
Optimization Problems in Congestion Control

Richard Karp
International Computer Science Institute and

University of California at Berkeley
1947 Center St., Suite 600

Berkeley, CA 94704
karp@icsi.berkeley.edu

Elias Koutsoupias
University of California, Los Angeles

Computer Science Department
Los Angeles, CA 90095-1596

elias@cs.ucla.edu

Christos Papadimitriou
University of California at Berkeley

Computer Science Division
Berkeley, CA 94720

christos@cs.berkeley.edu

Scott Shenker
International Computer Science Institute

1947 Center St., Suite 600
Berkeley, CA 94704

shenker@icsi.berkeley.edu

Abstract

One of the crucial elements in the Internet’s success is its
ability to adequately control congestion. This paper defines
and solves several optimization problems related to Inter-
net congestion control, as a step toward understanding the
virtues of the TCP congestion control algorithm currently
used and comparing it with alternative algorithms. We fo-
cus on regulating the rate of a single unicast flow when the
bandwidth available to it is unknown and may change over
time. We determine near-optimal policies when the avail-
able bandwidth is unchanging, and near-optimal competi-
tive policies when the available bandwidth is changing in a
restricted manner under the control of an adversary.

1. Introduction

The Internet carries packets on a best-effort basis with
no guarantees as to when, or even if, packets will be de-
livered. When the Internet is congested, the resulting large
packet delays and high packet drop rates seriously degrade
the performance of most Internet applications. One of the
crucial elements in the Internet’s success has been its abil-
ity to adequately control congestion. The predominant form
of congestion control is embodied in the TCP protocol. In
oversimplified terms, when TCP suffers a packet loss, it de-
creases its sending rate (by decreasing its window size by
a factor of two); when a packet is successfully delivered,
it increases its sending rate (by increasing its window size
by one) [2]. This process of additively increasing and mul-

tiplicatively decreasing (AIMD) the transmission rate can
be thought of as a probing algorithm designed to find the
maximal rate at which TCP can send packets under cur-
rent conditions without incurring packet drops. While the
AIMD approach is widely considered the most appropriate
one —largely based on its empirical success and on certain
control-theoretic arguments of Chiu and Jain [1]— here we
seek to broaden our understanding of congestion probing
algorithms in a more algorithmic direction. We formulate
congestion probing as an optimization problem described
in Section 2. We first introduce, in Section 2.1, the case
when the other traffic remains constant, which turns out to
be a novel and intriguing variant of binary search. But of
course, the other traffic is not constant; in Section 2.2 we
introduce the on-line algorithm problem of determining the
worst-case behavior of probing strategies in the presence of
changing available bandwidth. We present our technical re-
sults for the static and dynamic cases in Sections 3 and 4
respectively. We conclude in Section 5 with a brief discus-
sion of open problems.

Before turning to our technical results, we want to em-
phasize that we are not attempting to accurately model what
happens in the Internet and are not suggesting that TCP
should be redesigned along the lines suggested by our re-
sults. Quite the contrary, we acknowledge that practical ex-
perience suggests that TCP’s congestion control algorithm
is better than many of the proposed alternatives. The prob-
lem is that we have as yet no formalism with which to ex-
press this superiority. In short, while TCP may be the an-
swer, we have yet to define the question. We view this paper,
in which we define, and solve, some simple optimization

problems arising from congestion control, as an initial step
in a research program that progressively adds additional re-
ality to our models in an attempt to identify the question to
which TCP is the answer.

2. Model

As discussed in the Introduction, one can view conges-
tion control algorithms as a form of probing; the goal is
to determine the maximal bandwidth currently available,
and the result of the probe is either a successful transmis-
sion of all packets, or the dropping of one or more. TCP’s
congestion control algorithm increases the rate additively
upon success, and decreases the rate multiplicatively upon
failure. We attempt to deepen our understanding of such
dynamic probing algorithms through a series of simplified
models.

We consider the problem of regulating the rate of a uni-
cast flow from host A to host B. The bandwidth available to
the flow fluctuates according to the varying requirements for
bandwidth of other competing flows. Host A is provided no
direct information about the competing demands for band-
width or the topology of the Internet, but does receive some
limited information as to whether the flow is experiencing
packet drops, and must determine its transmission rate on
the basis of this information.

We assume that time is divided into successive periods,
and in each period t there is a threshold ut, representing the
maximum number of packets that A can transmit to B with-
out experiencing packet drops. In each period t A transmits
some number of packets xt and receives immediate feed-
back as to whether packet drops have occurred; i.e., whether
xt > ut. A cost function c(x, u) is given, which represents
the cost of transmitting x packets in a period with thresh-
old u. In our models, the cost reflects two major compo-
nents: opportunity cost due to sending less than the avail-
able bandwidth when ut > xt, and retransmission delay
and overhead due to dropped packets when xt > ut. The
goal of host A is to minimize the total cost incurred over
all periods or, in the case of an infinite sequence of periods,
the average cost per period. Since A’s only feedback from
period t is whether xt > ut, A does not precisely know ut,
or c(xt, ut).

