
Computer Engineering and
Networks Laboratory

—— NSG, DISCO & DYNAMO ——

HS 2023 Prof. L. Josipović, Prof. L. Vanbever, Prof. R. Wattenhofer

Discrete Event Systems
Sample Solution

29th of January 2024, 15:00–17:00.

Do not open or turn before the exam starts!
Read the following instructions!

The exam takes 120 minutes and there is a total of 120 points. The maximum
number of points for each subtask is indicated in brackets. Justify all your
answers unless the task explicitly states otherwise. Mark drawings precisely.

Answers which we cannot read are not awarded any points!

At the beginning, fill in your name and student number in the corresponding fields
below. You should fill in your answers in the spaces provided on the exam. If you
need more space, we will provide extra paper for this. Please label each extra sheet
with your name and student number.

Name Legi-Nr.

Points

Topic Achieved Points Max. Points

1 Multiple Choice on Languages & Automata 8

2 Regular Languages 12

3 Context-Free Languages 12

4 Tandem-Pumping Lemma 8

5 White Rabbit 20

6 Züri-Säcke 20

7 Equivalent BDDs 8

8 Characteristic Functions 18

9 Petri Nets 14

Total 120

2

1 Multiple Choice on Languages & Automata (8 points)

For each of the following statements, indicate whether they are TRUE or FALSE. No justifi-
cation is needed. There is always one correct answer. Each block of questions is awarded up to
4 points: 4 points for 4 correct answers, 2 points for 3 correct answers, and 0 points otherwise.

1.1 Regular Languages [4 points]

Let Σ “ t0, 1u and consider the automaton A:

q1start q2 q3 A

0

1

ε

1

0

1

0

0, 1

TRUE FALSE

a) The given automaton A is a DFA.
There is an ε-transition allowing to go to states tq2, q3u from
q2 upon reading a 0.

l Xl

b) The given automaton A is irreducible.

Since this is an NFA, the A-state can be safely deleted. The
minimal version of it looks like this:

q1start q2 q3
0

0, 1

0

l Xl

c) The language LpAq interpreted as signed binary numbers
describes all positive (first bit is 0) even numbers with at
least two bits.
LpAq describes all numbers whose bit representation starts
(positive) and ends (even) with a 0.

Xl l

d) L
`

A
˘

“
`

0Y 1˚ Y 01
˘`

0.
The REX accepts 0, but the automaton does not.

l Xl

3

1.2 Properties of Languages [4 points]

Consider the languages on the non-empty, finite alphabet Σ:

LH “ H,

Lfin: a non-empty, finite language,

Lreg: a regular (but infinite) language, and

Lcf : a context-free (but irregular) language.

TRUE FALSE

a) The language L “ LH . Lcf is irregular.
L “ LH . Lcf “ H; hence, L is finite (and thus regular).

l Xl

b) The language L “ Lfin must be infinite.

Lfin is the complement of Lfin, i.e., Lfin “ Σ˚zLfin. Thus,
Lfin is regular (closure of regular languages) and infinite.

Xl l

c) The language L “ Lfin X Lreg is regular.

Lfin is regular (closure of regular languages) and infinite.
In addition, regular languages are closed under intersection.

Xl l

d) L “ tw | w P Lfin or w P Lreg, but not bothu is regular.

L “ pLfin Y Lregq X Lfin X Lreg. Hence, L is regular due
to the closure of regular languages over union, intersection
and complement.

Xl l

4

2 Regular Languages (12 points)

The languages L1, L2, L3 are defined over the alphabet Σ “ t0, 1u as follows:

• L1 “ 01˚,

• L2 “ p01q˚.

• L3 is the language recognized by the following DFA:

αstart β γ A
1 1

0

0, 1

0, 10

a) [2] Draw a Deterministic Finite Automaton (DFA) recognizing L1 with at most 3 states.

b) [2] Draw a Deterministic Finite Automaton (DFA) recognizing L2 with at most 3 states.

5

c) [8] Draw a Non-Deterministic Finite Automaton (NFA) accepting all words that are
contained in exactly one (but not two or three) of the three languages L1, L2, or L3.

