CrashCourse — Verification of Finite Automata

CTL Model-Checking

Tibor Schneider

TIK
Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

- $A\phi \rightarrow \text{«All } \phi\text{»}$, ϕ holds on all paths
- $E\phi \rightarrow \text{«Exists } \phi\text{»}$, ϕ holds on at least one path
- $X\phi \rightarrow \text{«Ne\text{xt } } \phi\text{»}$, ϕ holds on the next state
- $F\phi \rightarrow \text{«Finally } \phi\text{»}$, ϕ holds at some state along the path
- $G\phi \rightarrow \text{«Globally } \phi\text{»}$, ϕ holds on all states along the path
- $\phi_1 U\phi_2 \rightarrow \text{«}\phi_1 \text{Until } \phi_2\text{»}$, ϕ_1 holds until ϕ_2 holds

Quantifiers over paths
Path-specific quantifiers
Formulation of CTL properties

Proper CTL formula: \(\{A,E\} \{X,F,G,U\} \phi \)

→ Quantifiers **go by pairs**, you need one of each.

Missing Hypothesis

Interpretation on CTL formula

→ Transition functions are **fully defined**
 (i.e. every state has at least one successor)
Inverting properties is sometimes useful!

\[
\begin{align*}
AG \phi & := \neg EF \neg \phi \\
AF \phi & := \neg EG \neg \phi \\
EF \phi & := \neg AG \neg \phi \\
EG \phi & := \neg AF \neg \phi
\end{align*}
\]
Inverting properties is sometimes useful!

“On all paths, for all states, ϕ holds” \iff “There exists no path along which at some state ϕ doesn’t hold.”

$\text{AG } \phi := \neg \text{EF } \neg \phi$

$\text{AF } \phi := \neg \text{EG } \neg \phi$

$\text{EF } \phi := \neg \text{AG } \neg \phi$

$\text{EG } \phi := \neg \text{AF } \neg \phi$
Inverting properties is sometimes useful!

\[\text{AG } \varphi := \neg \text{EF } \neg \varphi \]

“On all paths, for all states, \(\varphi \) holds” ⇔

“There exists no path along which at some state \(\varphi \) doesn’t hold.”

\[\text{AF } \varphi := \neg \text{EG } \neg \varphi \]

“On all paths, there exists a state where \(\varphi \) holds” ⇔ “There exists no path along which \(\varphi \) doesn’t hold for all states.”

\[\text{EF } \varphi := \neg \text{AG } \neg \varphi \]

\[\text{EG } \varphi := \neg \text{AF } \neg \varphi \]

...
Inverting properties is sometimes useful!

“On all paths, for all states, \(\phi \) holds” \(\iff \)
“There exists no path along which at some state \(\phi \) doesn’t hold.”

\[
AG \phi := \neg EF \neg \phi \\
AF \phi := \neg EG \neg \phi \\
EF \phi := \neg AG \neg \phi \\
EG \phi := \neg AF \neg \phi
\]

“On all paths, there exists a state where \(\phi \) holds” \(\iff \) “There exists no path along which \(\phi \) doesn’t hold for all states.”

Remark: There exists other temporal logics.

- LTL (Linear Temporal Logic)
- CTL* = \{CTL, LTL\}
- ...
How to verify CTL properties?

Convert the property verification into a reachability problem

1. Start from states in which the property holds;
2. Compute all predecessor states for which the property still holds true; (same as for computing successor, with the inverse the transition function)
3. If initial states set is a subset, the property is satisfied by the model.

Computation specifics are described in the lecture slides.
So... what is Model-Checking exactly?

An algorithm

Input
- A DES model, M
 - Finite automata,
 - Petri nets,
 - Kripke machine, ...
- A logic property, ϕ
 - CTL,
 - LTL, ...

