
Distributed
    Computing 

Autumn Semester 2022 Prof. R. Wattenhofer

Computational Thinking
Wednesday, January 25, 2023, 15:00-17:00

Do not turn over until instructed to do so

This examination lasts for 120 minutes and comprises 120 points. There is one block
of questions for each lecture chapter.

You may answer in German, English, or combine German and English.

Unless explicitly stated, you do not have to justify your answers. Writing down
your thoughts (math, text, or annotated sketches), however, might help with the
understanding of your approach. This may then result in points being awarded even
if your answer is not correct. Please write legibly. Unreadable answers will not be
graded.

Some questions will ask you to fill in answers in a template. If you decide to start
over you will find fill-in replacements at the end of the examination booklet.

Please write your name and student number on every additional sheet. Please write
your name and student number in the following fields on this cover sheet.

Family Name First Name Student Number

Task Achieved Points Maximum Points

1 - Algorithms 19

2 - Complexity 14

3 - Cryptography 17

4 - Databases 17

5 - Machine Learning 20

6 - Neural Networks 16

7 - Computability 17

Total 120



1 Algorithms (19 points)

Trampoline World

You are visiting Trampoline World, a theme park with lots of trampolines. Travelling from
one part of the park to another is only possible by jumping along a corridor of trampolines.
These corridors are one-way, you are not allowed to jump backwards. You are given an array of
trampoline strengths (all values strictly positive integers). If you jump on trampoline i with
strength k you can maximally jump to the (i + k)th trampoline. You may also decide to jump
less far and land on a closer trampoline. You start out on trampoline 0 and want to end up on
the landing mat behind the last trampoline. You want to use the least number of trampolines
to get from trampoline 0 to the landing mat.

1 def minTrampolineJumpsNaive(strengths, i):

2 if i >= len(strengths):

3 return 0

4 temp = len(strengths)

5 for k in range(1, strengths[i]):

6 temp = min(temp, 1+minTrampolineJumpsNaive(strengths,

k))↪→

7 return temp

a) [4 points] minTrampolineJumpsNaive does not yet run correctly but you want to
define two test cases. What should a correct implementation of minTrampolineJumps
return for the following inputs?

minTrampolineJumps([4, 5, 2, 4, 3, 2, 1], 0) =

minTrampolineJumps([2, 4, 1, 2, 5, 1, 3, 2, 3, 1, 1], 0) =

b) [2 points] The variable temp is not very descriptive. Can you help make the code more
readable by giving temp a better name?

c) [4 points] minTrampolineJumpsNaive does not return the correct result, it has two
mistakes. Find and correct them directly in the above code snippet.



d) [2 points] Even when corrected, minTrampolineJumpsNaive turns out to be un-
suitable for a very long corridor of trampolines. Explain why.

e) [7 points] It turns out that this problem can be solved optimally with a greedy approach.
Find and correct the two mistakes in the code and write down the time complexity of
the algorithm in the big-O notation.

1 def minTrampolineJumpsGreedy(strengths):

2 result = 0

3 left = 0

4 right = 0

5 while right < len(strengths):

6 rightmost = 0

7 for i in range(left, right+1):

8 rightmost = min(rightmost, i + strengths[i])

9 left = right+1

10 right = rightmost+1

11 result += 1

12 return result

Time complexity:



SO
LU
TI
ON

Solution

Trampoline World

a) minTrampolineJumps([4, 5, 2, 4, 3, 2, 1], 0) == 2
minTrampolineJumps([2, 4, 1, 2, 5, 1, 3, 2, 3, 1, 1], 0) == 4

b) Multiple possibilities, e.g. leastAmountOfJumps, currentMinimumJumps.

c) Following snippet has two changes: strength[i]+1, i+ k

1 def minTrampolineJumpsNaive(strengths, i):

2 if i >= len(strengths):

3 return 0

4 temp = len(strengths)