2.1. The Static Case

We assume that the fixed threshold u is a positive integer
less than or equal to a known upper bound n. The problem
can be viewed as a Twenty Questions game in which the
goal is to determine u at minimum cost by queries of the
form “Is x > u?”. The cost of such a query is c(x, u). At
any step the initial data plus the results of previous queries
determine an interval of pinning in which the threshold must

lie. A probing algorithm is a rule specifying the next query
as a function of the interval of pinning. Given an upper
bound n on the threshold, We wish to characterize those al-
gorithms that minimize either the worst-case cost or the ex-
pected cost under the assumption that the threshold is drawn
from the uniform distribution over {1, 2, · · · , n}.

Notice that, for an arbitrary cost function c(x, u) there
is a straightforward dynamic programming algorithm with
running time O(n3) to minimize expected cost. This algo-
rithm can also accommodate a discount factor, correspond-
ing to a geometric distribution of the number of periods for
which the fixed threshold is in effect. However, in this paper
we focus on the asymptotic behavior of actual “uniform” al-
gorithms, and on lower bounds, for the following two spe-
cific cost functions:

1. The gentle cost function, Gα(x, u), which is equal to
u−x when x ≤ u and to α(x−u) when x > u, where
α is a constant;

2. The severe cost function, S(x, u), which is equal to
u− x when x ≤ u and to u when x > u.

When x < u each cost function is equal to the oppor-
tunity cost of sending only x packets when u could have
been sent. When x > u the two cost functions take into
account the cost of compensating for packet loss, under dif-
ferent assumptions about the protocol’s behavior in the face
of packet drops. The severe cost function models the case
where the protocol must wait for the first dropped packet to
time out before resuming transmission. If we take the pe-
riods to be the length of this time-out, and assume that the
first loss occurs close to the beginning of the interval, then
when xt > u essentially no packets are transmitted during
that period and the resulting lost bandwidth can be reason-
ably approximated as u. The family of gentle cost func-
tions models the case where the protocol need not wait for
lost packets to time-out (e.g., the so-called fast-retransmit
in TCP) so u packets get through to the receiver, but there is
an overhead for detecting and retransmitting the x−u extra
packets that are dropped.

We show that for the gentle cost function there is a sim-
ple algorithm that is essentially optimal with respect to both
worst-case and expected total cost. At each step the algo-
rithm chooses a query that divides the interval of pinning
into two parts whose sizes are approximately in the ratio√
α to 1. The expected cost is

√
αn
2 + O(log n) and the

worst-case cost is
√
αn+O(log n).

For the severe cost function we have an interesting al-
gorithm whose worst-case cost is O(n log log n). We prove
that the algorithm is optimal (up to a constant factor) by
showing a matching lower bound Ω(n log log n). These re-
sults are also extended to the case where no upper bound is
given on the threshold u.

2.2. The Dynamic Case

Here the threshold may vary from step to step. We as-
sume that the sequence {ut} is specified by an adversary
who knows our algorithm for choosing the sequence {xt} of
probes. Obviously, we are in the realm of competitive anal-
ysis [4], in which the performance of an on-line algorithm
for choosing {xt} is compared with the best among some
family of off-line algorithms for choosing {xt}. An on-
line algorithm must choose xt knowing only its sequence
x1, x2, · · · , xt−1 of previous choices and the result of com-
paring each of these previous choices xi to the correspond-
ing threshold ui. In contrast, an off-line algorithm has the
benefit of hindsight; it knows the entire sequence {ut} be-
forehand. An unrestricted off-line algorithm could simply
choose xt equal to ut for all t, incurring a total cost of zero.
For this reason it seems more fruitful to study the gain rather
than the loss. The gain function g(x, u) counts the number
of transmitted packets and it is g(x, u) = u− c(x, u), turn-
ing the problem into a maximization problem.

Still the adversary is so powerful that it frustrates all on-
line algorithms. To be able to discriminate between online
algorithms we level the playing field by curtailing the power
of the adversary to select the threshold sequence {ut}. The
question thus arises: What are meaningful ways to do so?
This is a complicated problem and an interesting one in
its own right; the threshold sequences depend both on the
network topology and the interaction among all hosts that
inject traffic into the network. The interaction among the
hosts is of a game-theoretic nature (see Section 5).

A natural (and reasonably realistic) approach is to as-
sume that the threshold does not change too drastically in
a time step. We consider the case where ut+1 is restricted
to be in an interval I(ut) that includes ut. The adversary is
allowed to choose any value ut+1 in the interval. Again, the
on-line algorithm finds out only whether xt ≤ ut, but not
ut; therefore it may not know I(ut) but a larger interval I ′

that contains I(ut).
We study the severe gain function for three natural prob-

lems of this kind:

• The interval I(ut) is independent of ut, i.e., I(ut) =
[a, b], for a, b > 0. We show (subsection 4.1) that the
optimal deterministic competitive ratio is a/b and the
optimal randomized competitive ratio against an obliv-
ious adversary is 1 + ln(a/b).