Output
- $M \models \phi$?
- A trace for which the property does not hold!
Your turn to work!
Ex 1a) Temporal Logic

(i) EF \(a : Q = \{0, 1, 2, 3\} \)

(ii) EG \(a : Q = \{0, 3\} \)

(iii) Build the set step-by-step:

\[
\begin{align*}
AX a : Q_1 &= \{2, 3\} \\
EX AX a : Q_2 &= \{1, 2\}
\end{align*}
\]

(iv) Build the set step-by-step:

\[
\begin{align*}
\neg a : Q_1 &= \{1, 2\} \\
EX \neg a : Q_2 &= \{0, 1\} \\
a \land EX \neg a : Q_3 &= \{0\} \\
EF(a \land EX \neg a) : Q_4 &= \{0, 1, 2, 3\}
\end{align*}
\]
Ex 1b) Temporal Logic

(i) \(\neg \text{AF } Z = \text{EG } \neg Z \implies \text{AF } Z = \neg \text{EG } \neg Z \)

(ii) • To get \(\text{EG } \neg Z \) iteratively, we start with \(Q = \{ q : q \notin Z \} \).
 • At each step, require each state \(q \in Q \) to have \(\exists q' \in Q \cup f(q) \).
 \(\quad \text{This will only remove states in } Q \)
 • Stop as soon as nothing changes anymore.

Require: \(\psi_Z, \psi_f \)

\[
Q_0 = S \setminus Z \\
Q_{i+1} = Q_i \cap \text{pred}(Q_i, f) \\
k = \min\{i \mid Q_{i+1} = Q_i\} \\
Q_{\text{AF } Z} = Z \setminus Q_k
\]

\[
\psi_{\text{cur}} \leftarrow \neg \psi_Z \\
\psi_{\text{next}} \leftarrow \psi_{\text{cur}} \land \psi_{\text{pred}(\psi_{\text{cur}}, f)} \\
\text{while } \psi_{\text{cur}} \neq \psi_{\text{next}} \text{ do} \\
\quad \psi_{\text{cur}} \leftarrow \psi_{\text{next}} \\
\quad \psi_{\text{next}} \leftarrow \psi_{\text{cur}} \land \psi_{\text{pred}(\psi_{\text{cur}}, f)} \\
\text{end while} \\
\text{return } \psi_{\text{AF } Z} = \neg \psi_{\text{cur}}
Ex 2a) Find all possible loops.

(1) \(\rho_1(v_0) = v_0 \)
Ex 2a) Find all possible loops.

(1) $\rho_1(v_0) = v_0$
(2) $\rho_2(v_0) = v_1$, $\rho_2(v_1) = v_1$
Ex 2a) Find all possible loops.

(1) $\rho_1(v_0) = v_0$
(2) $\rho_2(v_0) = v_1$, $\rho_2(v_1) = v_1$
(3) $\rho_3(v_0) = v_1$, $\rho_3(v_1) = v_0$
Ex 2a) Find all possible loops.

(1) $\rho_1(v_0) = v_0$

(2) $\rho_2(v_0) = v_1$, $\rho_2(v_1) = v_1$

(3) $\rho_3(v_0) = v_1$, $\rho_3(v_1) = v_0$

(4) $\rho_4(v_0) = v_1$, $\rho_4(v_1) = v_2$, $\rho_4(v_2) = v_2$
Ex 2a) Find all possible loops.

1. \(\rho_1(v_0) = v_0 \)
2. \(\rho_2(v_0) = v_1, \rho_2(v_1) = v_1 \)
3. \(\rho_3(v_0) = v_1, \rho_3(v_1) = v_0 \)
4. \(\rho_4(v_0) = v_1, \rho_4(v_1) = v_2, \rho_4(v_2) = v_2 \)
5. \(\rho_5(v_0) = v_1, \rho_5(v_1) = v_2, \rho_5(v_2) = v_1 \)
Ex 2a) Find all possible loops.

(1) $\rho_1(v_0) = v_0$
(2) $\rho_2(v_0) = v_1$, $\rho_2(v_1) = v_1$
(3) $\rho_3(v_0) = v_1$, $\rho_3(v_1) = v_0$
(4) $\rho_4(v_0) = v_1$, $\rho_4(v_1) = v_2$, $\rho_4(v_2) = v_2$
(5) $\rho_5(v_0) = v_1$, $\rho_5(v_1) = v_2$, $\rho_5(v_2) = v_1$
(6) $\rho_6(v_0) = v_1$, $\rho_6(v_1) = v_2$, $\rho_6(v_2) = v_0$
Ex 2a) Find all possible loops.