6

Model solution

a) L1 “ 01˚:

1start 2 x
0

1

0

1 0, 1

b) L2 “ p01q˚:

astart b x

0

1

0

1

0, 1

c) The cartesian product construction allows us to track the state of two automata in paral-
lel. By applying the construction twice, i.e., to build the automaton A “ pL1ˆL2qˆL3,
we obtain an automaton whose states track the three states within each automaton. We
obtain the desired automaton by marking all states as accepting, that would be accepting
states in exactly one of the original automata.

We build a cartesian product automaton of the three automata, using only the reachable
states by iteratively building the next state:

1aαstart

2bα xxβ

xxα2aβ xxγ

2xγ xbx

xax
2xx

0 1

01 1

1 0

0

1

1
1

0

1

7

3 Context-Free Languages (12 points)

a) [4] Give the alphabet Σ and a Context-Free Grammar (CFG) for the language L1 using
at most two non-terminal symbols:

L1 “ ta
m#bn#cn#am | m,n ě 0u.

b) [8] Draw a Push-Down Automaton (PDA) that recognizes L2 with at most 8 states:

L2 “ ta
m#bn#cn#am | m ą 0, n ě 0, pm` nq is oddu.

8

Model solution

a) The language L1 is defined over the alphabet Σ “ ta, b, c,#u and can be generated from
this context-free grammar:

S Ñ aSa | #X#

X Ñ bXc | #

b) The language L2 is defined over the alphabet Σ “ ta, b, c,#u and can be recognized, for
example, by these two push-down automata:

q0start q1 odd

q1 even

q2 odd

q2 even

q3 q4 q5

ε, εÑ $

a, εÑ a

a
,ε
Ñ
a

a
,ε
Ñ
a

#, εÑ ε

#, εÑ ε

b,
ε
Ñ
b b,ε

Ñ
b

#, εÑ ε

c, bÑ ε

#, εÑ ε

a, aÑ ε

ε, $ Ñ ε

q0start q1 q2 q3 even

q3 odd

q4 even

q4 odd q5

ε, εÑ $

a, εÑ a

a, εÑ a

#, εÑ ε

b, εÑ b

#, εÑ ε

c,
b
Ñ
ε c,b

Ñ
ε

#, εÑ ε

#, εÑ ε

a
,a
Ñ
ε a

,a
Ñ
ε

ε, $ Ñ ε

9

10

4 Tandem-Pumping Lemma (8 points)

Consider the language
L “ taibjck | 0 ă i ă j ă ku.

Show that L is not context-free using the tandem-pumping lemma.

11

Model solution

We prove that L is not context-free using the tandem-pumping lemma:

1. Assume for contradiction that L was context-free.

2. There must exist some p, s.t. any word w P L with |w| ě p is tandem-pumpable.

3. Choose the word w “ apbp`1cp`2 P L with length |w| ą p.

4. Consider all ways to split w “ uvxyz s.t. |vxy| ď p and |vy| ě 1.

(i) a P vy: Note that: a P vy ùñ c R vy due to |vxy| ď p.

We argue that w1 “ uv2xy2z R L,

• either because b R vy and then #apw
1q ě #bpw

1q,

• or because b P vy, but then #bpw
1q ě #cpw

1q.

(ii) a R vy: Observe that w1 “ uv0xy0z R L,

• either because b P vy and then #apw
1q ě #bpw

1q,

• or because b R vy, but then c P vy and thus #bpw
1q ě #cpw

1q.

5. All cases combined lead to a contradiction to p being a valid tandem-pumping length.

6. Consequently, L cannot be context-free.

12

13

5 White Rabbit (20 points)

A white rabbit is jumping around the vertices of the following garden labyrinth:

At the start, he jumps happily around in the following way: in every time step, independently
of previous steps, he chooses a neighboring vertex of the labyrinth uniformly at random and
jumps to it.

a) [2] Is the Markov Chain corresponding to the rabbit’s happy jumping:

(i) irreducible YES NO

(ii) aperiodic YES NO

b) [2] What is the expected number of time steps between two successive visits to the vertex
Z?

c) [4] If the rabbit starts jumping in the vertex X, what is the expected amount of time
before he leaves the set of vertices tX,Y u?