5 for k in range(1, strengths[i]+1):

6 temp = min(temp, 1+minTrampolineJumps(strengths, i+k))

7 return temp

d) Because the recursive algorithm computes every jump possibility from every trampoline,
a lot of redundant computation is happening. Exponential runtime.

e) Following snippet has two changes: max(...), right = rightmost

1 def minTrampolineJumpsGreedy(strengths):

2 result = 0

3 left = 0

4 right = 0

5 while right < len(strengths):

6 rightmost = 0

7 for i in range(left, right+1):

8 rightmost = max(rightmost, i + strengths[i])

9 left = right+1

10 right = rightmost

11 result += 1

12 return result

Time complexity: O(n) where n = len(strengths) because i visits every element in
strengths at most once.



2 Complexity (14 points)

Polynomial Time Reductions

Let A and B be two decision problems. What can the existence of a polynomial time reduction
from A to B (“A ≤ B”)...

a) [3 points] ...prove about A given knowledge about the complexity class of B?

A is in P. # True # False

A is NP-hard. # True # False

A is NP-complete. # True # False

b) [3 points] ...prove about B given knowledge about the complexity class of A?

B is in P. # True # False

B is NP-hard. # True # False

B is NP-complete. # True # False



Easier TSP

From the lecture we know that it is NP-hard to approximate the traveling salesperson problem
(TSP) up to any constant factor α > 1 for general graphs. For metric graphs however, a
2-approximation was given.
Decide whether TSP can be approximated in polynomial time up to a constant factor in the
following two cases. In each case, state your answer (Yes/No) and justify it in 1-3 sentences.

c) [4 points] Graphs where each edge length d is a real number with 1 ≤ d ≤ 2.

d) [4 points] Graphs where each edge length is the multiple of a positive integer k.



SO
LU
TI
ON

Solution

a) A is in P .

b) B is NP-hard.

c) Yes. In such graphs all round trips have lengths between n and 2n (inclusive). So choosing
any round trip is already a 2-approximation. (Alternative: All such graphs are metric since
the triangle inequality always holds with these edge lengths (1 + 1 ≥ 2), and hence there
exists a 2-approximation.)

d) No. The inapproximability proof in Chapter 2 of the script only uses graphs with two
different edge lengths: 1 and α ·n+1. The proof works works exactly the same using edge
lengths k and k(⌈α · n+ 1⌉) instead.



3 Cryptography (17 points)

Public-Key Cryptography

a) [2 points] Let g = 2, p = 19. Compute the public key kp, if the secret key is ks = 6.

b) [4 points] Let g = 2, p = 19 and ks = 6. Decrypt the ElGamal encrypted message
C = (2, 7).

Zero Knowledge Proofs

Consider a setup with combination bike locks. A bike lock can only be opened by somebody who
knows the combination, and it is impossible to open a bike lock just by guessing the combination.
Watson (on the left) knows the combinations of all bike locks.

Figure 1: Illustration of the setup with two combination bike locks.

c) [3 points] Let us first consider the case with only two bike locks. Describe a protocol
that allows Sherlock (on the right) to prove to Watson (on the left) that he knows how
to open at least one of the bike locks without revealing to Watson which bike lock he
(Sherlock) can open.



d) [3 points] Consider now ten bike locks. Again, Sherlock wants to prove to Watson that
he knows the combination of at least one of the bike locks (without revealing which one).
Show that the following protocol is not zero-knowledge.

1 def Ten_Bike_Locks():

2 1. Watson connects the locks to form a chain ring

3 2. Watson gives the chain ring to Sherlock

4 3. Sherlock opens the chain ring by opening one of the locks

5 4. Sherlock gives the opened ring (as a chain) to Watson

Figure 2: Illustration of Ten Bike Locks protocol.

e) [5 points] Design a protocol that fixes the problem in the previous exercise. That is,
describe a protocol that allows Sherlock to prove to Watson that he knows how to open at
least one of the ten bike locks without revealing to Watson which bike lock Sherlock can
open.