(1) \[\rho_1(v_0) = v_0 \]
(2) \[\rho_2(v_0) = v_1, \rho_2(v_1) = v_1 \]
(3) \[\rho_3(v_0) = v_1, \rho_3(v_1) = v_0 \]
(4) \[\rho_4(v_0) = v_1, \rho_4(v_1) = v_2, \rho_4(v_2) = v_2 \]
(5) \[\rho_5(v_0) = v_1, \rho_5(v_1) = v_2, \rho_5(v_2) = v_1 \]
(6) \[\rho_6(v_0) = v_1, \rho_6(v_1) = v_2, \rho_6(v_2) = v_0 \]
(7) \[\rho_7(v_0) = v_2, \rho_7(v_2) = v_2 \]
Ex 2a) Find all possible loops.

(1) \(\rho_1(v_0) = v_0 \)
(2) \(\rho_2(v_0) = v_1, \rho_2(v_1) = v_1 \)
(3) \(\rho_3(v_0) = v_1, \rho_3(v_1) = v_0 \)
(4) \(\rho_4(v_0) = v_1, \rho_4(v_1) = v_2, \rho_4(v_2) = v_2 \)
(5) \(\rho_5(v_0) = v_1, \rho_5(v_1) = v_2, \rho_5(v_2) = v_1 \)
(6) \(\rho_6(v_0) = v_1, \rho_6(v_1) = v_2, \rho_6(v_2) = v_0 \)
(7) \(\rho_7(v_0) = v_2, \rho_7(v_2) = v_2 \)
(8) \(\rho_8(v_0) = v_2, \rho_8(v_2) = v_0 \)
Ex 2a) Find all possible loops.

(1) \(\rho_1(v_0) = v_0 \)
(2) \(\rho_2(v_0) = v_1, \rho_2(v_1) = v_1 \)
(3) \(\rho_3(v_0) = v_1, \rho_3(v_1) = v_0 \)
(4) \(\rho_4(v_0) = v_1, \rho_4(v_1) = v_2, \rho_4(v_2) = v_2 \)
(5) \(\rho_5(v_0) = v_1, \rho_5(v_1) = v_2, \rho_5(v_2) = v_1 \)
(6) \(\rho_6(v_0) = v_1, \rho_6(v_1) = v_2, \rho_6(v_2) = v_0 \)
(7) \(\rho_7(v_0) = v_2, \rho_7(v_2) = v_2 \)
(8) \(\rho_8(v_0) = v_2, \rho_8(v_2) = v_0 \)
(9) \(\rho_9(v_0) = v_2, \rho_9(v_2) = v_1, \rho_9(v_1) = v_1 \)
Ex 2a) Find all possible loops.

(1) \(\rho_1(v_0) = v_0 \)
(2) \(\rho_2(v_0) = v_1, \rho_2(v_1) = v_1 \)
(3) \(\rho_3(v_0) = v_1, \rho_3(v_1) = v_0 \)
(4) \(\rho_4(v_0) = v_1, \rho_4(v_1) = v_2, \rho_4(v_2) = v_2 \)
(5) \(\rho_5(v_0) = v_1, \rho_5(v_1) = v_2, \rho_5(v_2) = v_1 \)
(6) \(\rho_6(v_0) = v_1, \rho_6(v_1) = v_2, \rho_6(v_2) = v_0 \)
(7) \(\rho_7(v_0) = v_2, \rho_7(v_2) = v_2 \)
(8) \(\rho_8(v_0) = v_2, \rho_8(v_2) = v_0 \)
(9) \(\rho_9(v_0) = v_2, \rho_9(v_2) = v_1, \rho_9(v_1) = v_1 \)
(10) \(\rho_{10}(v_0) = v_2, \rho_{10}(v_2) = v_1, \rho_{10}(v_1) = v_2 \)
Ex 2a) Find all possible loops.

(1) $\rho_1(v_0) = v_0$
(2) $\rho_2(v_0) = v_1$, $\rho_2(v_1) = v_1$
(3) $\rho_3(v_0) = v_1$, $\rho_3(v_1) = v_0$
(4) $\rho_4(v_0) = v_1$, $\rho_4(v_1) = v_2$, $\rho_4(v_2) = v_2$
(5) $\rho_5(v_0) = v_1$, $\rho_5(v_1) = v_2$, $\rho_5(v_2) = v_1$
(6) $\rho_6(v_0) = v_1$, $\rho_6(v_1) = v_2$, $\rho_6(v_2) = v_0$
(7) $\rho_7(v_0) = v_2$, $\rho_7(v_2) = v_2$
(8) $\rho_8(v_0) = v_2$, $\rho_8(v_2) = v_0$
(9) $\rho_9(v_0) = v_2$, $\rho_9(v_2) = v_1$, $\rho_9(v_1) = v_1$
(10) $\rho_{10}(v_0) = v_2$, $\rho_{10}(v_2) = v_1$, $\rho_{10}(v_1) = v_2$
(11) $\rho_{11}(v_0) = v_2$, $\rho_{11}(v_2) = v_1$, $\rho_{11}(v_1) = v_0$
Ex 2b) Encode the physical topology

G is a complete graph, except for the edge between v_0 and t.

