using local

physical clocks (whose rates may vary), and message

exchange over a communication network (with uncer-

t ain transmission delays). In this work, we consider

the following simple formulation of the problem: Ob-

tain, at all times, the smallest interval [a, b] such that

the current reading of a designated clock is in [a, b].1

Generally speaking, the task of clock synchroniza-

tion has two main variants. In the external synchro-

nization problem, we are given a source clock that

shows real time, and the goal of all processors is to

estimate that time as tightly w possible. The ex-

ternal clock synchronization task is especially useful

in loosely coupled networks: for inst ante, the NTP

protocol is used for external synchronization of the

INTERNET [11]. In the internal synchronization prob-

lem, real time is not available from within the system,

and the goal is to minimize the maximum difference

between the readings of clocks, subject to some live-

ness condition.

The basic difficulty is that synchronization tends

to deteriorate over time and space. When the lo-

cal clocks are not drift-free (i.e., they do not run at

the rate of real time), the synchronization loosens

unless timing information is refreshed periodically.

And when communicating information to distant pro-

cewors across non-determini~tic links, there is some

inherent added timing uncertainty, due to unpre-

dictable message delays. However, usually there exist

some a priori bounds on these uncertainties that can

be used for synchronization.

In addition to message delays and clock rates,

many other parameters of the system can be consid-

1In this paper, numbers range over R u { –co, oo} unless

explicitly indicated otherwise.

810

ered: inaccurate source of real-time, point-to-point

or broadcast channels, link reliability y (are links lossy;

order-preserving; duplicating), and processor reliabil-

ityy (may processors crash; exhibit Byzantine behav-

ior). The large number of models is justified by the

wide spectrum of applications.

Considerable work has been dedicated to clock syn-

chronization (see surveys [14, 13] and more recent

works, e.g. [1, 5, 2, 12] and references therein). Some

algorithms were proposed for systems where proces-

sors and links are reliable, but both delays and clock

drifts are uncertain (e.g. [7, 10]). Although the algo-

rithms are simple to state, their analyses tend to be

complicated. Moreover, even for this case, no non-

trivial lower bounds were known.

The case of systems whose clocks are drift-free is

better understood [8, 6, 2]. In [8, 6], the worst possi-

ble behaviors of the system (within its specifications)

are analyzed, and optimal protocols for the worst case

are proposed. The protocols send one message per

link, because in the worst case no additional informa-

tion is gained by sending more messages. Recently,

Attiya et al. [2] proposed not viewing the system as

an adversary; the problem they consider is how to

get the tightest synchronization for any given execu-

tion (which often is much better than the worst pos-

sible). They analyze this setting using the viewpoint

of an external observer, that haa instantaneous access

to all the information in the system. This approach

leads to tight synchronization bounds per execution,

but leaves unanswered the question of tight on-line

bounds. In other words, no bounds were known for

the achievable synchronization in terms of locally ob-

servable behavior and system specifications.

In this work, we take the execution-based approach

further. We present a characterization of the best

achievable on-line synchronization between any two

events in a given execution. This characterization

enables us to derive a series of results as follows. We

start with the first matching upper and lower bounds

for on-line external synchronization. These bounds

hold in the general case, where clocks are allowed to

drift. The algorithm used to prove the upper bound

has unbounded space overhead. However, we prove

that in a suitably defined variant of the comparison

branching program model [3], the space complexity

of any optimal algorithm for drifting clocks cannot

be bounded by a function of the network size. The

situation for systems with drift-free clocks is much

better: for this case, we give an extremely simple and

efficient protocol for external synchronization. For
the internal synchronization problem, our algorithms

(using a trivial reduction) give tightness which is at

most twice the optimal. Additionally, we derive a

lower bound for internal synchronization that gener-

alizes the known bound [6, 2] to the case of drift-

ing clocks. Finally, we discuss a few extensions of

the basic model, including a way to incorporate ad-

ditional a priori knowledge about the message traffic

pattern; a simple way to detect faults; and how to

deal with inaccurate source clocks. We remark that

our results apply to most of the system variants men-

tioned above, excluding the models that allow cor-

ruption of message contents or Byzantine failures of

the processors.

The theory we introduce in this paper relies on a

novel concept which we call a synchronization graph.

The synchronization graph of a given execution is

a weighted directed graph, where each point cor-

responds to a single event, and the weights of the

arcs express somehow uncertainty bounds between

their incident points. Intuitively, the synchroniza-

tion graph represents the topology of timing uncer-

taint y in the given execution, and the basic idea is to

reduce computations of uncertainty intervals to dis-

tance computations in the synchronization graph. We

suspect that synchronization graphs will prove useful

in the analysis of other timing-based prckocols.

The rest of this paper is organized as follows. In

Section 2 we informally describe the system model. In

Section 3 we derive our main characterization result.

In Section 4 we analyze the external synchronization

problem. In Section 5 we give a general lower bound

for internal synchronization. We conclude in Section

6 with a few extensions of the basic thecmy.

Due to lack of space, most proofs are omitted.