14

d) [3] A brown rabbit enters the labyrinth. Show that if the white rabbit started in the
vertex X and the brown rabbit in the vertex Y and both jump around happily (they
always jump at the same time), if they eventually met in the same vertex, then at least
one of them must have visited the vertex Z.

The rabbit gets bored and starts jumping around smartly : in every time step, independently
of previous steps, it chooses a neighboring vertex of the labyrinth that isn’t the vertex he came
from in the previous time step uniformly at random and jumps to it.

e) [9] If the rabbit starts jumping smartly in the vertex Z and assumes that he came from
the vertex Y , what is the expected amount of time before it leaves the inner 5 vertices
of the labyrinth?

15

Model solution

a) The chain is irreducible, as it’s a random walk on a connected graph, and aperiodic as
the graph contains cycles of length 3.

b) For a random walk on a connected graph, we can compute the stationary distribution as

πv “
degpvq

2m and as the expected return time to a state Z is π´1
Z we have

hZZ “ ErTZs “
1

πZ
“

2 ¨ 16

4
“ 8.

c) We denote by EX the expected amount of time the rabbit takes to leave the set if starting
in vertex X, and EY analogously. We then have:

EX “ 1`
1

3
EY

EY “ 1`
1

4
EX

which gives EX “ 16
11 .

d) Assume the opposite. Without the vertex Z, the resulting graph is bipartite (as in the
picture below) and the Markov Chains corresponding to the movement of the white and
brown rabbits are 2-periodic.

Now, notice that the brown rabbit starts in an unmarked vertex and always moves to a
marked one while the white rabbit does the opposite, so they will never meet.

e) We first simplify the graph using its inherent symmetry. Keep the vertex Z as-is, take
the other 4 interior vertices to be one new vertex I, and take the 4 exterior vertices to be
one new vertex E. As the behavior of the rabbit “remembers” the last two time steps,
our set of states will be ordered pairs of vertices Z, I and a state E which represents
entering the outer 4 vertices. We can compute the transition probabilities as follows:

• pIZ,ZI “ 1 as after visiting Z the rabbit must go to I.

• pZI,II “
2
3 , pZI,E “

1
3 as the rabbit cannot go back to Z.

• pII,IZ “
1
3 , pII,II “

1
3 , pII,E “

1
3 .

16

We now define EIZ ,EZI ,EII analogously to task d) and we have

EIZ “ 1` EZI

EZI “ 1`
2

3
EII

EII “ 1`
1

3
EIZ `

1

3
EII

which gives EIZ “ 9
2 .

17

6 Züri-Säcke (20 points)

You live in a shared flat and it’s your turn to pay for the garbage bags (“Züri-Säcke”) for
the coming week. During this time, your (potentially adversarial) flatmates will generate a
cumulative volume v ą 0 of waste, but they care about the environment and you know that
v ď 4 (for simplicity assume that you do not generate any waste yourself). You don’t know v
in advance (except that 0 ă v ď 4q and you have no information about the arrival time of the
waste throughout the week.

You are in charge of buying and replacing the bags when they are full. At the start of the
week, you place a new empty bag of your choice, and at the end of the week, the garbage truck
will collect all perfectly and partially filled bags. Suppose that you are able to fully utilize the
volume of each bag (i.e., if a piece of waste is too big to fit inside a partially filled bag, it can
always be cut in a way that perfectly fills the old bag and partially fills a new one), but you
will never take a piece of garbage out of a bag again (“yuck!”). There are 3 types of bags at
your disposal, each in infinite quantities:

Bag type Cost Size

small 1 1

medium 2 2

large 3 4

a) [2] Show that there is never any gain from using a medium bag.

b) [3] What is the optimal offline strategy to select bags during the week for a given input
0 ă v ď 4, and what is the cost of this strategy?

18

What are the competitive ratios of the two following online strategies?

c) [3] Algorithm As: Only use small bags.

d) [3] Algorithm Al: Only use large bags.

e) [3] Is there another deterministic strategy that is better than these two for some 0 ă v ď 4?
Justify your answer.

You suspect that your flatmates do not have your best interest at heart, so you want to use a
randomized strategy in order to be unpredictable.

f) [6] Derive a lower bound β on the expected competitive ratio of any randomized strategy.
(We award full points for β ě 5{4, and already 4 points for any β ą 1; if you find the
optimal β, we give you 3 bonus points!)