$\rho(v_0) \neq t$

$\psi_{\text{topo}}(Z) = \neg(z^1_0z^0_0)$
Ex 2c) Packets eventually reach t.

Enumerate all possible paths to reach t.

$$\psi_t(Z) = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
Ex 2c) Packets eventually reach t.

Enumerate all possible paths to reach t.

$$\psi_t(Z) = z_0^1 z_0^0$$
Ex 2c) Packets eventually reach t.

Enumerate all possible paths to reach t.

$$\psi_t(Z) = z_0^1z_0^0 + z_0^1z_0^0$$
Ex 2c) Packets eventually reach t.

Enumerate all possible paths to reach t.

$$\psi_t(Z) = z_0^1 z_0^0 + z_0^1 z_0^0 z_1^1 z_1^0$$

$$Z = \begin{cases}
 z_0^1 z_0^0 & \rho(v_0) \\
 z_1^1 z_1^0 & \rho(v_1) \\
 z_2^1 z_2^0 & \rho(v_2)
\end{cases}$$

$$\sigma(v_0) = 00 \quad \sigma(v_1) = 01 \quad \sigma(v_2) = 10 \quad \sigma(v_3) = 11$$
Ex 2c) Packets eventually reach t.

Enumerate all possible paths to reach t.

$$\psi_t(Z) = z_0^1 z_0^0 + z_0^1 z_0^0 (z_1^1 z_1^0 + z_1^1 z_1^0 z_2^1 z_2^0)$$
Ex 2c) Packets eventually reach \(t \).

Enumerate all possible paths to reach \(t \).

\[
\psi_t(Z) = z^1_0 z^0_0 \\
+ \bar{z}^1_0 z^0_0 \left(z^1_1 z^0_1 + z^1_1 \bar{z}^0_1 z^1_2 z^0_2 \right) \\
+ z^1_0 \bar{z}^0_0
\]

\[
Z = \begin{pmatrix}
 z^1_0 z^0_0 \\
 z^1_1 z^0_1 \\
 z^1_2 z^0_2
\end{pmatrix}
\]

\[
\sigma(v_0) = 00 \\
\sigma(v_1) = 01 \\
\sigma(v_2) = 10 \\
\sigma(v_3) = 11
\]
Ex 2c) Packets eventually reach \(t \).

Enumerate all possible paths to reach \(t \).

\[
\psi_t(Z) = z_0^1 z_0^0 \\
+ \bar{z}_0^1 z_0^0 \left(z_1^1 z_1^0 + z_1^1 \bar{z}_1^0 \ z_2^1 z_2^0 \right) \\
+ z_0^1 \bar{z}_0^0 \left(z_2^1 \bar{z}_2^0 \right)
\]

\[
Z = \begin{bmatrix}
 z_0^1 & z_0^0 & z_1^1 & z_1^0 & z_2^1 & z_2^0
\end{bmatrix}^{\rho(v_0)} \begin{bmatrix}
 z_1^1 & z_1^0 \end{bmatrix}^{\rho(v_1)} \begin{bmatrix}
 z_2^1 & z_2^0 \end{bmatrix}^{\rho(v_2)}
\]

\[
\sigma(v_1) = 01 \\
\sigma(v_0) = 00 \\
\sigma(v_2) = 10 \\
\sigma(v_3) = 11
\]
Ex 2c) Packets eventually reach t.

Enumerate all possible paths to reach t.

$$
\psi_t(Z) = z_0^1 z_0^0 \\
+ \bar{z}_0^1 z_0^0 (z_1^1 z_1^0 + z_1^0 \bar{z}_1^1 z_2^1 z_2^0) \\
+ z_0^1 \bar{z}_0^0 (z_2^1 z_2^0 + \bar{z}_2^1 z_2^1 z_1^0)
$$

$$
Z = \begin{array}{c}
\rho(v_0) \\
\rho(v_1) \\
\rho(v_2) \\
\end{array}
\begin{array}{c}
z_0^1 z_0^0 \\
z_1^1 z_1^0 \\
z_2^1 z_2^0 \\
\end{array}
$$

$$
\sigma(v_1) = 01 \\
\sigma(v_0) = 00 \\
\sigma(v_2) = 10 \\
\sigma(v_3) = 11
$$
Ex 2d) Packets must traverse v_2.