• The rate of the change is bounded, i.e., I(ut) =
[ut/µ, µut], for some constant µ. In subsection 4.2 we
analyze a variant of TCP and show that its competitive
ratio is at most 4µ − 2. We also indicate that no de-
terministic algorithm can have a competitive ratio less
than µ.

• The change of the threshold is bounded, i.e., I(ut) =
[ut − α, ut + α] for some constant α. We show (sub-
section 4.3) that the optimal deterministic competitive
ratio is between 1 + α/β and 4 + α/β, where β is the
absolute lower bound of the threshold (usually β = 1).

We conjecture that the latter two bounds can also be im-
proved by randomization.

3. The Static Case

Let u denote the fixed but unknown threshold. At any
step t an algorithm sends a number of packets xt, learns
whether xt ≤ u and incurs a cost c(xt, u). Eventually
the algorithm determines the integer u and incurs no further
cost.

At a general step in executing an algorithm A, the out-
comes of previous steps have restricted u to some interval of
integers [i..j], which we call the interval of pinning. For the
cost measures we consider, it is clear that the further course
of the algorithm should depend only on the interval [i..j]
and the outcomes of subsequent steps; it should not depend
on how the interval of pinning [i..j] was reached. This mo-
tivates us to define an algorithm A as a function from the
set of all intervals [i..j] into the positive integers, subject to
the restriction that i ≤ A(i, j) ≤ j. We shall usually as-
sume that there is an a priori upper bound n on u, which is
also the parameter of our asymptotic analysis; however, we
occasionally discuss how our algorithms can be extended
to the unbounded case, which involves intervals of pinning
of the form [i..∞] (and in which the performance of algo-
rithms is expressed as a function of u).

Let c be a cost function and A an algorithm. Then
Cc,A(i, u, j) denotes the cost of executing algorithm A
when the initial interval of pinning is [i..j] and the thresh-
old is u; here i ≤ u ≤ j. The function Cc,A is defined
recursively as follows:

Cc,A(i, i, i) = 0

Cc,A(i, u, j) =

c(A(i, j), u) + Cc,A(i, u, A(i, j)− 1)

if A(i, j) > u,

c(A(i, j), u) + Cc,A(A(i, j), u, j)

otherwise.

We define

MAXCOSTc,A(i, j) =
j

max
u=i

Cc,A(i, u, j),

and

SUMCOSTc,A(i, j) =

j∑

u=i

Cc,A(i, u, j).

Thus MAXCOSTc,A(i, j) is the worst-case cost of executing
Algorithm A from the initial interval of pinning [i..j], and
SUMCOSTc,A(i,j)

j−i+1 is the expected cost of AlgorithmA when
u is drawn from the uniform distribution over [i..j].

3.1. Algorithms and Upper Bounds

We consider five algorithms. The first two, BIN and TCP,
are far from optimal under our cost measures. The next
three, SHRINK, UNSHRINK and GOOD, are near-optimal un-
der different measures.

The Algorithm BIN. This is the familiar binary search:
BIN(i, j) = d j−i+2

2 e. It is easy to see that, in the severe cost

model, it has MAXCOSTS,BIN(1, n) = n log2(n)
2 +O(n) and

SUMCOSTS,BIN(1, n) = n2 log2(n)
4 + O(n2), while in the

gentle cost model MAXCOSTGα,BIN(1, n) = max(1, α)n+
o(n) and SUMCOSTGα,BIN(1, n) = 1+α

4 n+ o(n).

The Algorithm TCP. Starting from n, it halves the probe
until it becomes less than or equal to u and it then keeps
increasing the lower bound on u by 1 until u is determined.
It is defined by: TCP(1, j) = dj/2e, and, for i > 1,
TCP(i, j) = i + 1. Under the severe cost function its
MAXCOST is n2

8 +O(n) and its SUMCOST is n3

42 +O(n2).

The Algorithm SHRINK. The algorithm has two major
phases. In the first phase we reduce the interval of pinning
from [1, n] to one of the form [2t−1 + 1, j] where j ≤ 2t.
Having achieved this goal, the algorithm then proceeds to
shrink the size of the interval of pinning successively down
to 2t−2, 2t−4, 2t−8, This is done in a particular way
which guarantees that each of the O(log log t) shrinkages
incurs cost O(2t). It follows that the worst-case cost of the
algorithm is O(n log log n).

Specifically, the first phase is defined by the following
rule: if j > 2k then SHRINK(2k−1 + 1, j) = 2k + 1.
The second phase is as follows: if there exists a t such that
2t−1 + 1 ≤ i < j ≤ 2t and m is the largest integer such
that j − i < 2t

22m then SHRINK(i, j) = i+ max(1, 2t

22m+1).
In terms of cost, this algorithm has the property that

MAXCOSTS,SHRINK(1, n) = O(n log log n). Thus this al-
gorithm has significantly better worst-case cost than TCP

and BIN under the severe cost model. We shall prove later
that this algorithm is near-optimal with respect to worst-
case severe cost.