SO
LU
TI
ON

Solution

a) kp = gks = 26 mod 19 = 64 mod 19 = 7.

b) m′ = c2 · cks·(p−2)
1 mod p = 7 · 26·17 mod 19 = 7 · (26)17 mod 19 = 7 · 717 mod 19 = 718

mod 19 = 1. In the last step, we use Fermat’s Little theorem.

c) Watson gives to Sherlock two combination bike locks (already locked). Sherlock opens
one of the bike locks and locks it with the other (forming a chain). Sherlock shows the
chain to Watson. Sherlock cannot form the chain without knowing how to open one of the
locks, and Watson cannot know which one Sherlock locked (since it is a chain). Below,
the protocol is illustrated as a figure.

d) Watson can tell that either the first or the last combination bike lock in the chain is the
one that Sherlock opened.

e) One of the possible solutions is the following. In Step 3, Sherlock first opens the chain ring
(by opening on of the locks). Then, he creates a knot in the chain and the closes the ring
again. In Step 4, Sherlock gives the knotted chain ring back to Watson. The illustration
below explains how to create a knotted ring.

Another possible solution: Watson creates two chain rings, each with 5 combination bike
locks and gives them to Sherlock. Sherlock opens one of the rings (by being able to open at
least one of the bike locks) and interlocks the rings together. Sherlock shows the interlocked
rings to Watson. This is illustrated in the given figure below.



4 Databases (17 points)

Join Types

a) [7 points] Given the following two tables:

a b c

1 1 1
2 2 1
3 3 1
4 0 1

Figure 3: Table left.

d e

1 1
2 1
3 1
4 1

Figure 4: Table right.

For each pair of queries below, list all valid pairs of column names (to replace <x> and
<y>), such that both queries output the same number of rows:

SELECT * FROM left INNER JOIN right ON left.<x> = right.<y>;

SELECT * FROM left LEFT OUTER JOIN right ON left.<x> = right.<y>;

SELECT * FROM left FULL OUTER JOIN right ON left.<x> = right.<y>;

SELECT * FROM left RIGHT OUTER JOIN right ON left.<x> = right.<y>;

SELECT * FROM left FULL OUTER JOIN right ON left.<x> = right.<y>;

SELECT * FROM left INNER JOIN right ON left.<x> = right.<y>;



Course Registration DB Queries

We consider a database of a university course registration system. It has tables for students,
courses, and enrollments of students in courses (table keys are underlined):

students(id, name)
courses(id, name, max students)
enrollments(student id, course id, priority)

The column priority in the enrollments table indicates the student’s preferences, a lower
number indicates higher priority. The column max students in the courses table indicates
the maximum number of students allowed for admission of the course.

b) [4 points] What does the following SQL query return?

SELECT c.id, COUNT(e.student id) - c.max students AS x
FROM courses c
LEFT OUTER JOIN enrollments e ON e.course id = c.id
GROUP BY c.id
HAVING x > 0;

c) [2 points] What would change in the output of the query from b) if we changed
COUNT(e.student id) to COUNT(DISTINCT e.student id) and why?

d) [4 points] Write a SQL query which returns for all students their names and the names
of all courses they are enrolled for. Also consider the case that the students might not
be enrolled for any courses. The student should still appear in that case. Courses which
no one enrolled for on the other hand should not appear. The output should be ordered
for each student (not over all students) by their priority for the respective course (high
priority to low priority).