Enumerate all possible paths to reach v_0.

$$\psi_{v_2}(Z) =$$

$$Z = \begin{cases} z^1_0 z^0_0, & \rho(v_0) \\ z^1_1 z^0_1, & \rho(v_1) \\ z^1_2 z^0_2, & \rho(v_2) \end{cases}$$

$$\sigma(v_0) = 00 \quad \sigma(v_1) = 01 \quad \sigma(v_2) = 10 \quad \sigma(v_3) = 11$$
Ex 2d) Packets must traverse v_2.

Enumerate all possible paths to reach v_0.

$$\psi_{v_2}(Z) = z^1_0 z^0_0 +$$
Ex 2d) Packets must traverse v_2.

Enumerate all possible paths to reach v_0.

$$\psi_{v_2}(Z) = z_0^1 z_0^0 + \bar{z}_0^1 z_0^0 \ z_1^1 \bar{z}_1^0$$
Ex 2e) Packets must traverse v_2 and eventually reach t.

\[\psi_\phi(Z) = \psi_t(Z) \cdot \psi_{v_2}(Z) = \]

\[Z = \begin{pmatrix} z_0^1 z_0^0 \\ z_1^1 z_1^0 \\ z_2^1 z_2^0 \end{pmatrix} \begin{pmatrix} \rho(v_1) \\ \rho(v_0) \\ \rho(v_2) \end{pmatrix} \]

\[\sigma(v_1) = 01 \]
\[\sigma(v_0) = 00 \]
\[\sigma(v_2) = 10 \]
\[\sigma(v_3) = 11 \]
Ex 2e) Packets must traverse v_2 and eventually reach t.

$$\psi_\phi(Z) = \psi_t(Z) \cdot \psi_{v_2}(Z) = \overline{z_0^1 z_0^0}$$

$$Z = \begin{pmatrix}
z_0^1 z_0^0 \\
z_1^1 z_1^0 \\
z_2^1 z_2^0
\end{pmatrix}
\begin{cases}
\rho(v_0) \\
\rho(v_1) \\
\rho(v_2)
\end{cases}$$

$$\sigma(v_0) = 00$$
$$\sigma(v_2) = 10$$
$$\sigma(v_1) = 01$$
$$\sigma(v_3) = 11$$
Ex 2e) Packets must traverse v_2 and eventually reach t.

$$
\psi_\phi(Z) = \psi_t(Z) \cdot \psi_{v_2}(Z)
= z_0^1 z_0^0 \cdot z_1^1 z_1^0
$$

$$
\sigma(v_1) = 01
$$

$$
\sigma(v_0) = 00
$$

$$
\sigma(v_2) = 10
$$

$$
\sigma(v_3) = 11
$$

$$
Z = \begin{bmatrix}
 z_0^1 z_0^0 & z_1^1 z_1^0 & z_2^1 z_2^0 \\
 \rho(v_0) & \rho(v_1) & \rho(v_2)
\end{bmatrix}
$$
Ex 2e) Packets must traverse v_2 and eventually reach t.

$$
\psi_\phi(Z) = \psi_t(Z) \cdot \psi_{v_2}(Z)
= \bar{z}_0 z_0 \bar{z}_1 z_1 \bar{z}_2 z_2
$$

$$
Z = \left\{ \begin{array}{c}
\rho(v_0) \\
\rho(v_1) \\
\rho(v_2)
\end{array} \right\}
= \left\{ \begin{array}{c}
z_0^1 z_0^0 \\
z_1^1 z_1^0 \\
z_2^1 z_2^0
\end{array} \right\}
$$

\[\sigma(v_0) = 00, \quad \sigma(v_1) = 01, \quad \sigma(v_2) = 10, \quad \sigma(v_3) = 11\]
Ex 2e) Packets must traverse v_2 and eventually reach t.