2 Overview of the Model

In this section we give a high-level description of the

system structure for the clock synchronization prob-

lem. The underlying formal model is based on the

timed 1/0 Automata model of Lynch ancl Vaandrager

[9]. The system is modeled as a collection of inter-

acting state machinea with input and output actions.

The model associates real time, denoted realtime,

with every state and event. Real time is not directly

observable by the processors. The first step of each

processor occurs at arbitrary real time, so that the

real time of the start of the execution cannot be used

for synchronization.

Intuitively, the clock synchronization lproblem is to

provide the user at a processor with a logical clock,

such that the local state of the processor encodes in-
formation of the type “the logical time at state s is

T + s.” Below, we outline our model for this prob-

lem, whose motivation is to facilitate comparison be-

811

I l—

@iii’)’”””””””””p
@G5i9=Linksf0Neighb0

Figure 1: The modules and interfaces at one processor

of a clock synchronization system.

tween different algorithms for clock synchronization

(see also [2]). The ultimate goal is that algorithms
would perform optimally in each execution; the ba-

sic difficulty is that different algorithms may never

share the same execution. For inst ante, some trivial

algorithm that does not send any message could be

considered optimal, in some degenerate sense. Our

aim is to compare algorithms on “equal grounds” in-

sofar as the available information is concerned. The

idea in the following model is to take the message

traffic patterns (including generating messages) out

of the control of the synchronization algorithm, and

thus limit the problem of synchronization to make the

best use of these patterns.

More specifically, the system consists of a commu-

nication network, where each processor consists of the

three distinct modules as follows (see Figure 1).

The local clock module represents the hardware

clock at the processor. It encodes, at all states s of

processor v, a real number called local time, denoted

loc.iimev (s).2 We are mainly interested in bounded-

drift and drift-free clocks. A drift-free clock is as-

sumed to run at the rate of real time, but does not

necessarily shows real time. A bounded-drift clock is

assumed to have known lower and upper bounds on
the rate of its progress relative to real time, denoted

Q and FV, respectively. We shall assume w.1.o.g. that
~“< 1< F. (e.g., for a drift-free clock, ~ = F = 1).

Our model does not allow adjustment of local clocks,

but only of the logical clocks. This assumption is

made for notational convenience only.

The network module connects processors to their

2 In this work we often omit subscripts when they are clear
from the context.

Figure 2: The conceptual arrangement of CSA mod-

ules at a clock synchronization system.

neighbors. The network may lose, duplicate, and de-

liver messages arbitrarily out of order.3 For simplic-

ity, we assume that all sent messages are unique.

We assume, however, that any message received

was indeed sent. We assume that the real time delay

of each message m is within some known bounds, O <

L(m) < H(m) < cm. These bounds may vary from

link to link and from message to message. For the

optimalit y results, we shall assume that the bounds

are tight, in the sense that all delays in [L(m), H(m)]

are possible for a message m.

The send module at a processor determines when to

send the messages and to which neighbors. The send

module isolates the message generation part, so that

the synchronization achieved can be evaluated with

respect to a given message pattern. For the most

part of this paper, we assume that the send module
is completely unstructured, that is, a message may

be generated at any time.

The Clock Synchronization Algorithm (CSA) uses

the readings of the local clock, the messages received,

and the specification of the system to compute a cor-

rection term A and an error margin, E. The logi-

cal time is (T,:), where T = loc.time + A. (The

semantics of the logical time depends on the spe-

cific variant of the problem; see Sections 4 and 5.)

We stress that CSAS do not initiate the sending of

any message. Informally, think of the CSA ss a fil-

ter that “sticks” a few extra bytes to each outgoing

message, and “strips” the corresponding bytes of in-

coming messages, without changing the timing of the

messages. In other words, a CSA may use the ex-

isting message pattern to obtain timing information

and exchange data with remote CSA modules, but it

may not “meddle” with the ongoing traffic otherwise.
Our next step is to view the aggregate of the net-

work, send modules and local clocks of the whole sys-

tem as a single environment automaton (see Figure

2). First, define the real-time specifications of a SyS-

tem to consist of the bounds on clock rates and mes-

sage delays. An environment automaton governs the

local clocks and the message traffic pattern, subject

3 It turus out that assuming lossless channels may have a
significant impact on the analysis. See Section 6.

812

to the given real-time specifications. Given an execu-

tion of the environment, its pattern is the sequence of

all send and receive events, with their loc.time and

real-time mappings. Given a pattern, its v~ew is ob-

tained by omitting the real time mapping (but retain-

ing local times). An event of a pattern or a view is

called a point.

Using the above concepts, we summarize the fun-

damental assumption of our model as follows.

Lemma 2.1 If all message delays and all local clocks

in a pattern a respect the real-time specification of an

environment A, then a is a pattern of A.

For on-line analysis we define the following notion.

The local view of a pattern a at a point p is the view

containing the set of all points of a that can influence

p.4 The output of a CSA (like any other distributed

algorithm) is required to be a function of the local

view of the pattern at the point of output.