19

Model solution

a) You can always replace a medium bag with two small bags for the same cost and same
total volume.

b) An optimal strategy is to use the smallest bag whose size is at least v. The cost of the
strategy is the cost of this bag, i.e., minprvs, 3q.

c) The worst case happens when one could have used 1 large bag instead of 4 small bags
(i.e., when 3 ă v ď 4), and the corresponding competitive ratio is 4

3 .

d) The worst case happens when one could have used 1 small bag instead of 1 large bag
(i.e., when 0 ă v ď 1), and the corresponding competitive ratio is 3.

e) No. There are only two candidates for best deterministic algorithm covering a total
volume of 4 (recall that you can neglect medium bags):

• As: The algorithm starts with a small bag. In that case, it’s always profitable to
continue with small bags as it will cost at most 4, while following with a large bag
at any point will always cost at least 4. The competitiveness of that algorithm is 1
for 0 ă v ď 3 and 4

3 for 3 ă v ď 4.

• Al: The algorithm starts with a large bag and no other bag will ever be needed.
The competitiveness of that algorithm is 3 for 0 ă v ď 1, 3

2 for 1 ă v ď 2 and 1 for
2 ă v ď 4 .

Any other deterministic algorithm is at least as costly for every input 0 ă v ď 4 (thus
also in expectation).

f) Recall Yao’s principle for competitive ratios: let rr be the expected competitive ratio of
any randomized online algorithm, Aopt the optimal offline algorithm, Ad any deterministic
online algorithm and p any distribution on input v. Then

rr ě min
Ad

Ev„p rrdpvqs with rdpvq “
costAd

pvq

costAoptpvq
.

Let ppvq be a distribution on s0, 4s. By Yao’s principle and using the observation of
the previous question (i.e., the best deterministic algorithm is either As or Al), one can
simply define a distribution ppvq over s0, 4s and propose

β “ min
dPts,lu

Ev„p rrdpvqs “ min

ˆ

p03 `
4

3
p34, 3p01 `

3

2
p12 ` p24

˙

as a lower bound, where pab “ Pra ă v ď bs (e.g., the uniform distribution yields β “ 13
12).

Full points are granted if β ě 5
4 (e.g., with p01 “ p34 “

1
2q.

——————————————————–

For the ambitious student, we now find p that yields the best possible lower bound that
can be found using Yao’s principle. Since we are only interested in expected performance
of these two deterministic algorithms, we do not need to test all the different distributions

20

ppvq, as only the probability masses p01, p12, p23 and p34 are susceptible to influence the
expected performance of these algorithms. Thus we have:

Ev„prrspvqs “ p01 ` p12 ` p23 `
4

3
p34, Ev„prrlpvqs “ 3p01 `

3

2
p12 ` p23 ` p34.

To find the best bound, we want to maximize the minimum of these two quantities. There
is clearly no benefit to put any probability mass into p12 and p23, as this probability mass
would only improve the bound if it was moved to p01 and p34, respectively. Substituting
p01 “ 1´ p34, we get

Ev„prrspvqs “ 1`
p34

3
, Ev„prrlpvqs “ 3´ 2p34.

Since one is increasing and the other is decreasing in p34, the best bound is achieved when
these two quantities are equal. Solving for p34 and substituting back, we get p01 “

1
7 and

p34 “
6
7 . This gives us the best lower bound 9

7 « 1.28, which is very close to the naive
deterministic algorithm of always using small bags (« 1.33).

21

7 Equivalent BDDs (8 points)

Figure 1 describes the reduced ordered binary decision diagrams (ROBDDs) of two Boolean
functions f and g; ROBDDpfq is the ROBDD of f for the variable order Πf : x ă y ă z;
ROBDDpgq is the ROBDD of g for the variable order Πg : z ă y ă x.

x

y y

z

10

x

y y

z

10

ROBDD(f) ROBDD(g)

Figure 1: BDDs for Boolean functions f and g.

a) [3] How can ROBDD comparison be used to check whether two functions are equivalent?
Describe in 1–2 sentences.

b) [3] Use ROBDD comparison to determine whether the Boolean functions f and g are
equivalent. Clearly show the steps of your work (e.g., draw any required BDDs and BDD
transformations) and justify your proof.