$$\psi_\phi(Z) = \psi_t(Z) \cdot \psi_{v_2}(Z)$$

$$= \bar{z}_0^1 z_0^0 \bar{z}_1^1 z_1^0 \bar{z}_2^1 z_2^0 + z_0^1 \bar{z}_0^0$$

$$Z = \begin{pmatrix} z_0^1 z_0^0 \\ z_1^1 z_1^0 \\ z_2^1 z_2^0 \end{pmatrix}$$

$$= \begin{pmatrix} \rho(v_0) \\ \rho(v_1) \\ \rho(v_2) \end{pmatrix}$$

$$\sigma(v_0) = 00$$
$$\sigma(v_2) = 10$$
$$\sigma(v_1) = 01$$
$$\sigma(v_3) = 11$$
Ex 2e) Packets must traverse \(v_2 \) and eventually reach \(t \).

\[
\psi_\phi(Z) = \psi_t(Z) \cdot \psi_{v_2}(Z) \\
= \overline{z}_0 z_0 \overline{z}_1 z_1 \overline{z}_2 z_2 \\
+ z_0 \overline{z}_0 \left(z_1 \overline{z}_1 z_2 \overline{z}_2 \right)
\]

\[
Z = \begin{cases}
 z_0^1 \overline{z}_0^0 & \rho(v_1) \\
 z_1^1 \overline{z}_1^0 & \rho(v_0) \\
 z_2^1 \overline{z}_2^0 & \rho(v_2)
\end{cases}
\]

\[
\sigma(v_0) = 00 \\
\sigma(v_1) = 01 \\
\sigma(v_2) = 10 \\
\sigma(v_3) = 11
\]
Ex 2e) Packets must traverse v_2 and eventually reach t.

$$
\psi(\mathbf{Z}) = \psi_t(\mathbf{Z}) \cdot \psi_{v_2}(\mathbf{Z})
= \bar{z}^1 z_0 \bar{z}^0 z^1_0 z_0 z^0_1 z^0_2
+ z_0^1 \bar{z}^0_0 \left(z^1_2 z_2 + \bar{z}^1_2 z_2 z^1_1 z_1 \right)
$$
Ex 2f) Verify the initial and final state.

\[Z = \begin{cases} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{cases} \]

\[\rho(v_0) \quad \rho(v_1) \quad \rho(v_2) \]

\[\sigma(v_0) = 00 \quad \sigma(v_1) = 01 \quad \sigma(v_2) = 10 \quad \sigma(v_3) = 11 \]
Ex 2f) Verify the initial and final state.

- Initial state ρ_0
 - $\sigma(\rho_0) = 01\ 10\ 11$
 - $\psi_\phi(\psi_{\rho_0}(Z)) = true$

\[
Z = \begin{bmatrix}
 z_0^1 & z_0^0 \\
 z_1^1 & z_1^0 \\
 z_2^1 & z_2^0
\end{bmatrix}
\]

- Final state ρ_f
 - $\sigma(v_1) = 01$
 - $\sigma(v_0) = 00$
 - $\sigma(v_2) = 10$
 - $\sigma(v_3) = 11$
Ex 2f) Verify the initial and final state.

- Initial state ρ_0
 $\sigma(\rho_0) = 01\ 10\ 11$
 $\psi_\phi(\psi_{\rho_0}(Z)) = true$

- Final state ρ_f
 $\sigma(\rho_f) = 10\ 01\ 11$
 $\psi_\phi(\psi_{\rho_f}(Z)) = true$

\[
Z = \begin{pmatrix}
 \rho(v_0) & z_1^1\ z_0^0 \\
 z_0^1\ z_0^0 & \rho(v_1) \\
 z_2^1\ z_2^0 & \rho(v_2)
\end{pmatrix}
\]

$\sigma(v_1) = 01$

$\sigma(v_0) = 00$

$\sigma(v_2) = 10$

$\sigma(v_3) = 11$
Ex 2g) Describing State Transitions.

Requirement: We can change only one node at a time!
Ex 2g) Describing State Transitions.

Requirement: We can change only one node at a time!

\[\psi_{trans}(Z, Z') = \exists i \in \{0, 1, 2\} : \forall k \in \{0, 1, 2\} : \begin{cases}
 z_k = z'_k & \text{if } k \neq i \\
 z_k \neq z'_k & \text{if } k = i
\end{cases} \]
Ex 2g) Describing State Transitions.

