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Abstract. We present a framework for model checking concurrent soft-
ware systems which incorporates both states and events. Contrary to
other state/event approaches, our work also integrates two powerful ver-
ification techniques, counterexample-guided abstraction refinement and
compositional reasoning. Our specification language is a state/event ex-
tension of linear temporal logic, and allows us to express many proper-
ties of software in a concise and intuitive manner. We show how standard
automata-theoretic LTL model checking algorithms can be ported to our
framework at no extra cost, enabling us to directly benefit from the large
body of research on efficient LTL verification.
We have implemented this work within our concurrent C model checker,
MAGIC, and checked a number of properties of OpenSSL-0.9.6c (an
open-source implementation of the SSL protocol) and Micro-C OS ver-
sion 2 (a real-time operating system for embedded applications). Our
experiments show that this new approach not only eases the writing
of specifications, but also yields important gains both in space and in
time during verification. In certain cases, we even encountered speci-
fications that could not be verified using traditional pure event-based
or state-based approaches, but became tractable within our state/event
framework. We report a bug in the source code of Micro-C OS version 2,
which was found during our experiments.

1 Introduction

Control systems ranging from smart cards to automated flight controllers are
increasingly being incorporated within complex software systems. In many in-
stances, errors in such systems can have dramatic consequences, hence the urgent
need to be able to ensure and guarantee their correctness.
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In this endeavor, the well-known methodology of model checking [CE81,
CES86,QS81,CGP99] holds much promise. Although most of its early appli-
cations dealt with hardware and communication protocols, model checking is in-
creasingly used to verify software systems [SLA,BR01,BMMR01,BLA,HJMS02,
HJMQ03,CDH+00,PDV01,Sto02,MAG,CCG+03,COYC03]. Unfortunately, ap-
plying model checking to software is complicated by several factors, ranging from
the difficulty to model computer programs—due to the complexity of program-
ming languages as compared to hardware description languages—to difficulties
in specifying meaningful properties of software using the usual temporal logical
formalisms of model checking. A third reason is the perennial state space explo-
sion problem, whereby the complexity of verifying an implementation against a
specification becomes prohibitive.

The most common instantiations of model checking to date have focused
on finite-state models and either branching-time (CTL [CE81]) or linear-time
(LTL [LP85]) temporal logics. To apply model checking to software, it is neces-
sary to specify (often complex) properties on the finite-state abstracted models
of computer programs. The difficulties in doing so are even more pronounced
when reasoning about modular software, such as concurrent or component-based
sequential programs. Indeed, in modular programs, communication among mod-
ules proceeds via actions (or events), which can represent function calls, re-
quests and acknowledgments, etc. Moreover, such communication is commonly
data-dependent. Software behavioral claims, therefore, are often specifications
defined over combinations of program actions and data valuations.

Existing modeling techniques usually represent finite-state machines as finite
annotated directed graphs, using either state-based or event-based formalisms.
Although both frameworks are interchangeable (an action can be encoded as
a change in state variables, and likewise one can equip a state with different
actions to reflect different values of its internal variables), converting from one
representation to the other often leads to a significant enlargement of the state
space. Moreover, neither approach on its own is practical when it comes to mod-
ular software, in which actions are often data-dependent: considerable domain
expertise is then required to annotate the program and to specify proper claims.