SO
LU
TI
ON

Solution

a) INNER JOIN = LEFT OUTER JOIN: (a,d), (c,d), (c,e)
RIGHT OUTER JOIN = FULL OUTER JOIN: (a,d), (c,d), (c,e)
FULL OUTER JOIN = INNER JOIN: (a,d), (c,e)

b) The query returns for each course that is overbooked, i.e. has more students enrolled for
it than its max students field allows, the ID of the course and how many students over
the maximum are enrolled.

c) Nothing, since student id and course id together form a key on the enrollments
table and are therefore unique.

d) SELECT s.name, c.name
FROM students s
LEFT OUTER JOIN enrollments e ON e.student id = s.id
LEFT OUTER JOIN courses c ON e.course id = c.id
ORDER BY s.id, e.priority ASC;



5 Machine Learning (20 points)

You are given a set of samples x0, x1, . . . , xn−1 ∈ R and want to fit them to the ground truth
labels y0, y1, . . . , yn−1 ∈ R using the linear regression model f̂(xi) = w0+w1xi. We can pair the
input values and labels to get the dataset D := {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}.
The first thing you need to decide is what loss function to use. Two possibilities are the Mean
Squared Error loss (MSE) and the Mean Absolute Error (MAE), defined as follows:

LMSE(f̂ , D) =
1

n

∑
(x,y)∈D

(y − f̂(x))2 LMAE(f̂ , D) =
1

n

∑
(x,y)∈D

|y − f̂(x)|

a) [3 points] We know that our dataset may contain so-called outliers, data points that
result in a big error even if the model fits the underlying distribution we sampled from
perfectly. Which of the two losses is impacted less by these samples and results in a model
that fits closer to the real distribution? Explain why.

b) [3 points] In the following we fit the data with Gradient Descent using MAE. The
dataset and the weights (after some learning steps) are as follows:

D = {(x0 = 1, y0 = 1), (x1 = 2, y1 = 4)} w0 = w1 = 1

What are the current predictions and MAE loss for this model?

f̂(x0) = f̂(x1) = LMAE(f̂ , D) =

c) [4 points] The MAE Loss is not differentiable for y = f̂(x). We therefore set the
gradient at this point to 0. What are the partial derivatives for w0 and w1 on the rest of
the loss function for just one datapoint (x, y)?

∂L
∂w0

LMAE(f̂ , {(x, y)}) =


f̂(x) > y

f̂(x) < y

0 f̂(x) = y

∂L
∂w1

LMAE(f̂ , {(x, y)}) =


f̂(x) > y

f̂(x) < y

0 f̂(x) = y



d) [4 points] Run one step of Gradient Descent using α = 2 and report the new values.

wnew
0 = wnew

1 =

e) [2 points] What are the optimal weights w∗
0 and w∗

1 for MAE and what is the resulting
loss?

w∗
0 = w∗

1 = LMAE =

f) [4 points] Could we have chosen a different α in d) such that we achieve the optimal
loss in a single step? Explain why.



SO
LU
TI
ON

Solution

a) The MSE punishes big errors more than MAE and is thus impacted more by them. The
MAE would result in a model that fits the real distribution more closely in this case.

b) f̂(1) = 2, f̂(2) = 3, LMAE(f̂ , D) = 1

c) ∂L
∂w0

LMAE(f̂ , {(x, y)}) =


+1 f̂(x) > y

−1 f̂(x) < y

0 f̂(x) = y

∂L
∂w1

LMAE(f̂ , {(x, y)}) =


+x f̂(x) > y

−x f̂(x) < y

0 f̂(x) = y

d) wnew
0 = 1− α 1

n(+1− 1) = 1,
wnew
1 = 1− α 1

n(x0 − x1) = 1− 0.5α · (−1) = 1 + 0.5α = 2

e) w∗
0 = −2, w∗

1 = 3, L = 0

f) In question d), we saw that wnew
0 = w0, no matter what α is. We also know that it has

to become −2 to minimize the loss (without w0 = −2, it is not possible for the loss terms
on the two datapoints to become both 0). This means that we cannot reach the optimal
weights in just one step.