We shall say that a CSA is optimal for a given envi-

ronment automaton A if, at any point of any pattern

of A, the logical time satisfies the correctness require-

ment (of the specific problem), and the error margin

is the smallest of all correct CSA algorithms for A at

that point.

To capture the efficiency of an algorithm, we use

the notion of communication overhead to denote the

maximal amount of extra information added by a

CSA to the ongoing message traffic. We shall con-

sider also the space overhead of the CSA, defined in

Section 4.2.

Remark. As mentioned above, we distinguish be-

tween the send module and the CSA module for the

purpose of comparing different algorithms. This ap-

proach can be used in other cases to compare the

quality of different protocols on “equal grounds.” We

also believe that this kind of “hitch-hiking” philos-

ophy may be of practical interest for tssks where

there is always something to be done (e.g., topology-

maintenance protocols). The assumption that data

can be appended and extracted from a message with-

out affecting its timing serves as a convenient abstrac-

tion of reality, that can be justified if the computation

and communication overhead involved are negligible.

It is interesting to note that in many networks, the

message delivery system is already appending “head-

ers” to messages to facilitate delivery.

3 The Basic Theorem

In this section we analyze the model outlined in Sec-

tion 2. Throughout this section we shall consider an

arbitrary view @ of a fixed environment, and study

the patterns with view ~ that satisfy some given real

time specifications. The main result of this section is

Theorem 3.6, that characterizes the tightest achiev-

able synchronization in terms of the given view and

real-time specifications.

We start with some notations. Let p i~nd q be arbi-

trary points of pattern a with the given view /l. We

define the actual and virtual delay of p relative to q

aa follows.

4Formally (cf. [7]), we say that a point g can infiuence an-

other paint gl if either q occurs before g! at the same proceesor,

or if q is a send point and q’ is a receive point of the corre-

sponding message, or if there is a point g” such that q can

iniiuence q~~and q~r can influence q~.

act-deia(p, q) = reai-times(p) – real-tirnea(q)

virt-dei(p, q) = ioc-time(p) – Ioc-time(q)

Notice that given a view, only virtual delays are de-

fined.

Next, we model the view ~ as a view graph rp =

(V, E). To do that, we call a pair of pc,ints adjacent,

if either one is a send event and the other is the re-

ceive event of the corresponding message, or if the two

points represent two consecutive events at the same

processor. Now, V is defined to be the set point of

/3, and in E there are two antisymmetrical directed

arcs joining each pair of adjacent points of /3. We

use the terms “points” and “arcs” for view graphs to

avoid confusion with “processors” and “links” of the

communication network.

Our next step is to model the real time specifica-

tions of the environment automaton. These specifica-

tions are essentially bounds on the difference between

the real time of occurrence of two adjacent points of a

view. We represent them formally with the following

type of functions.

Definition 3.1 (Bounds Mapping)

A bounds mapping for ~ is a function B that maps

every pair p, q of adjacent points in jr to a number

B(p, q) > –co. A pattern a with view @ is said to

satisfy B if act_de/a(p, q) < B(p, q) for every pair of
adjacent points p, q.

Notice that Definition 3.1 implies that if a satisfies B

then for any two adj scent points p, Q we have

act.del(p, q) E [–B(q, p), B(p, q)] .

This implies that for a to satisfy B, it is necessary

that B(p, q) + B(q, p) 20.

We remark that bounds mappings model timing W-

sumptions in a general way: drift bounds of a clock

may change over time, and delivery time bounds may

813

vary from message to message (even on the same

link). Moreover, bounds mappings model all timing

assumptions uniformly, in the sense that there is no

substantial difference between the bounds on commu-

nication delays and the bounds on drifting clocks.

We say that a bounds mapping is standard for an

environment A if it is derived from the real-time spec-

ification of A. Formally, given a view /3 of A, the

standard bounds mapping BA is defined as follows.

For a message m with send point p, receive point

q, and delay in the range [L(m), H(m)], we have

BA(q, p) = H(m) and BA(p, q) = –L(m). For any

two adjacent points p and q at a processor whose lo-

cal clock has drift bounds ~ < Z, and assuming that p

occurs before q, we have BA(q, P) = (~i~-dei(9>P))/~

and BA (p, q) = (virt.del(p, q))/~. Note that stan-

dard bounds mappings have the important property

of being stated in terms of quantities available to the

processors: L(m), H(m), F, Q and virtual delays.

Our next step is to defin~ the concept of relative

offset, that ties together actual and virtual delays.

Relative offsets are the central quantities of interest

in our analysis.

Definition 3.2 (Offset) Given a pattern a, the

absolute offset oj a point p in a is 6~(p) =

real-times (p) — lot-time(p); for any two points p, q in

a the offset ofp relative to q is 6a(p, q) = 6a(p) –6a(q).

We state two immediate properties of the relative

offsets.

Lemma 3.1 For any two points p, q of a given pat-

tern, fi(p, q) = –c$(q, p).

Lemma 3.2 For any three points p, q, r of a given

pattern, c$(p, q) = d(p, r) + 6(r, q).

We are now ready to define our main tool in ana-

lyzing the view of a given pattern.