22

c) [2] Determine the logic function and draw the ROBDD of Dz : fpx, y, zq for variable
order x ă y.

23

Model solution

a) Two Boolean functions are equivalent iff the two ROBDDs, built from the two Boolean
functions using APPLY and SIMPLIFY with the same variable ordering, are identical.

b) We first determine the Boolean function of g: gpx, y, zq “ x ¨ y ¨ z ` x ¨ y ` x ¨ y ¨ z. We
use the APPLY operation, following the same variable order Πf , to obtain the OBDD;
we then use the SIMPLIFY operation to obtain the ROBDD; the obtained ROBDD is
identical to the one in Figure 1a. Since the two ROBDDs are identical, therefore, the
Boolean functions f and g are identical.

c) pDx : fpx, y, zqq “ x` y. See the ROBDD in Figure 2.

xf

y

10

Figure 2: ROBDD of pDx : fpx, y, zqq.

24

8 Characteristic Functions (18 points)

Figure 3 depicts a system of 3 light bulbs; there is 1 push button under each light bulb. The
left side of Figure 3 describes the initial state of the system—light bulb 1 is in the on state,
and light bulbs 2 and 3 are in the off state. A state of this system is represented using a 3-
bit–binary encoding with state bits x, y, z. If light bulb 1 is in the on state, x :“ 1, otherwise,
x :“ 0; the encodings for y and z are defined analogously. For instance, the initial state on,
off, off is encoded as px, y, zq :“ p1, 0, 0q.

In each state, we move to the next state by pushing one and exactly one button: whenever a
button is pushed, the light bulb is directly above it and the adjacent light bulbs are toggled.
For example, suppose that we are in the current state px, y, zq :“ p1, 0, 0q; if we push button 3,
the states of the light bulbs of the next state will be on, on, on, i.e., px1, y1, z1q :“ p1, 1, 1q.

1
(on)

2
(off)

3
(off)

1
(on)

2
(on)

3
(on)

Push
button 3

Initial state

Figure 3: A system with 3 light bulbs.

Consider the state machine described above. The state space of the state machine is denoted
as S and its set of state transitions as T : SˆS. The characteristic function of T is denoted as
ψT px, y, z, x

1, y1, z1q, where x, y, z are the state variables of the current state and x1, y1, z1 are the
state variables for the next state. In the following questions, when writing the characteristic
functions, use only Boolean literals (e.g., x and x1) and Boolean operators; when writing CTL
formulas, use only Boolean literals, Boolean operations, and CTL quantifiers.

a) [3] Determine the characteristic function ψ1px, y, zq of the set of states that satisfy the
following constraint: if light bulb 1 is in the on state, then exactly one of the other light
bulbs, 2 or 3, must be in the on state. Use only Boolean operators.

b) [3] Formulate the following property using CTL: There is always some time in the future
that the number of light bulbs that are in the on state is an even number (recall that zero
is an even number).

25

c) [3] Determine |T |—the number of transitions in T (both reachable and unreachable).
Justify your answer.

d) [3] Determine the value of ψT p1, 0, 1, 0, 0, 0q.

e) [3] Consider the set of initial states Q0 :“ tp1, 0, 0qu with the characteristic function ψQ0 .
Determine the characteristic function ψ2px, y, z, x

1, y1, z1q of the set of state transitions
starting from any state in the set of initial states, i.e., ψQ0px, y, zq ¨ ψT px, y, z, x

1, y1, z1q.

f) [3] Assume that you perform one step of reachability analysis, starting from the set of
initial states Q0. Determine ψQ1—the characteristic function of the set of all reached
states Q1, i.e., ψQ0px

1, y1, z1q ` pDx, y, z : ψQ0px, y, zq ¨ ψT px, y, z, x
1, y1, z1qq.