It is interesting to note that, for large n, the vast majority
of the increasing steps in SHRINK are increments by one,
while almost all decreasing steps are substantial —just like
with the TCP protocol.

The Algorithm UNSHRINK (Unbounded SHRINK).
SHRINK can be extended to an unbounded version which
we call UNSHRINK, with initial interval of pinning [1..∞]. It
proceeds by determining an upper bound for u by repeated
squaring, then performing a binary search to determine the
logarithm of u, and finally emulating SHRINK. Its worst-
case cost under the severe cost model is O(u log log u),
which is near-optimal.

The Family of Algorithms GOODα. At each step, this
algorithm splits the interval of pinning into two parts whose
sizes are in the ratio 1:

√
α.

GOODα(i, j) = i + max(1, b j−i
1+
√
α
c). It can be shown

that MAXCOSTGα,GOODα(1, n) =
√
αn + O(log n) and

SUMCOSTGα,GOODα(1, n) =
√
α

2 n2 + O(n log n). We
shall prove later that this family of algorithms achieves
near-optimal performance for the family of cost functions
Gα, under both the MAXCOST and SUMCOST criteria.

3.2. Optimality

We now define the actual complexity of the prob-
ing problems in our model. Let MAXCOSTc(i, j) =
minA MAXCOSTc,A(i, j) and SUMCOSTc(i, j) =
minA SUMCOSTc,A(i, j). Here c is a cost function
and A ranges over all probing algorithms. MAXCOSTc(i, j)
is the intrinsic worst-case complexity of the probing
problem with cost function c and initial interval of pinning
[i..j]. SUMCOSTc(i,j)

j−i+1 is the intrinsic expected complexity
(under the uniform distribution) of the same problem. In
this subsection we give efficient dynamic programming
algorithms for computing these quantities: We show that
SUMCOSTc(i, j) can be computed efficiently for any cost
function, and MAXCOSTc(i, j) can be computed efficiently
for the cost functions S and Gα.

For brevity let F (i, j) denote SUMCOSTc(i, j), where c
is a given cost function. We obtain the following recurrence,
which allows F (i, j) to be computed in O((j − i + 1)3)
steps, where a step is an addition, subtraction, comparison
or evaluation of the cost function.)

F (i, j) =
j−1

min
k=i

(
F (i, k) + F (k + 1, j) +

j∑

u=i

c(k, u)

)

F (i, i) = 0

In particular F (i, n) can be calculated in O(n3) steps.
Using simple modifications of the algorithm, it is possible
to incorporate a finite time horizon or a discount factor, to
model the possibility that the threshold will remain constant
for only a limited time.

In the case of the severe cost function S this recurrence
simplifies as follows:

F (i, j) =
j−1

min
k=i

(
F (i, k) + F (k + 1, j) +

(
k

2

)

−
(
i

2

)
+

(
j − k + 1

2

))

F (i, i) = 0

In the case of the gentle cost functions one obtains a sim-
plification by noting that F (i, j) is a function of j−i. Intro-
ducing the function T such that T (k) is the common value
of F (i, j) for all intervals such that j− i+1 = k, we obtain
the recurrence

T (n) =
n−1
min
k=1

(
α

(
k

2

)
+

(
n− k + 1

2

)
+ T (k) + T (n− k)

)

with the boundary condition T (1) = 0. This recurrence can
be solved in time O(n2).

For each of the severe and gentle cost functions we
conjecture that there is an algorithm A which minimizes
SUMCOST for every initial interval of pinning and has the
following monotonicity property: A(i, j) ≤ A(i, j + 1). If
this is true we can reduce the time bounds for the algorithms
to compute SUMCOSTS(1, n) and SUMCOSTGα(1, n) to
O(n2) and O(n), respectively.

The dynamic programming algorithms to compute
MAXCOSTS(i, j) and MAXCOSTGα(i, j) require a further
trick involving an extension of the function F . For any real
number r and any severe or gentle cost function c define
F (r, i, j) = minAmax

j
u=i[ru+COSTc,A(i, u, j)], where

A ranges over all algorithms. Note that F (i, j) = F (0, i, j).

For the severe cost function S we obtain: F (r, i, j) =
minj−1

k=i(max(F (r+1, i.k), F (r+1, k+1, j)−k)), with the
boundary condition F (r, i, i) = 0 for all r and F (n, i, j) =
∞. Here r ranges over integers between 1 and n. This
yields an algorithm to compute MAXCOSTS(1, n) in time
O(n4). If we can obtain an upper bound h on the number of
steps in an optimal probing algorithm with initial interval
of pinning [1..n] then we only need consider integers r in
the range from 1 to h + 1 and we obtain the time bound
O(n3h). It should be possible to obtain a bound on h of
order polylog(n), but we have not done so.