Definition 3.3 (Synchronization Graph)

The synchronization graph 17DB == (V, E, w) of a view

~ and a bounds mapping B is defined by the graph

f’fl = (V, E) with a weight function w, where for each

(P, q) ~ E, W(P, q) = B(p, q) - virt-del(p, q).

We stress that in the definition above, the bounds

mapping is not necessarily standard. The following

lemma states the basic property of the arc weights.

Lemma 3.3 If (Y satisfies B then for every pair

(P, q) s E, ~4P, q) S W(P, q), where ~ ~S ihe weight
function in rp~.

Our strategy is to reduce the problem of computing

bounds on the readings of remote clocks to distance

computations in r@. Define the synchronization dis-

tance d(p, q) from p to q to be the length of the short-

est directed path in rpEi from p to q. We claim that

synchronization distances are well defined in “true”

synchronization graphs.

Lemma 3.4 If a satisfies B and has view ~, then

the sum of weights of any directed cycle in rpB is

non-negative.

The following key lemma characterizes the set of

patterns that have a given view and satisfy a given

bounds mapping, in terms of synchronization dis-

t antes.

Lemma 3.5 Let a be a pattern with view ~, and let

B be a bounds mapping for /3. Then cr satisjies B if

and only if for any two points p, q in r~B we have

UP} q) s 4P) ~).

We now arrive at the main result of this section.

Loosely speaking, the following theorem says that

the synchronization distance bounds of the previous

lemma can indeed be met by the offsets of some pat-

tern with identical synchronization graph.

Theorem 3.6 Let rpB = (V, E, w) be a synchro-

nization graph obtained from some pattern with view

,6 satisfying bounds mapping B. Then for any given

point p. c V there exist patterns CYo and CYl with view

/3, such that both a. and crl satisfy B, and such that

the following hold.5

1. In CYO, for all q E V, c$ao(q,po) = d(q, po).

2 In CY1, for all q E V, ~~l(q, po) = –d(po, q).

Proofi To prove the theorem, we first take care of

infinite distances by constructing a related graph in

which all distances are finite. Then we define the

patterns a. and al, and show that they satisfy the

required properties.

We start by noting that the distances in r@ are

well defined, by Lemma 3.4. Now, let N > 0 be an

arbitrary number; choose ikf that is sufficiently large

so as to satisfy

M > N + ~to(p,q) – ~@&
(P,9)EE (p>g)@

O<w(p,q)<m -m<w(p, q)<o

Using M, we augment I’6B with extra arcs as follows.

For each pair of points p, q such that d(p, q) = co, we

5The interpretation of C5ao(q, PO) = co is that for anY given
N, there exists a~ such that 6a~ (q, PO) > N; similarly where

&q(9,Po) = –m.

814

add an artificial arc (p, q) with weight M. Call the re-

sulting augmented graph 17*, and denote its distance

function by d“. In the following claim we show that

r“ haa the intended finite distances for the given N.

Claim A. For all p, q c V, if d(p, q) < m, then

d“(p, q) = d(p, q), and if d(p, q) = CO, then N <

d“(p, q) < co.

Proof of Claim A: We start (for future reference) with

an inequality that follows directly from the choice of

M. Let X and Y denote arbitrary subsets of the arcs

of rpB with finite weights. Then

M + ~ zv(p, q) > max

(P,q)Ex {N:p2:(pq)} “)

Next, we argue that the augmented graph r* has

no negative weight cycles. Suppose, for cent radiction,

that there exists some negative weight cycle in I’*.

Then one of arcs of the cycle, say (p, q), must be an

artificial arc, and there must be a simple directed

path Z in I’* from q to p with total weight Wz such

that M + Wz < 0. Let Wz be the sum of negative

weight arcs of Z. Clearly, Uz < Wz. Also, by Eq.

(l), we have that the sum of M and the weights of any

subset of arcs of r@ is at least N. Since all artificial

arcs have positive weight, we know that Ez is the

sum of weights of arcs from r@E. Therefore we have

that M + Wz ~ M + toz > N >0, a contradiction.

To show that the finite distances in rpE remain

invariant in I’*, we first note that since rpB is a sub-

graph of r“, it must be the case for all p, q c V that

d“ (p, q) ~ d(p, q). Suppose for contradiction that for

some p, q E V we have d“(p, q) < d(p, q). Since, as

we showed above, I’” has no negative-weight cycles,

we may assume that there exists a simple path in r“

with length d“ (p, q). Clearly, one of its arcs is artifi-

cial. However, by Eq. (l), this means that the total

weight of that path is larger than the total weight of

any finite-weight simple path in rpB, a contradiction.

Finally, let p, q E V be such that d(p, q) = co.

Clearly d* (p, q) < co by virtue of the artificial arc

(P, q). TO see that d“(p, q) > N, consider any simple
path from p to q. As before, this path contains at

least one artificial arc, and therefore its total weight

is at least M plus all negative weights of r. Using

Eq. (1), we get that the total weight of the path is

greater than N. 1

We now define the patterns CYoand al explicitly.

Since their view is given, the events and their local
times are already fixed; we complete the construction

by specifying the real time mappings of the patterns.