6 Neural Networks (16 points)

Consider the alphabet A = {A,B,C}. We are given a sequence of letters from this alphabet
and our goal is to find out if there is an occurrence of two Bs directly after each other in that
sequence, for example ABCBBA. We decide to tackle the problem with an RNN, use one-hot

encoding for all letters in A and a custom activation function σ(z) =


0 z ≤ 0

z 0 < z < 2

2 2 ≤ z

.

We are given the one-dimensional state st and the input xt. Like in the lecture both are
prepended with the bias term; instead of st = κ, we really have st = (1, κ). We define the
following state update function:

st+1 = ĥ(xt, st) = σ (wx · xt +ws · st)

During the training of the RNN, it slowly learns to represent all relevant information in the
state. More specifically, st = 1 if the RNN has just seen a B, and st = 2 if the RNN already
has encountered two consecutive Bs, given initial state s0 = 0.

a) [10 points] Here are ten wx and ws combinations that could appear during training.
Mark all wx and ws with True that produce a state st as described above.

• wx =
(
−1 0 1 0

)
,ws =

(
−1 1

)
# True # False

• wx =
(
1 0 1 0

)
,ws =

(
1 −3

)
# True # False

• wx =
(
−4 0 5 0

)
,ws =

(
0 3

)
# True # False

• wx =
(
−3 0 4 0

)
,ws =

(
0 2

)
# True # False

• wx =
(
0 −1 1 −1

)
,ws =

(
0 2

)
# True # False

• wx =
(
−1 −2 1 −2

)
,ws =

(
1 2

)
# True # False

• wx =
(
1 −1 1 −1

)
,ws =

(
0 1

)
# True # False

• wx =
(
−1 2 −1 2

)
,ws =

(
0 −1

)
# True # False

• wx =
(
2 −2 1 −2

)
,ws =

(
−2 2

)
# True # False

• wx =
(
−1 −1 2 −1

)
,ws =

(
0 2

)
# True # False



b) [4 points] Assume the sequence ends with a STOP token, encoded as
(
1 0 0 0

)T
(prepended with the bias term at the beginning). Fill in the correct values for the output
function yT = ĝ(xT , sT ), that outputs a scalar yT that is 1 if and only if the RNN has
encountered two consecutive Bs in the sequence and xT is the STOP token.

yT = σ

(( )
· xT +

( )
· sT

)

c) [2 points] Is it possible to solve this task with the attention mechanism applied to all
one-hot encoded elements of the sequence (and no other information)? Justify your answer.



SO
LU
TI
ON

Solution

a) Lets name the elements of our weight matrices in the following way: wx =
(
x1 a b c

)
,ws =(

x2 s
)
. We combine the bias term bias = x1+x2. Our activation function σ only allows

the state st to be 0, 1 or 2. As described in the exercise, our state needs to be sT = 2 as
soon as there have been two consecutive Bs in the sequence. We have st+1 = 1 if xt = B
but xt−1 ̸= B and previously there have not been two consecutive Bs in the sequence. We
have st+1 = 0 if xt ̸= B and previously there have not been two consecutive Bs in the
sequence. Given these premises, we can define a set of rules that need to hold in order for
the RNN to achieve the desired states (all rules defined for a equally need to hold for c as
well):

(1) bias+ a < 0 (So that state 1 can be reset to 0)

(2) bias+ b = 1 (So that state 0 can be set to 1 and state 1 can be set to 2)

(3) bias+ a+ s ≤ 0 (So that state 1 can be reset to 0 if A or C come after a single B)

(4) bias+ b+ s ≥ 2 (So that state 1 can be set to 2 after two Bs in a row)

(5) bias+ a+ 2s ≥ 2 (so that state 2 stays at 2 even after other letters appear after the
two Bs)

Of the following solutions, all incorrect ones violate at least one of the above rules and
therefore lead to incorrect states, violating the sT = 2 iff there have been two consecutive
Bs in the sequence constraint.