For the gentle cost functions Gα we obtain: F (r, i, j) =
mink(max(αk+F (r−α, i, k), F (r+1, k+1, k)−k)) with
the boundary conditions F (r, i, i) = ri and F (r, i, j) =∞
unless r is of the form a−αb where a and b are nonnegative
integers summing to at most n. Thus, if α is the ratio of
integers A and B, then only n(A+B) different values of r
need be considered, and the running time of the algorithm
to compute MAXCOSTGα(1, n) runs in timeO(n4(A+B)).

3.3. Lower Bounds

We now turn our attention to lower bounds. We bound
the quantities SUMCOSTc(1, n) and MAXCOSTc(1, n) from
below in terms of functions of n.

Theorem 1 SUMCOSTGα(1, n) =
√
α

2 n2 +O(n log n).

Proof. (Sketch) For the gentle cost function we observe
that SUMCOSTc(i, j) is a function of j − i. If we define
T (j − i+ 1) = SUMCOSTc(i, j) we see that the function T
satisfies the following recurrence: T (n) = minnk=1(α

(
k
2

)
+(

n−k+1
2

)
+ T (k) + T (n− k)) with the boundary condition

T (1) = 0. In a series of stages we modify this recurrence.
Conversion to continuous variables: T1(n) =

minp∈(0,1)(α
pn(pn−1)

2 + ((1−p)n+1)(1−p)n
2 + T1(pn) +

T1((1− p)n)) with the boundary condition T1(x) = x, x ∈
(0, 1].

Removal of linear terms: T2(n) = minp∈(0,1)(α
p2n2

2 +
(1−p)2n2

2 +T2(pn) +T2((1−p)n)) with the boundary con-
dition T2(x) = x, x ∈ (0, 1].

Change in boundary conditions: T3(n) =

minp∈(0,1)(α
p2n2

2 + (1−p)2n2

2 + T3(pn) + T3((1 − p)n))

with the boundary condition T3(x) =
√
α

2 x2, x ∈ (0, 1]
The unique solution of the recurrence for T3 is: T3(n) =√
α

2 n2, obtained by setting p to 1
1+
√
α

. The proof is com-
pleted by proving the following inequalities: | T2(n) −
T3(n) |= O(n); | T1(n)− T2(n) |= O(n log n); | T (n)−
T1(n) |= O(n).

Theorem 2 MAXCOSTGα(1, n) = n
√
α+O(log n).

Proof. (Sketch) We first relax the definition of ‘algorithm’
by allowing probes with fractional values. With this gen-
eralization an interval of pinning is a half-open set (x, y]
where neither x nor y need be an integer. The initial inter-
val of pinning is (0, n], and the algorithm terminates when
the length of the interval of pinning is less than or equal
to 1. It can be shown that the amount by which this relax-
ation reduces the optimal worst-case cost is O(log n). The
worst-case cost of such an algorithm, given an initial in-
terval of pinning (x, y], depends only on the length of the
interval. Let T (z) be the worst-case cost starting from an
interval of length z. Then T (z) = 0 when z ≤ 1. Re-
placing this boundary condition by the artificial boundary
condition T (z) =

√
αz, z ≤ 1, increases the worst-case

cost by at most
√
α. We then show that, using the mod-

ified boundary condition, T (z) is a nondecreasing contin-
uous function. It then follows that, when the interval of
pinning is of length z, an optimal step is to select a probe
that partitions the interval into parts of size pz and (1−p)z,
such that αpz+T (pz) = (1−p)z+T ((1−p)z). It follows

that T (z) = αpz + T (pz) = ((1 − p)z + T ((1 − p)z).
We can then show that an optimal choice of p to minimize
T (z) is, for all z, 1

1+
√
α

, yielding T (z) =
√
αz for all z. It

follows that MAXCOSTGα(1, n) = n
√
α+O(log n).

The above proof shows that, for a continuous approx-
imation to the problem of minimizing worst-case cost for
the interval of pinning [1..n] under the gentle cost function
Gα, each interval of pinning should be divided into two
parts in the ratio 1:

√
α. The algorithm GOOD that was

described earlier is a discrete approximation to this policy,
but improves upon it by exploiting the restriction to integer
values of u. It follows that MAXCOSTGα,GOOD(1, n) =
n
√
α + O(log n), and is thus worst-case optimal to within

an additive term O(log n).
We next turn to the severe cost model:

Theorem 3 MAXCOSTS(1, n) = Ω(n log log n).

In preparation for the proof we require a lemma about
n-leaf rooted oriented binary trees. Every non-leaf node
of such a tree T has a left child and a right child. Every
edge is directed from a parent to one of its children. Define
the weight W (v) of node v as the number of leaves in the
subtree rooted at v. Define the right cost of T as the sum,
over all right children v in T , of

(
W (v)

2

)
. Define the left

height of node v as the maximum, over all paths from v to a
leaf, of the number of left children in the path, excluding v
itself. Define the left height of T as the left height of its root.
At the heart of the proof of Theorem 3 is the observation that
a tree with small right cost must have large left height.