This work, therefore, proposes a framework in which both state-based and
action-based properties can be expressed, combined, and verified. The modeling
framework consists of labeled Kripke structures (LKS), which are directed graphs
in which states are labeled with atomic propositions and transitions are labeled
with actions. The specification logic is a state/event derivative of LTL. This
allows us to represent both software implementations and specifications directly
without any program annotations or privileged insights into program execution.
We further show that standard efficient LTL model checking algorithms can be
applied, at no extra cost in space or time, to help reason about state/event-
based systems. We have implemented our approach within the concurrent C
verification tool MAGIC [MAG,CCG+03,COYC03], and report promising results
in the examples which we have tackled.
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The state/event-based formalism presented in this paper is suitable for both
sequential and concurrent systems. One of the benefits of restricting ourselves
to linear-time logic (as opposed to a more expressive logic such as CTL∗ or the
modal mu-calculus) is the ability to invoke the MAGIC compositional abstrac-
tion refinement procedures developed for the efficient verification of concurrent
software [COYC03]. These procedures are embedded within a counterexample-
guided abstraction refinement framework (CEGAR for short) [CGJ+00], one
of the core features of MAGIC. CEGAR lets us investigate the validity of a
given specification through a sequence of increasingly refined abstractions of
our system, until the property is either established or a real counterexample is
found. Moreover, thanks to compositionality, the abstraction, counterexample
validation, and refinement steps can all be carried out component-wise, thereby
alleviating the need to build the full state space of the distributed system.

We illustrate our state/event paradigm with a current surge protector exam-
ple, and conduct further experiments with the source code for OpenSSL-0.9.6c
(an open-source implementation of the SSL protocol) and Micro-C OS version 2
(a real-time operating system for embedded applications). In the case of the
latter, we discovered a bug, which it turns out was already known to the imple-
mentors of Micro-C OS. We contrast our approach with equivalent pure state-
based and event-based alternatives, and show that the state/event methodology
yields significant gains in human effort (ease of expressiveness), state space, and
verification time, at no discernible cost.

The paper is organized as follows. In Section 2, we review and discuss re-
lated work. Section 3 defines our state/event implementation formalism, labeled
Kripke structures. We also lay the basic definitions and results needed for the
presentation of our compositional CEGAR verification algorithm. In Section 4,
we present our state/event specification formalism, based on linear temporal
logic. We review standard automata-theoretic model checking techniques, and
show how these can be adapted to the verification task at hand. In Section 5, we
illustrate these ideas by modeling a simple surge protector. We also contrast our
approach with pure state-based and event-based alternatives, and show that both
the resulting implementations and specifications are significantly more cumber-
some. We then use MAGIC to check these specifications, and discover that the
non-state/event formalisms incur important time and space penalties during ver-
ification.1 Section 6 details our compositional CEGAR algorithm. In Section 7,
we report on case studies in which we checked specifications on the source code
for OpenSSL-0.9.6c and Micro-C OS version 2, which led us to the discovery of
a bug in the latter. Finally, Section 8 summarizes the contributions of the paper
and outlines several avenues for future work.

1 In order to invoke MAGIC, we code the LKSs as simple C programs; the algorithm
used by MAGIC implements the techniques described in the paper. Lack of space
prevents us from discussing predicate abstraction, whereby MAGIC transforms a
(potentially infinite-state) C program into a finite-state machine. We refer the reader
to [CCG+03] for a detailed exposition of this point.
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2 Related Work

Counterexample-guided abstraction refinement [CGJ+00,Kur94], or CEGAR, is
an iterative procedure whereby spurious counterexamples to a specification are
repeatedly eliminated through incremental refinements of a conservative abstrac-
tion of the system. CEGAR has been used, among others, in [NCOD97] (in
non-automated form), and [BR01,PDV01,LBBO01,HJMS02,CCK+02,CGKS02,
COYC03].

Compositionality, which features centrally in our work, is broadly concerned
with the preservation of properties under substitution of components in concur-
rent systems. It has been extensively studied, among others, in process algebra
(e.g., [Hoa85,Mil89,Ros97]), in temporal logic model checking [GL94], and in the
form of assume-guarantee reasoning [McM97,HQR00,CGP03].

The combination of CEGAR and compositional reasoning is a relatively new
approach. In [BLO98], a compositional framework for (non-automated) CEGAR
over data-based abstractions is presented. This approach differs from ours in
that communication takes place through shared variables (rather than blocking
message-passing), and abstractions are refined by eliminating spurious transi-
tions, rather than by splitting abstract states.