Let q c V. We set

rea/.timeaO(q) = Ioc.time(q) + d“(q, PO)

real-timee, (q) = /oc-time(q) – d“(po, q)

By the construction, for all q E V we have

~ao(q) = real.timeao(q) – ioc-time(q)

= (d”(q,po) + ioc-iime(q)) - loc-iime(q)

= d“(q, po) . (2)

Since d“(po, po) = O, we conclude that 600 (q, po) =

d“(q, po). Similarly, we obtain that 6~1 (p., q) =

–d* (p., q). Therefore, by Claim A, a. amd al satisfy

conditions (1) and (2) of the theorem. The following

claim completes the proof.

Claim B. The patterns a. and al defined above sat-

isfy the bounds mapping B.

Proof of Claim B: By Lemma 3.5, it is sufficient to

prove that for all p, q 6 V, 600(P, q) 5: d(p, q). SO

let p and q be arbitrary points in the synchronization

graph. In what follows, we consider I’*, in which all

points are connected by finite-length pi~ths with p..

Since d* (p, q) < d(p, q), itis sufficient to prove that

&l(Pl q) s d*(P) q).
Let R be any shortest path from p tcl q. Consider

the path obtained by following the arcs of R from

p to q, and then the arcs of a shortest path from

q to p.. This path leads from p to p., and hence
d*(p, q) +d”(q, po) ~ d“(p, PO). It follows from Eq. (2)

and the definition of relative offsets that

d“(p, q) ~ d*(p, po) – d“(q, PO)

= & (P) – ~cw(!l)

= ‘&l (P> q) ~

I.e., for all p, q E V, C$a O(p,q) ~ d“(p, q), and there-

fore, by Lemma 3.5, we conclude that acl satisfies the

given bounds mapping B, as desired.

The proof for al is analogous, We consider a short-

est path R connecting two arbitrary points p and q.

To show that its weight d“(p, q) is at least fi(p, q),

we look at the path consisting of a shortest path P

from p. to p, followed by R. As before, ‘we have that

d* (p., p) + d(p, q) z d* (p., q), and hence we get

d*(p, q) ~ d“(po, q) – d“(po, p)

= –& (q)+ &(P)

= ‘&(P,q) .

Therefore, C5a,(p, q) ~ d“(p, q) for all points p, q E V,

and applying Lemma 3.5 shows that al satisfies B,

as desired. I

This completes the proof of Theorem 3.6. #

Theorem 3.6 essentially says that if the only knowl-

edge we have is a view and a bounds miappingj then

815

the tightest bounds one can hope to get on the ofl-

set between two points are exactly the synchroniza-

tion distances between these points, in the sense that

the extreme values of that range are indeed attained

by indistinguishable executions of the system. Note

that by Lemma 3.5, breaking the distance bounds is

possible only by patterns that do not satisfy B.

Theorem 3.6, when combined with Lemma 2.1, can

be immediately used to derive lower bounds on the

various synchronization problems. But also, it sug-

gests a way to compute the bounds, which can be

translated into optimal synchronization algorithms.

4 External Synchronization

In this section we apply the theory of Section 3 to

the problem of external clock synchronization. After

defining the problem, we proceed in Section 4.1 to

give matching lower and upper bounds for the general

case, where clocks are allowed to drift within known

bounds. Then we show in Section 4.2 that the (ap-

propriately defined) space overhead of any optimal

general protocol cannot be bounded. On the other

hand, we give in Section 4.3a very simple and efficient

algorithm for the case where all clocks are drift-free.

The external clock synchronization model is aa fol-

lows. There exists a distinguished processor s, called

the source, whose local clock shows exactly the real

time, i.e., for any state x we have loc.times (x) =

realtime (z). The correctness requirement of a CSA

at any processor is that the logical time (T, .s) at ev-

ery state z satisfies reai.time(z) E [T–e, 7’+5]. We

call these CSAS ezternai. We recall that a CSA is

optimal for a given environment automaton A, if its

error margin at any point of any pattern of A is the

smallest of all CSAS at that point.

As a preliminary step, we state a general property

of drift-free clocks (such as the source clock).

Lemma 4.1 Suppose that the clock of processor v is

drift-free. Then in all synchronization graphs defined

using the standard bounds mapping, the distance be-

tween any two points that occur in v is O.

The meaning of Lemma 4.1 is that all points asso-

ciated with a processor with perfect-rate local clock

may be “collapsed” into a single “super-point” for

synchronization dist ante purposes. Since the source

clock s is drift-free by definition, we are justified in
calling the aggregate of points associated with the

source the source point, denoted p~. For the source

point, we have the following property.

Lemma 4.2 Given a pattern of

nization system, for any point q

A(q, p.).

4.1 The General Case

external synchro-

we have c5(q) =

We are now ready to state bounds on the tightness

of external synchronization. Let Q be an arbitrary

pattern of the environment, and consider any point q

of a. Let r be the synchronization graph defined by

the standard bounds mapping, and the view of a at q.

The following theorem can be proved using Theorem

3.6 and Lemma 2.1.