Lemma 4 Let g(n) be a function from positive integers to
positive integers. Every n-leaf binary tree with right cost
less than or equal to n2g(n) has left height greater than or

equal to log3(ln(n2g(n))
ln(64g(n))).

Proof. Let T be a n-leaf binary tree with right cost less
than or equal to n2g(n). For each k, let nk be the max-
imum weight of a right node in T of left height less than
or equal to k. Let v be a node of left height less than or
equal to k and weight nk. Consider the chain of right chil-
dren descending from v. The left child of each node in this
chain is of left height less than or equal to k − 1, and hence
of weight less than or equal to nk−1. It follows that, for
each i, the ith node in the chain of right children has weight
greater than or equal to nk − ink−1, and hence contributes
at least

(
nk−ink−1

2

)
to the right cost of T . Hence the to-

tal contribution of the nodes in this chain to the right cost

of T is at least
∑b nk

nk−1
c

i=1

(
nk−ink−1

2

)
. This sum is required

to be less than or equal to n2g(n), but it is greater than

or equal to
(nk−nk−1+1

3)
nk−1

, which in turn is greater than or

equal to (nk−nk−1−1)3

6nk−1
. Thus we arrive at the inequality

(nk − nk−1 − 1)3 ≤ 6nk−1n
2g(n), which implies that

nk ≤ nk−1 + 1 + (6nk−1n
2g(n))1/3.

Since nk−1 ≤ n it follows that nk−1 + 1 ≤
(8nk−1n

2)1/3 ≤ (8nk−1n
2g(n))1/3. Hence nk ≤

2(8nk−1n
2g(n))1/3. Using the fact that n0 = 1, it follows

by induction that, for all k, nk ≤ 8(n2g(n))
1
2 − 1

2 3k .
If t denotes the left height of the tree T , then nt = n.

Hence n ≤ 8(n2g(n))
1
2 − 1

2 3t , from which it follows that

t ≥ log3(ln(n2g(n))
ln(64g(n))).

For 1 ≤ g(n) ≤ 1
2 ln lnn, it is easy to verify that the

expression of the lemma is bounded by log3

(
ln(n2g(n))
ln(64g(n))

)
≥

log3

(
ln(n2)

ln(32 ln lnn)

)
≥ 1

2 ln lnn.

Corollary 5 For all n, and for every n-leaf binary tree
T , either leftheight(T) ≥ 1

2 ln lnn or rightcost(T) ≥
1
2n

2 ln lnn.

For the proof of Theorem 3, note that, for any given ini-
tial interval of pinning, a probing algorithm A can be rep-
resented as a rooted binary tree. The nodes of the tree are
the intervals of pinning that can occur in the course of the
algorithm. The root is the initial interval of pinning and the
leaves are intervals of the form [i..i]. Node [i..j], where
j 6= i, has the left child [i..A(i, j)] and the right child
[A(i, j) + 1..j].
Proof. (Of the Theorem.) Clearly MAXCOSTS(1, 2n) ≥
MAXCOSTS(n + 1, 2n). Consider any probing algorithm
A. The execution of A with initial interval of pinning
[n+1, 2n] can be represented by a n-leaf rooted, oriented
binary tree T . It is easily verified from the definition of
the severe loss function S that MAXCOSTS,A(n+ 1, 2n) ≥
(n + 1)leftheight(T) and SUMCOSTS,A(n + 1, 2n) ≥
rightcost(T). It follows that MAXCOSTS,A(n + 1, 2n) ≥
rightcost(T)

n . Applying the above corollary we obtain
MAXCOSTS,A(n+ 1, 2n) ≥ 1

2 ln lnn. Since A was an arbi-
trary probing algorithm it follows that MAXCOSTS(1, n) =
Ω(n ln lnn).

4. The Dynamic Case

Consider an online probing algorithm with probe se-
quence {xt}. Its gain at time t is g(xt, ut) = xt when
xt ≤ ut and g(xt, ut) = 0 when xt > ut. This defini-
tion of gain corresponds to the severe cost function. The
total online gain is therefore gainn =

∑n
t=1 g(xt, ut) while

the optimal (offline) gain is optn =
∑n
t=1 ut. The online

algorithm has competitive ratio r if

r gainn ≥ optn + const,

where const depends only on the initial conditions.
From the competitive analysis point of view the study of

gain is much more meaningful than the study of loss (cost).
It is definitely more informative—in all cases studied here
the competitive ratio with respect to loss turns out to be triv-
ial, either 1 or∞.

It is easy to see that if the adversary is allowed to select
any sequence of thresholds {ut}, then there exists no com-
petitive online algorithm. In this section we consider three
natural ways to restrict the power of the adversary.