The idea of combining state-based and event-based formalisms is certainly
not new. De Nicola and Vaandrager [NV95], for instance, introduce ‘doubly
labeled transition systems’, which are very similar to our LKSs. From the spec-
ification point of view, our state/event version of LTL is also subsumed by the
modal mu-calculus [Koz83,Pnu86,BS01], via a translation of LTL formulas into
Büchi automata. The novelty of our approach, however, is the way in which we
efficiently integrate an expressive state/event formalism with powerful verifica-
tion techniques, namely CEGAR and compositional reasoning. We are able to
achieve this precisely because we have adequately restricted the expressiveness
of our framework. To our knowledge, our work is the first to combine these three
features within a single setup.

Kindler and Vesper [KV98] propose a state/event-based temporal logic for
Petri nets. They motivate their approach by arguing, as we do, that pure state-
based or event-based formalisms lack expressiveness in important respects.

Huth et al. [HJS01] also propose a state/event framework, and define rich
notions of abstraction and refinement. In addition, they provide ‘may’ and ‘must’
modalities for transitions, and show how to perform efficient three-valued verifi-
cation on such structures. They do not, however, provide an automated CEGAR
framework, and it is not clear whether they have implemented and tested their
approach.

Giannakopoulou and Magee [GM03] define ‘fluent’ propositions within a la-
beled transition systems context to express action-based linear-time properties.
A fluent proposition is a property that holds after it is initiated by an action and
ceases to hold when terminated by another action. This work exploits partial-
order reduction techniques and has been implemented in the LTSA tool.

In a comparatively early paper, De Nicola et al. [NFGR93] propose a pro-
cess algebraic framework with an action-based version of CTL as specification
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formalism. Verification then proceeds by first translating the underlying labeled
transition systems (LTSs) of processes into Kripke structures and the action-
based CTL specifications into equivalent state-based CTL formulas. At that
point, a model checker is used to establish or refute the property.

Dill [Dil88] defines ‘trace structures’ as algebraic objects to model both hard-
ware circuits and their specifications. Trace structures can handle equally well
states or events, although usually not both at the same time. Dill’s approach to
verification is based on abstractions and compositional reasoning, albeit without
an iterative counterexample-driven refinement loop.

In general, events (input signals) in circuits can be encoded via changes
in state variables. Browne makes use of this idea in [Bro89], which features a
CTL∗ specification formalism. Browne’s framework also features abstractions
and compositional reasoning, in a manner similar to Dill’s.

Finally, Burch [Bur92] extends the idea of trace structures into a full-blown
theory of ‘trace algebra’. The focus here however is the modeling of discrete
and continuous time, and the relationship between these two paradigms. This
work also exploits abstractions and compositionality, however once again without
automated counterexample-guided refinements.

3 Labeled Kripke Structures

A labeled Kripke structure (LKS for short) is a 7-tuple (S, Init , P,L, T, Σ, E)
with S a finite set of states, Init ⊆ S a set of initial states, P a finite set of atomic
state propositions, L : S → 2P a state-labeling function, T ⊆ S × S a transition
relation, Σ a finite set (alphabet) of events (or actions), and E : T → (2Σ \ {∅})
a transition-labeling function. We often write s

A−→ s′ to mean that (s, s′) ∈ T

and A ⊆ E(s, s′).2 In case A is a singleton set {a} we write s
a−→ s′ rather than

s
{a}−→ s′. Note that both states and transitions are ‘labeled’, the former with sets

of atomic propositions, and the latter with non-empty sets of events. We further
assume that our transition relation is total (every state has some successor), so
that deadlock does not arise.

A path π = 〈s1, a1, s2, a2, . . . 〉 of an LKS is an alternating infinite sequence
of states and events subject to the following: for each i � 1, si ∈ S, ai ∈ Σ, and
si

ai−→ si+1.
The language of an LKS M , denoted L(M), consists of the set of maximal

paths of M whose first state lies in the set Init of initial states of M .