Theorem 4.3 For any external CSA, at any point

q, ~ 2 ;(@s, q) + ~(q>fk)).

The lower bound of Theorem 4.3 can be matched by

an on-line algorithm that simply maintains, at each

point q, the complete synchronization graph of the

view at q. This idea leads to the following theorem.

Theorem 4.4 There exists an external CSA such

that at every point q, e = ~(d(Ps, q) + d(q, P,)).

4.2 Space Lower Bound

The first problem in formalizing a space lower bound

is that our model allows real numbers, because a real

number can be used to encode unbounded amount

of information. Our strategy to get around this dif-

ficulty is to use a generalization of the comparison

branching program model [3], thus obtaining a bound

on the number of “control bits” required to run the

program. Very briefly, in our model a program is

specified by a set of input variables, and a directed

acyclic labeled graph with a single source (that cor-

responds to the initial state), a single sink (corre-

sponding to the halting state), where all nodes have

a bounded number of outgoing edges. The nodes rep-

resent control configurations of the program (exclud-

ing the input), labeled by some expressions of the

input variables. An execution proceeds by evaluating
these expressions, and selecting the next configura-

tion according to their outcome (e.g., in [3], nodes

specify pairs of input variables, and edges are labeled

by “<”, “=”, or “>”). The space requirement of a

branching program is the logarithm (to base 2) of the

number of nodes in its graph: this is the least num-

ber of bits necessary to distinguish between different

configurations of the program.
The lower bound argument relies on the bounded

out-degree of nodes, and on a restriction on the way

output is represented. Specifically, define a special

linear combination for a set X = {Z,,..., zk} to

816

be an expression of the form co + ~~=1 c~c~, where

Ci E[–l, l] foralll <i ~kandco ER. A

special linear form for X is the sequence of coeffi-

cients of some special linear combination for X. In

our model, the output of an execution is specified

by special linear forms associated with edges entering

the sink node (i.e., last steps of executions). We ar-

gue that this limitation is reasonable, since optimal

logical time can be expressed this way (synchroniza-

tion distances are special linear combinations of local

times and bounds).

To prove a lower bound, we focus on the way a

processor computes its logical time when a new mes-

sage arrives. Specifically, after a message is received,

the processor executes some program (in our com-

putational\model). We stress that the program is a

function of the current view (i.e., it may have all the

knowledge of the view built into its structure). The

input variables are the values that arrive in the mes-

sage, and the output consists of a value for the current

logical time. We have the following key lemma.

Lemma 4.5 For any integer M > 0 there exist M

patterns al, ~M, and a receive point p at a pro-

cessor v, common to all the patterns, such that the

local view of all patterns at the point preceding p is

identical, and such that the optimal logical time for

each pattern after p must be produced by a distinct

linear form.

The following theorem is a consequence of Lemma

4.5, the model definition and Theorem 4.4.

Theorem 4.6 The space overhead of any opti-

mal protocol for external synchronization cannot be

bounded by a function of the network size.

4.3 The Case of Drift-’Fkee Clocks

We now restrict attention to the case where all clocks
in the system are drift-free. The property that all

points in the synchronization graph associated with

a drift-free clock can be “collapsed” into a single point

(see Lemma 4.1) leads us to a simple algorithm for on-

line distributed computation of synchronization dis-

tances. The overhead of the algorithm is just a few

timestamps. Once having the distances computed,

producing the logical time is a trivial matter.

Before we describe the algorithm, we introduce an-

other piece of notation as follows. Given a synchro-

nization graph with arc set E, define a set QUV, for

each pair u, v of neighboring processors to be the set

of all numbers W(P, q), where p occurs at u, q occurs

at v, and (p, q) c E. We now describe the algorithm.

The state of at processor v consists, for each neigh-

bor u, of estimates ii. (v, u) and ii. (u, v] of min QUV

and min Q“”, respectively. 6 In addition, v maintains

estimates ~V(v,s) and iu (s, v) of its synchronization

distances to and from the source point (i.e., estimates

of d(P~, P~) and d(P*, PO), where PU and I’s denote the
“super-points” associated with v and s, respectively).

The output variables are the correction term Au

(to be added to the local time to produce the logical
time), and the error margin &w.

All local variables take values from signed times-

tamp differences. All ii variables are initially co. For

non-source processors, ~ variables are initially co, A is

initially undefined, and e is initially co. At the source

s, we have the ~ variables initialized to O, A8 = O, and

E8 = O.

We now describe the contents of the messages ap-

pended to on-going traffic by the CSA. Suppose that a

message is sent at point q by a processor u to a proces-

sor v. This message carries five fields as follows, The

first field is a time stamp that specifies Ioc.time(q).

The other fields contain some of the state of u at point

q. More specifically, u sends to v its current estimates

of the minimal weights of arcs between w and v, (i.e.,

the current values of titi (v, u) and ti~ (u, v)), and its

current estimates of its synchronization distances rel-

ative to the source (i.e., &(s, u) and &(u, s)).