Requirement: We can change only one node at a time!

\[
\psi_{\text{trans}}(Z, Z') = \exists i \in \{0, 1, 2\} : \forall k \in \{0, 1, 2\} : \left\{ \begin{array}{ll}
z_k = z'_k & \text{if } k \neq i \\
z_k \neq z'_k & \text{if } k = i
\end{array} \right.
\]

\[
= \left[(z_0 \neq z'_0) \cdot (z_1 = z'_1) \cdot (z_2 = z'_2) \right] + \\
\left[(z_0 = z'_0) \cdot (z_1 \neq z'_1) \cdot (z_2 = z'_2) \right] + \\
\left[(z_0 = z'_0) \cdot (z_1 = z'_1) \cdot (z_2 \neq z'_2) \right]
\]
Ex 2h) Find a safe migration with a Model Checker.

(1) Build the state machine with $2^6 = 64$ states and the transitions as described in ψ_{trans}.
Ex 2h) Find a safe migration with a Model Checker.

(1) Build the state machine with $2^6 = 64$ states and the transitions as described in ψ_{trans}.

(2) Remove all transitions from the final state, but add a transition to itself for the transition function to be fully defined.
Ex 2h) Find a safe migration with a Model Checker.

(1) Build the state machine with $2^6 = 64$ states and the transitions as described in ψ_{trans}.
(2) Remove all transitions from the final state, but add a transition to itself for the transition function to be **fully defined**.
(3) Describe the migration in CTL (ϕ': states that satisfy ψ_{trans} and ψ_{ϕ}, ϕ_f: the final state):

$$\text{EG} (\phi' \land \text{EF} \phi_f)$$
Ex 2h) Find a safe migration with a Model Checker.

(1) Build the state machine with $2^6 = 64$ states and the transitions as described in ψ_{trans}.

(2) Remove all transitions from the final state, but add a transition to itself for the transition function to be fully defined.

(3) Describe the migration in CTL (ϕ': states that satisfy ψ_{trans} and ψ_ϕ, ϕ_f: the final state):

$$\text{EG}(\phi' \land \text{EF } \phi_f)$$

(4) Invert the CTL to find a counter-example.

$$\neg\text{EG}(\phi' \land \text{EF } \phi_f) = \text{AF } \neg(\phi' \land \text{EF } \phi_f)$$

$$= \text{AF}(\neg\phi' \lor \neg\text{EF } \phi_f)$$

$$= \text{AF}(\neg\phi' \lor \text{AG } \neg\phi_f)$$
Ex 2i) Find all valid migrations using BDD.

- 3 Transitions \Rightarrow 4 States Z_0, Z_1, Z_2 and Z_3.

\[
\begin{align*}
\psi_{\text{topo}}(p & \to Z_1 q) \\
\psi_{\text{topo}}(p & \to Z_2 q)
\end{align*}
\]
Ex 2i) Find all valid migrations using BDD.

- 3 Transitions \implies 4 States Z_0, Z_1, Z_2 and Z_3.
- Characteristic function for the initial state: $\psi_0(Z) = \overline{z}_0^1 z_1^0 \overline{z}_1^1 z_2^0 z_1^1 z_2^0$
- Characteristic function for the final state: $\psi_f(Z) = z_0^1 \overline{z}_0^0 \overline{z}_1^1 z_1^0 z_2^0 z_1^1 z_2^0$
Ex 2i) Find all valid migrations using BDD.

- 3 Transitions \Rightarrow 4 States Z_0, Z_1, Z_2 and Z_3.
- Characteristic function for the initial state: $\psi_0(Z) = z_0^1z_0^0 z_1^1z_1^0 z_2^1z_2^0$
- Characteristic function for the final state: $\psi_f(Z) = z_0^1z_0^0 z_1^0z_1^0 z_2^1z_2^0$
- The complete equation:

$$\psi^* = \psi_0(Z_0) \cdot \psi_f(Z_3)$$

$$\cdot \psi_{\text{trans}}(Z_0, Z_1)$$

$$\cdot \psi_{\text{trans}}(Z_1, Z_2)$$

$$\cdot \psi_{\text{trans}}(Z_2, Z_3)$$

$$\cdot \psi_{\text{topo}}(Z_1) \cdot \psi_{\phi}(Z_1)$$

$$\cdot \psi_{\text{topo}}(Z_2) \cdot \psi_{\phi}(Z_2)$$
Ex 2i) Find all valid migrations using BDD.