3.1 Abstraction

Let M = (S, Init , P,L, T, Σ, E) and A = (SA, InitA, PA, LA, TA, ΣA, EA) be two
LKSs. We say that A is an abstraction of M , written M � A, iff
2 In keeping with standard mathematical practice, we write E(s, s′) rather than the

more cumbersome E((s, s′)).
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1. PA ⊆ P ,
2. ΣA = Σ, and
3. For every path π = 〈s1, a1, . . . 〉 ∈ L(M) there exists a path π′ =

〈s′
1, a

′
1, . . . 〉 ∈ L(A) such that, for each i � 1, a′

i = ai and LA(s′
i) =

L(si) ∩ PA.

In other words, A is an abstraction of M if the ‘propositional’ language accepted
by A contains the ‘propositional’ language of M , when restricted to the atomic
propositions of A. This is similar to the well-known notion of ‘existential ab-
straction’ for Kripke structures in which certain variables are hidden [CGJ+00].

Two-way abstraction defines an equivalence relation ∼ on LKSs: M ∼ M ′ iff
M � M ′ and M ′ � M . We shall only be interested in LKSs up to ∼-equivalence.

3.2 Parallel Composition

The notion of parallel composition we consider in this paper allows for com-
munication through shared actions only; in particular, we forbid the sharing
of variables. This restriction facilitates the use of compositional reasoning in
verifying specifications.

Let M1 = (S1, Init1, P1, L1, T1, Σ1, E1) and M2 =
(S2, Init2, P2, L2, T2, Σ2, E2) be two LKSs. M1 and M2 are said to be compatible
if (i) they do not share variables: S1∩S2 = P1∩P2 = ∅, and (ii) their parallel com-
position (as defined below) yields a total transition relation (so that no deadlock
can occur). The parallel composition of M1 and M2 (assumed to be compatible)3

is given by M1 ‖ M2 = (S1 × S2, Init1 × Init2, P1 ∪ P2, L1 ∪ L2, T, Σ1 ∪ Σ2, E),
where (L1 ∪ L2)(s1, s2) = L1(s1) ∪ L2(s2), and T and E are such that
(s1, s2)

A−→ (s′
1, s

′
2) iff A �= ∅ and one of the following holds:

1. A ⊆ Σ1 \ Σ2 and s1
A−→ s′

1 and s′
2 = s2,

2. A ⊆ Σ2 \ Σ1 and s2
A−→ s′

2 and s′
1 = s1, and

3. A ⊆ Σ1 ∩ Σ2 and s1
A−→ s′

1 and s2
A−→ s′

2.

In other words, components must synchronize on shared actions and proceed
independently on local actions. Moreover, local variables are preserved by the re-
spective states of each component. This notion of parallel composition is derived
from CSP; see also [ACFM85].

Let M1 and M2 be as above, and let π = 〈(s1
1, s

2
1), a1, . . . 〉 be an alternating

infinite sequence of states and events of M1 ‖ M2. The projection π�Mi of π
on Mi consists of the (possibly finite) subsequence of 〈si

1, a1, . . . 〉 obtained by
simply removing all pairs 〈aj , s

i
j+1〉 for which aj /∈ Σi. In other words, we keep

from π only those states that belong to Mi, and excise any transition labeled
with an event not in Mi’s alphabet.
3 The assumption of deadlock-freedom greatly simplifies our exposition, and also en-

ables us to use a wider class of abstractions. At the moment, the onus is on the user
to ensure that all LKSs to be composed in parallel are compatible. In the future, we
plan to incorporate an optional deadlock-freedom checker within MAGIC.
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We now record the following theorem, which extends similar standard results
for the process algebra CSP (for related proofs, we refer the reader to [Ros97]).

Theorem 1.