We now specify the way messages received alter

the state of the algorithm. Suppose that at point p

processor v receives a message that was sent at point

q, and cent ains

(lot-time(q), iiU(v, u),tiU(u, v),&(s, ~),&(~, s))

For brevity, let t = ioc-tirne(p) – lot-time(q), i.e., i

is the virtual delay of the arriving message. The up-

dates described in Figure 3 are made instantaneously

at point p.

ii. (v, u) + min{ll(p,q) – f, iiw(v,~~) , %(v)~)}

ii.(u, v) + min{ll(q, p) + ti-, 6U(U, v)., ii.(u, v)}

i. (v, s)

[

+ min 6V(V, U) + d~(~,s) , ~u(vJs)

a“(s, v) - min &(s, u) + 6.(u, v) , du(s, v) 1
Au

&7J
+ }(:.(%s) - gv(%v))
+ ~(dv(v, S) + d.(s, V))

Figure 3: Actions taken when the CSA at processor

v receives a message from processor u. The value +

denotes the virtual delay of the message.

The following lemma, proved by induction on the

6 Variables are subscripted by the processor in which they

are located.

817

length of the view, essentially shows that the algo-

rithm is correct.

Lemma 4.7 Let p be a point that occurs at processor

v. Let r = (V, E, w) be the synchronization graph of

the local view at p, and the standard bounds mapping.

Then the following invariant holds at p{ ii(v, u) =

min Q“”, ti(u, v) = min Q””, dr(p,, p) = d(s, v), and

dr(P, Pa) =a(v, s).

Using Lemma 4.7, Theorem 4.4 and Lemma 2.1,

we obtain the following theorem.

Theorem 4.8 The algorithm above is an optimal ex-

ternal CSA.

5 Internal Synchronization

In this section we use the Theorem 3.6 to obtain a

lower bound on the tightness of internal clock syn-

chronization, in terms of the actual execution. This

lower bound is a generalization of the known bounds

for the drift-free case [6, 2].

Intuitively, the goal of internal synchronization

is to keep logical clocks as close as possible. To

avoid liveness issues when proving a lower bound,

and following [4, 6], we use a “one shot)’ defini-

tion of the problem. Specifically, we assume that

for each node v, there is a special action called

firev. Each processor must output this action ex-

actly once, and the goal is to minimize the length

of the real-time interval in which all the fire ac-

tions occur.7 Formally, we define the tightness

of a pattern a of an internal clock synchroniza-

tion system by tight(~) = m% {reai_time(fireV)} –

mino { real.time(jirev)}. The tightness of a view /3,

denoted tight (/3), is the supremum of tight(a) over

all patterns a of the system with view ~.

We use the following graph-theoretic concept.

Definition 5.1 Let G = (V, E, w) be a weighted di-

rected graph. The maximum cycle mean of G, denoted

mcm(G), is the maximum average weight of an edge

in a directed cycle of C Symbolically,

{

Iel

mcm(G) = m~= ~

}
Io[~w(v’-’’ vi) ,

where 0 = (vO,... , V181_1) ranges over all directed CY-

cles of G, and Vlel = Vo.

7The intended meaning is that a processor “fires” when its

logical clock shows a certain value; this value can be arbitrary,
provided that all logical clocks show it sometime.

Our first step is to extend the notion of synchro-

nization graph to cent ain the “fire” points, and then

condense its information as follows.

Definition 5.2 Given a synchronization graph r =

(V, E, w) of an internal clock synchronization sys-

tem, the internal synchronization graph is a directed,——
weighted graph ~ = (V, E, ii7), where the set of points

~ consists of all the jire points in V; there is an

arc in ~ between every pair of points of ~; and

~(jirev, firev) = dr(jirev, fireti).

We can now state the lower bound.

Theorem 5.1 Let @ be the view of a pattern of an

internal clock synchronization system, and let ~ be the

internal synchronization graph dejined by /3 and the

standard bounds mapping. Then tight (~) ~ mcm(~).

Proof Sketch: In this sketch we prove the case

of finite tightness; the extension for infinite tight-

ness is trivial. Consider any directed cycle 0 =

PO,Pi,.. ., P1O1 = PO in the internal synchronization

graph ~ = (~, ~, ~). By Theorem 3.6, there exist in-

distinguishable patterns cw such that $~, (pi-1, pi) =

~(Pi- 1, pi), for each 1 S i S k. It follows from the
definition of tightness that

tight(~) ~ tight(ai) >

reai.timea, (p~-l) – real-timea, (p~)

= &,(Pi-I, Pi) + virt-dei(pi-l, pi)

= ~(pi-l, pi) + virt-del(pi-l, pi) .(3)

Summing Eq. 3 over all i, and observing that the sum

of virtual delays over a cyclic sequence vanishes, we

get

IL?! lo!

[0[“ W@) 2 ~zO(Pi-I,Pi) + ~ vzd-dd(pi-l, pi)
i=l i=l

Since O was an arbitrary cycle in ~, we conclude that

tight (/3) ~ mcm(~). ~

We remark that algorithms for external synchro-

nization can be used for internal synchronization, by

letting an arbitrary processor play the role of the

source; the optimality of our algorithms for the ex-

ternal variant implies that they guarantee tightness

which is at most twice the optimum for internal syn-
chronization.