4.1. Adversary restricted to a fixed interval

We first consider the simple case when the adversary can
choose any threshold from a fixed interval, i.e., ut ∈ [a, b].
The deterministic case is completely trivial: An optimal on-
line algorithm would never select a rate xt > a because of
adversary’s threat to select ut = a. Thus the optimal on-
line algorithm transmits at the minimum rate xt = a. But
in that case the adversary will select the maximum possible
bandwidth ut = b yielding a competitive ratio of b/a.

For the randomized case, the situation is more interest-
ing, as randomization improves the competitive ratio expo-
nentially. We consider oblivious adversaries [3], that is, ad-
versaries that have to select the whole sequence {ut} in ad-
vance (unrelated to the random choices of the online algo-
rithm).

Theorem 6 The optimal randomized competitive ratio
against an adversary that is constrained to select ut ∈ [a, b]
is 1 + ln(b/a).

Proof. We consider a memoryless randomized algorithm.
At every step the algorithm selects xt according to the fol-
lowing probability density function: f(x) = 1

rx where is
r = 1 + ln(b/a) for all x > a. The case xt = a is
treated in a special way: a is selected with probability 1

r
(it is easy to check that the probabilities sum to 1). When
the adversary selects ut = y, the online gain is equal to
a 1
r +

∫ y
a
f(x)x dx = y/r. The optimal gain is y and the

competitive ratio is r, independently of the choice of y.
To show that this is optimal we employ Yao’s Lemma [5]

(the classical minimax theorem of Game Theory adapted
to on-line algorithms): It suffices to consider a random-
ized adversary against deterministic on-line algorithms. In
particular, let the adversary select y with probability den-
sity function g(y) = a/y2; in a similar manner with
the upper bound, the remaining probability a

b is assigned
to b. If the online algorithm selects xt = x, its gain
is x

∫ b
x
g(y) dy + xab = a. The expected optimal cost

is
∫ b
a
g(y)y dy + bab = a(1 + ln(b/a)) and the ratio is

1 + ln(b/a), independently of the online choice x.

In reality both the thresholds {ut} and the online rates
{xt} take integer values, while the results of this section

hold for real values; this does not affect the analysis in any
significant way (for example, for integer values the ratio is
not 1+ln(b/a) but 1+Hb−Ha whereHn = 1+ 1

2 + · · ·+
1
n ≈ lnn).

4.2. Adversary restricted by a multiplicative factor

We now consider the case when the adversary can
change the threshold by a multiplicative factor. In partic-
ular, we assume that the adversary can select any threshold
ut+1 in the interval [ut/µ, µut] for some constant µ ≥ 1.
We show that a variant of TCP achieves competitive ratio at
most 4µ − 2; this is optimal within a factor of 4 since no
deterministic online algorithm can have a competitive ratio
less than µ.

An interesting observation is that the the restriction
ut/µ ≤ ut+1 is useless to our online algorithm. We show
a stronger result by allowing the adversary to decrease the
threshold ut+1 arbitrarily. This doesn’t affect the compet-
itive ratio. The underlying reason is that the extra power
of the adversary buys it nothing in the face of a controlled
(i.e., multiplicative) online decrease—the optimal adversar-
ial policy is to choose a threshold either slightly less than
the online rate or much greater than it.

Theorem 7 There is a deterministic online algorithm with
competitive ratio (

√
µ +

√
µ− 1)2 against an adversary

who is constrained to select any threshold ut+1 in the range
[0, µut], for some constant µ ≥ 1. On the other hand, no de-
terministic online algorithm can achieve a competitive ratio
better than µ.

Proof. We will analyze the following algorithm:

After a successful transmission the online algo-
rithm raises its rate to xt+1 = µxt. After a failed
transmission it lowers its rate (also by a fixed fac-
tor) to xt+1 = λxt.

In our analysis we will use the (optimal) decreasing fac-
tor λ =

√
µ√

µ+
√
µ−1

which results in competitive ratio r =

(
√
µ +
√
µ− 1)2. Interestingly this value of λ is approx-

imately 1/2 (for large µ). Indeed, the algorithm that uses
λ = 1/2 (a value independent of µ) has competitive ratio
4µ− 2, not much worse than the optimized ratio.

We will argue that the following two invariants are main-
tained:

• ut ≤ µ
λxt, and

• r gaint ≥ optt + Φ(xt+1) − Φ(x1), where Φ(x) =
1

1−λx is an appropriate potential function.

The theorem follows from the second invariant. We show
the two invariants by induction. The proof is straightfor-
ward (the “hard” part was to come up with the right poten-
tial function Φ). The base case is trivial (without loss of

generality we assume that the online algorithm knows the
initial threshold).

We consider first the case when the online algorithm suc-
ceeds at time t. The online gain is ∆gain = xt; also the next
online rate is raised to xt+1 = µxt. It is obvious that the
first invariant is maintained because ut+1 ≤ µut. To check
the second invariant we observe that the optimal gain in-
creases by ∆opt = ut ≤ µ

λxt. The second invariant follows
from the inequality r∆gain ≥ ∆opt + Φ(xt+1) − Φ(xt),
which can be verified straightforwardly.