• wx =
(
−1 0 1 0

)
,ws =

(
−1 1

)
# True ⊗ False (2)

• wx =
(
1 0 1 0

)
,ws =

(
1 −3

)
# True ⊗ False (1,2,4,5)

• wx =
(
−4 0 5 0

)
,ws =

(
0 3

)
⊗ True # False

• wx =
(
−3 0 4 0

)
,ws =

(
0 2

)
# True ⊗ False (5)

• wx =
(
0 −1 1 −1

)
,ws =

(
0 2

)
# True ⊗ False (3)

• wx =
(
−1 −2 1 −2

)
,ws =

(
1 2

)
⊗ True # False

• wx =
(
1 −1 1 −1

)
,ws =

(
0 1

)
# True ⊗ False (1,3)

• wx =
(
−1 2 −1 2

)
,ws =

(
0 −1

)
# True ⊗ False (1,2,4)

• wx =
(
2 −2 1 −2

)
,ws =

(
−2 2

)
⊗ True # False

• wx =
(
−1 −1 2 −1

)
,ws =

(
0 2

)
⊗ True # False

wx :=

(
0 0 2 0 0
−1 0 1 0 0

)
,ws :=

(
−1 1 1
0 1 1

)
b) There are two options, 1 iff condition met, else 0:

yT = σ
((
0 −1 −1 −1

)
· xT +

(
−1 1

)
· sT

)
The other option is 1 iff condition met, else 2 (due to 0 not being specified in question)

yT = σ
((
0 1 1 1

)
· xT +

(
3 −1

)
· sT

)
c) No in the standard way it is not possible, because the attention mechanism is invariant to

the position of an element in the sequence. Only using positional encoding would allow
for that to be possible.



7 Computability (17 points)

Tiling

a) [3 points] Consider am×n grid that we want to fill with d given tiles, wherem,n, d ∈ N.
Is the problem decidable? Explain your answer.

b) [5 points] Does a valid tiling of the infinite plane exist for the following three tiles?
Explain your answer.

a c

b

a

1 a a

c

b

2 c a

a

c

3



Turing Machines

Consider the Turing Machine (TM) described by the transition tables below. The initial tape
stores a sequence of a’s and b’s (bounded by ⊥ in the beginning and end). The reading head
starts on the first non ⊥ character. The machine consists of four states s0, s1, s2, and s3 plus a
halting state sh.

Starting state: s0

Transitions from state s0

Read Write Pointer Next state

a −→ a right s0

b −→ b right s1

⊥ −→ ⊥ stay sh

Transitions from state s1

Read Write Pointer Next state

a −→ b left s2

b −→ b right s1

⊥ −→ ⊥ stay sh

Transitions from state s2

Read Write Pointer Next state

a −→ ⊥ stay sh

b −→ a left s3

⊥ −→ ⊥ stay sh

Transitions from state s3

Read Write Pointer Next state

a −→ a left s3

b −→ b left s3

⊥ −→ ⊥ right s0

c) [5 points] Consider the initial tape

⊥ a a b a b a b ⊥

Draw the contents of the tape and the position of the reading head after transitioning from
s3 to s0 for the first time.

d) [4 points] What’s the purpose of this TM? (In one high level sentence, how does the
TM change the tape?)



SO
LU
TI
ON

Solution

a) Because the grid is finite, we can brute force and try every of the at most (mn)d combi-
nations. The problem is always decidable.

b) Yes, the following 3× 3 square can be repeated to form a valid periodic tiling.

c a

a

c

3 a a

c

b

2 a c

b

a

1

a c

b

a

1 c a

a

c

3 a a

c

b

2

a a

c

b

2 a c

b

a

1 c a

a

c

3

c) The tape contents and the position of the head after transitioning from s3 to s0 are as
follows:

⊥ a a a b b a b ⊥

d) The Turing Machine sorts the input (first all a’s then all b’s).



SO
LU
TI
ON

Extra Pages



SO
LU
TI
ON

Use this page if you need extra space.