26

Model solution

a) ψ1px, y, zq “ x` py ¨ z ` y ¨ zq.

b) AF px ¨ y ¨ z ` x ¨ y ¨ z ` x ¨ y ¨ z ` x ¨ y ¨ zq.

c) There are 8 states in the state space S; in each state, we push 1 of the 3 buttons, therefore,
there are 24 state transitions.

d) When the current state px, y, zq “ p1, 0, 1q,

• when we push button 1, we get p0, 1, 1q

• when we push button 2, we get p0, 1, 0q

• when we push button 3, we get p1, 1, 0q

Therefore, this transition is not in the set of state transitions, i.e., ψT p1, 0, 1, 0, 0, 0q “ 0.

e) The set of transitions starting with any state in Q0 contains 3 transitions:

• px, y, z, x1, y1, z1q :“ p1, 0, 0, 0, 1, 0q

• px, y, z, x1, y1, z1q :“ p1, 0, 0, 0, 1, 1q

• px, y, z, x1, y1, z1q :“ p1, 0, 0, 1, 1, 1q

The characteristic function of this set evaluates to 1 iff the input is one of the 3 transitions,
i.e., ψ2px, y, z, x

1, y1, z1q :“ x ¨ y ¨ z ¨ px1 ¨ y1 ¨ z1 ` x1 ¨ y1 ¨ z1 ` x1 ¨ y1 ¨ z1q.

f) ψQ1px
1, y1, z1q :“ px1 ¨ y1 ¨ z1 ` x1 ¨ y1 ¨ z1 ` x1 ¨ y1 ¨ z1 ` x1 ¨ y1 ¨ z1q.

27

9 Petri Nets (14 points)

p1

p2

p3 p4

t1

t2

t3

t4

Figure 4: A Petri net.

a) [8] Consider the Petri net depicted in Figure 4. Determine the highest liveness level
for transitions t1, t2, t3, and t4. Justify your answer for each liveness level that you
determine; if the transition is Li live but not Li`1-live, explain why.

Note: A transition t in a Petri net is

• dead iff t cannot be fired in any firing sequence,

• L1-live iff t can be fired at least once in some firing sequence,

• L2-live iff, @k P N`, t can be fired at least k times in some firing sequence,

• L3-live iff t appears infinitely often in some infinite firing sequence,

• L4-live iff t is L1 live for every marking that is reachable from M0.

Lj`1 liveness implies Lj liveness.

28

p1

p2

t1
dpt1q “ 2

t2
dpt2q “ 2

t3
dpt3q “ 1

2

Figure 5: A time Petri net at simulation step 0 (τ “ 0).

b) [6] Consider the time Petri net in Figure 5 at simulation step 0. The transitions are asso-
ciated with the following delays between their activation and firing: dpt1q “ 2, dpt2q “ 2,
dpt3q “ 1. The edge (p1, t2) has an associated weight of 2; each other edge has a weight
of 1.

Simulate the behavior of the time Petri net by filling in the table below. For each
simulated step, corresponding to a firing of the Petri net, indicate the simulation time τ ,
the transition tfired that fires in τ , the resulting marking M τ , and the updated event list
Lτ .

Note: If there are several transitions enabled at the same time, they fire in the order of
their index, i.e., the transition with the smallest index fires first.

step τ tfired M τ Lτ

0 0 - r1, 1s (t1, 2), (t3, 1)

1

2

29

Model solution

a) • t1: L3-live. We can fire t1 infinitely starting from the initial marking, e.g., with
sequence tt1, t1, . . . u. t1 is not L4-live, because t1 is dead for any marking we obtain
after firing t2.

• t2: L1-live. It can be fired once and exactly once starting from the initial state, e.g.,
with sequence tt2u. After firing it, there is no way to place a token at p1, therefore
it is not L2-live.

• t3: L2-live. For any positive integer N, we can first fire t1 for N times, then fire t2
once, then fire t3 N times. It is not L3-live, since infinitely firing t1 means t2 is never
fired, therefore infinitely firing t1 means t3 is never fired, and t3 cannot be infinitely
fired.

• t4: L1-live. It can be fired once and exactly once starting from the initial state, e.g.,
with sequence tt1, t2, t4u. It is not L2-live, since after it has been fired once, it can
never be enabled again.

b)

step τ tfired M τ Lτ

0 0 - r1, 1s (t1, 2), (t3, 1)

1 1 t3 r2, 0s (t1, 2), (t2, 3)

2 2 t1 r2, 1s (t1, 4), (t2, 4),
(t3, 3)

30

31