818

6 Extensions

Structured Environments. The basic theory studies

the case where send modules are completely unstruc-

tured (technically, the “send” action is always en-

abled), and where the network module may lose mes-

sages arbitrarily. Somewhat surprisingly, it turns out

that one may gain timing knowledge also from the

absence of a message receive event, in the case of re-

liable communication. Extending the model to this

case is straightforward: the only relevant fact is the

knowledge of the local time when a message is sent.

Lemma 6.1 Sappose that a message m is known

to be sent from u at point q and is guaranteed to

be delivered within H(m) time at v. Let p be any

point at v where m has not yet been delivered. Then

6(P, q) < H(m) – viti-dei(p, q).

Inaccurate Source Clocks. In the external synchro-

nization model we assumed that a source clock shows

the real time precisely. However, the synchronization

graph model can be used to deal with an inaccurate

source clock also. The idea is as follows. Assume the

existence of some abstract clock that shows the time

precisely (it may be illustrative to think of it aa “Na-

ture’s clock”). This clock is represented as a source

point p, in the synchronization graph, and all other

points in the graph are connected to p, by arcs. By

Lemma 4.2, the weights of theses arcs are chosen so

that the offset of a point q is known to be certainly

in the range [–w(PS, q), w(q, p.)]. lt is e~y to verify

that all the algorithms presented in this paper can be

extended to deal with this concept without increasing

their complexity.

Fault Detection. Throughout the discussion on

synchronization graphs we relied heavily on their in-

tegrity, i.e., the fact that 6(P, q) E [–d(q, p), cf(p, q)].

This assumption may not hold if some component of

the system malfunctions, which may cause it to either

generate inconsistent timestamps, or to break the

bounds mapping, or simply to have an inaccurate im-

age of the synchronization graph. Fortunately, Theo-

rem 3.6 guarantees a strong fault-detection property:

if a fault can be detected, it will, More precisely, a

faulty pattern is detectable if there is no pattern of

the environment with the same view. Using Theorem

3.6, we derive the following result.

Lemma 6.2 Let B be a bounds mapping, and let ~

be a view of a pattern a. Then a has a detectable

fault if and only if rpB contains a negative cycle.

Acknowledgment

We thank Nancy Lynch for many useful discussions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J. E. Abate, E. W. Butterline, R. A. Carley,
P. Greendyk, A. M. Montenegro, C. D. Near, S. H.
Richman, and G. P. Zampelli. AT&T new approach
to the synchronization of telecommunication net-
works. IEEE Communication Magazine, pages 35-

45, Apr. 1989.

H. Attiya, A. Herzberg, and S. Rajsbaum. Opti-
mal clock synchronization under different delay as-
sumptions. In Proceedings of the 12th Annual ACM

Symposium on Principles of Distributed Computing,

pages 109–120, 1993.

A. Borodin, M. Fischer, D. Kirkpatrick, N. Lynch,

and M. Tompa. A time-space tradeoff for sorting

on non-oblivious machines. J. Comp. and Syst. Sci.,

22:351-364, 1981.

D. Dolev, J. Y. Halpern, and R. Strong. On the pos-

sibility and impossibility of achieving clock synchro-

nizeation. J. Comp. and Sgst. Sci., 32(2):230-250,

1986.

J. Halpern and I. Suzuki. Clock synchronization and

the power of broadcasting. In Proc. of Alterton Con-

ference, pages 588-597, 1990.

J. Y. Halpern, N. Megiddo, and A. A. Munshi. Opti-

mal precision in the presence of uncert tint y. .70w-na/

of Complexity, 1:170–196, 1985.

L. Lamport. Time, clocks, and the ordering of events

in a distributed system. Comm. ACM, 21(7):558-

565, July 1978)

J. Lundelius and N. Lynch. An upper and lower

bound for clock synchronization. Information and

Computation, 62(2-3):190-204, 1984.

N. Lynch. Simulation techniques for proving proper-

ties of real-time systems. In Rex Workshop ’93, Lec-

ture Notes in Computer Science, Moolk, the Nether-
lands, 1994. Springer-Verlag. To appei~r.

K. Marzullo and S. Owicki. Maintaining the time in

a distributed system. In Proceedings of the 2nd An-

nual ACM Symposium on Principles of Distributed

Computing, pages 44-54, 1983.

D. L. Mills. Internet time synchrolmization: the

Network Time Protocol. IEEE Trans. Comm.,

39(10):1482-1493, Oct. 1991.

Y. Ofek. Generating a fault tolerant global clock

using high-speed control signals for the MetaNet ar-

chitecture. IEEE Trans. Comm., Dec. 1993.

F. B. Schneider. Understanding protocols for byzan-

tine clock synchronization. Research R,eport 87-859,

Department of Computer Science, Cc]rnell Univer-

sity, Aug. 1987.

B. Simmons, J. L. Welch, and N. Lynch. An overview
of clock synchronization. Research Re]port RC 6505

(63306), IBM, 1988.

819

