Computational Thinking
Exercise 14

1 PCP warm-up

Do the following PCPs have a solution?

- a) Domino set $\left[\frac{aa}{aaa} \right]$, $\left[\frac{abba}{bbb} \right]$, $\left[\frac{aba}{aab} \right]$, $\left[\frac{bbab}{bab} \right]$.
- b) Domino set $\left[\frac{ab}{ba} \right]$, $\left[\frac{abab}{baab} \right]$, $\left[\frac{ba}{ab} \right]$.
- c) Domino set $\left[\frac{abbb}{b} \right]$, $\left[\frac{bb}{bba} \right]$, $\left[\frac{ac}{ca} \right]$, $\left[\frac{ac}{ca} \right]$, $\left[\frac{bb}{bba} \right]$.
- d) Domino set $\left[\frac{ad}{bad} \right]$, $\left[\frac{bc}{cba} \right]$, $\left[\frac{ca}{ac} \right]$, $\left[\frac{dc}{bc} \right]$.

2 PCP variants

Are the following variants of the PCP problem decidable or undecidable?

- a) ab^k PCP: each word α and each word β has the following form: it starts with a single letter a, and then an arbitrary number of letters b. Some examples for valid words are a, abb or $abbbbbb$.
- b) Limited-use PCP: given an integer parameter k in the input, we only accept domino sequences that contain each domino at most k times.
- c) Unique-triplet PCP: we only accept domino sequences where no consecutive triplet of dominoes appears two times, i.e. there are no distinct indices i,j such that each of the following three pairs of dominoes are the same: those at positions i and j, those at positions $(i+1)$ and $(j+1)$, and those at positions $(i+2)$ and $(j+2)$.
- d) Two-color PCP: besides the two words (α, β), dominoes also have a color: each domino is painted red or blue. We only accept domino sequences that are alternating, i.e. a red domino is always followed by a blue domino, and vice versa.
- e) Half-used PCP: given the input set of dominoes S, we only accept domino sequences that use at most half of the domino types (possibly with repetitions), i.e. there are at least $\frac{1}{2} \cdot |S|$ input dominoes that never occur in the sequence.
- f) Silly PCP: for each domino (α, β) of the input set, the two words have the same length, i.e. we have $|\alpha| = |\beta|$.
- g) Almost-silly PCP: for some constant integer $c > 1$, the length of each word α and each word β has to be a multiple of c.
- h) Binary PCP: the size of the alphabet is restricted to two characters, i.e. $\Sigma = \{0, 1\}$.