The case of failure is similar. We first observe that we
must have ut < xt. The online gain now is 0 and the next
rate decreases to xt+1 = λxt. The next threshold ut+1 is at
most µut < µxt. It is again straightforward to check that
both invariants are maintained.

The lower bound is simple: the adversary can select as
ut, for all t ≥ 1, any value in the interval [u1, µu1]. This
is consistent with the constraint ut+1 ≤ µut. The lower
bound follows (this is the case of subsection 4.1).

The upper bound (
√
µ +
√
µ− 1)2 < 4µ − 2 is within

a factor of 4 of the lower bound. It remains an open prob-
lem to close the gap. Notice also that both upper and lower
bounds hold even with the restriction ut+1 ≥ ut/µ.

4.3. Adversary restricted by an additive term

We now turn our attention to adversaries that can change
the bandwidth by a fixed integer amount α. More precisely,
we assume that the adversary is constrained not to change
the threshold by a constant α, i.e., ut+1 ∈ [ut − α, ut + α].
As in the case of multiplicative increase, the restriction
ut+1 ≥ ut − α doesn’t seem to help the online algorithm.
In contrast, if we allow the threshold to be arbitrarily small,
there is no algorithm with bounded competitive ratio. For
example, in that case the adversary can select any ut in the
interval [0, α] and it follows from the results of subsection
4.1 that the competitive ratio (deterministic and random-
ized) is infinite. Fortunately, in real life the threshold has
the natural lower bound of 1 bit or packet (we can ignore
the time steps when the bandwidth is 0 since neither the on-
line nor the offline algorithm transmit anything). Therefore
we shall further assume that the threshold ut has a constant
lower bound β.

Theorem 8 The optimal deterministic competitive ratio
against an adversary constrained to select threshold ut+1

in the interval [β, ut + α] is at most 4 + α/β. On the other
hand, no deterministic online algorithm has competitive ra-
tio better than 1 + α/β.

Proof. We consider the following class of natural on-line
algorithms.

After a successful transmission the online algo-
rithm raises its rate to xt+1 = xt + γ1. After
a failed transmission it lowers its rate to xt+1 =
xt − γ2 (or to β, if xt − γ2 < β).

One can compute the parameters γ1 and γ2 that minimize
the competitive ratio but the analysis is complicated. To
avoid this complication in this abstract, we restrict our at-
tention to online algorithms that have γ1 = γ2 = γ; it turns
out that the competitive ratio does not deteriorate much. We
use an appropriate value γ = α/(r−1) where r is the com-
petitive ratio (approximately 4 + α/β).

The proof has the same flavor as the proof of Theorem 7.
It is not hard to show that the following two invariants are
maintained.

• ut ≤ (r − 1)xt + γ and

• rgaint ≤ optt + Φ(xt+1)− Φ(x1),

where Φ(x) = x2

2γ + x
2 is a potential function. However, the

following technical (but inessential) assumption is needed
here: The initial rate x1 (and consequently every subse-
quent online rate) is of the form β + mγ for some inte-
ger m. In fact, a more careful accounting shows that the
above invariants yield a slightly better competitive ratio:
r = z+3+

√
z2+10z+1
2 , where z = α/β.

The lower bound follows from the observation that the
adversary can always select any threshold ut in the range
[β, β + α].

5. Open Problems

We mention a few open problems suggested by our re-
sults. The obvious one is to prove a good lower bound for
the average cost of the severe cost function. Also, most up-
per and lower bounds for the deterministic dynamic case do
not match. The study of randomized algorithms for the dy-
namic case seems promising. We believe that substantially
better competitive ratios are possible using randomization.

An important future research direction is to enrich our
model with game-theoretic features. The available band-
width, which in our current treatment is either constant (in
Section 3) or chosen by an adversary (in Section 4), is in
fact the result of other flows probing for their own avail-
able bandwidth. One can view this set of probing flows
as playing a game against each other where each player
only receives limited feedback from their choice of strat-
egy; the natural question is, what are the Nash equilibria of
this game?

References

[1] D. Chiu and R. Jain. Analysis of the Increase/Decrease
Algorithms for Congestion Avoidance in Computer

Networks. In Journal of Computer Networks and ISDN,
17(1):1-14(1989).

[2] V. Jacobson. Congestion Avoidance and Control In
ACM SigComm Proceedings, pp 314-329, 1988.

[3] Shai Ben-David, Allan Borodin, Richard M. Karp, Ga-
bor Tardos, and Avi Wigderson. On the power of ran-
domization in on-line algorithms. Algorithmica, 11:2–
14, 1994.

[4] Allan Borodin and Ran El-Yaniv. Online Computation
and Competitive Analysis. Cambridge University Press,
1998.

[5] A. C. C. Yao. Probabilistic computations: Towards a
unified measure of complexity. In Proc. 18th Symp.
Foundations of Computer Science, pages 222–227,
1977.