1. Parallel composition is (well-defined and) associative and commutative up to
∼-equivalence. Thus, in particular, no bracketing is required when combining
more than two LKSs.

2. Let M1, . . . , Mn be compatible LKSs, and let A1, . . . , An be respective ab-
stractions of the Mi: for each i, Mi � Ai. Then M1 ‖ . . . ‖ Mn � A1 ‖ . . . ‖
An. In other words, parallel composition preserves the abstraction relation.

3. Let M1, . . . , Mn be compatible LKSs with respective alphabets Σ1, . . . , Σn,
and let π be an infinite alternating sequence of states and events of the com-
position M1 ‖ . . . ‖ Mn. Then π ∈ L(M1 ‖ . . . ‖ Mn) iff, for each i, there
exists π′

i ∈ L(Mi) such that π�Mi is a prefix4 of π′
i. In other words, whether

a path belongs to the language of a parallel composition of LKSs can be
checked by projecting and examining the path on each individual component
separately.

Theorem 1 forms the basis of our compositional approach to verification: ab-
straction, counterexample validation, and refinement can all be done component-
wise.

4 State/Event Linear Temporal Logic

We now present a logic enabling us to refer easily to both states and events when
constructing specifications.

Given an LKS M = (S, Init , P,L, T, Σ, E), we consider linear temporal logic
state/event formulas over the sets P and Σ (here p ranges over P and a ranges
over Σ):

φ ::= p | a | ¬φ | φ ∧ φ | Xφ | Gφ | Fφ | φ U φ.

We write SE-LTL to denote the resulting logic, and in particular to distinguish
it from (standard) LTL.

Let π = 〈s1, a1, s2, a2, . . . 〉 be a path. πi stands for the suffix of π starting
in state si. We then inductively define path-satisfaction of SE-LTL formulas as
follows:

1. π � p iff s1 is the first state of π and p ∈ L(s1),
2. π � a iff a is the first event of π,
3. π � ¬φ iff π � φ,
4. π � φ1 ∧ φ2 iff π � φ1 and π � φ2,
5. π � Xφ iff π2 � φ,
6. π � Gφ iff, for all i � 1, πi � φ,
4 By convention, an infinite sequence is prefix of another one iff they are the same.
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7. π � Fφ iff, for some i � 1, πi � φ, and
8. π � φ1 U φ2 iff there is some i � 1 such that πi � φ2 and, for all 1 � j � i−1,

πj � φ1.

We then let M � φ iff, for every path π ∈ L(M), π � φ.
We also use the derived W operator: φ1 W φ2 iff (Gφ1) ∨ (φ1 U φ2), as well

as standard boolean connectives such as →, etc.
As a simple example, consider the following LKS M . It has two states, the

leftmost of which is the sole initial state. Its set of atomic state propositions is
{p, q, r}; the first state is labeled with {p, q} and the second with {q, r}. M ’s
transitions are similarly labeled with sets of events drawn from the alphabet
{a, b, c, d}.

p,q q,r

a,b

c

d

As the reader may easily verify, M � G(c → Fr) but M � G(b → Fr). Note
also that M � G(d → Fr), but M � G(d → XFr).

4.1 Automata-Based Verification

We aim to reduce SE-LTL verification problems to standard automata-theoretic
techniques for LTL. Note that a standard—but unsatisfactory—way of achieving
this is to explicitly encode actions through changes in (additional) state variables,
and then proceed with LTL verification. Unfortunately, this trick usually leads
to a significant blow-up in the state space, and consequently yields much larger
verification times. The approach we present here, on the other hand, does not
alter the size of the LKS, and is therefore considerably more efficient.

We first recall some basic results about LTL, Kripke structures, and
automata-based verification.

A Kripke structure is simply an LKS minus the alphabet and the transition-
labeling function; as for LKSs, the transition relation of a Kripke structure is
required to be total. An LTL formula is an SE-LTL formula which makes no use
of events as atomic propositions.

For P a set of atomic propositions, let BP
∼= 22P

denote the set of boolean
combinations of atomic propositions over P .

A Büchi automaton is a 6-tuple B = (SB , InitB , P,LB , TB ,Acc) with SB a
finite set of states, Init ⊆ SB a set of initial states, P a finite set of atomic state
propositions, LB : SB → BP a state-labeling function, T ⊆ SB ×SB a transition
relation, and Acc ⊆ SB a set of accepting states.

Note that the transition relation is not required to be total, and is moreover
unlabeled. Note also that the states of a Büchi automaton are labeled with
arbitrary boolean combinations of atomic propositions.
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For π an infinite sequence of states of a Büchi automaton, let inf(π) ⊆ SB

be the set of states which occur infinitely often in π. π is accepted by the Büchi
automaton B if inf(π) ∩ Acc �= ∅. The set of all such accepted paths is written
L(B).

Let M = (S, Init , P,L, T ) be a Kripke structure. The state-labeling function
L : S → 2P indicates, for each state s ∈ S, exactly which atomic propositions
hold at s; such labeling is equivalent to asserting that the compound proposition∧ L(s)∧∧{¬p|p ∈ P \L(s)} holds at s. Let us denote this compound proposition
by L̃(s). Every Kripke structure can therefore be viewed as a Büchi automaton,
where we consider every state to be accepting.

Let B = (SB , InitB , P,LB , TB ,Acc) be a Büchi automaton over the same set
of atomic propositions as M . We can define the ‘standard’ product M × B =
(S′, Init ′, −, −, T ′,Acc′) as a product of Büchi automata. More precisely,

1. S′ = {(s, b) ∈ S × SB | L̃(s) implies LB(b)},
2. (s, b) −→ (s′, b′) iff s −→ s′ and b −→ b′,
3. (s, b) ∈ Init ′ iff s ∈ Init and b ∈ Init ′, and
4. (s, b) ∈ Acc′ iff b ∈ Acc.

The non-symmetrical standard product M × B accepts exactly those paths
of M which are ‘consistent’ with B. Its main technical use lies in the following
result of Gerth et al. [GPVW95]:

Theorem 2. Given a Kripke structure M and LTL formula φ, there is a Büchi
automaton B¬φ such that

M � φ iff L(M × B¬φ) = ∅.

An efficient tool to convert LTL formulas into optimized Büchi automata
with the above property is Somenzi and Bloem’s Wring [Wri,SB00].

We now turn to labeled Kripke structures. Let M = (S, Init , P,L, T, Σ, E)
be an LKS. Recall that SE-LTL formulas allow events in Σ to stand for atomic
propositions. For x ∈ Σ, let us therefore write x̃ to denote the (formal) compound
proposition x ∧ ∧{¬y | y ∈ Σ \ {x}}. We can also, given an SE-LTL formula φ
over P and Σ, interpret φ as an LTL formula over P ∪Σ (viewed as atomic state
propositions); let us denote the latter formula by φ�. φ� is therefore syntactically
identical to φ, but differs from φ in its semantic interpretation.

We now define the state/event product of a labeled Kripke structure with
a Büchi automaton. Let M be as above, and let B = (SB , InitB , P ∪
Σ, LB , TB ,Acc) be a Büchi automaton over the set of atomic state proposi-
tions P ∪ Σ. The state/event product M ⊗ B = (S′, Init ′, −, −, T ′,Acc′) is a
Büchi automaton that satisfies

1. S′ = {(s, b) ∈ S × SB | L̃(s) implies ∃Σ � LB(b)},5

5 The term ∃Σ � LB(b) denotes the formula LB(b) in which all atomic Σ-propositions
have been existentially quantified out; in practice, however, the output of Wring
is presented in a format which renders this operation trivial (and computationally
inexpensive).
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2. (s, b) −→ (s′, b′) iff there exists x ∈ Σ such that s
x−→ s′ and b −→ b′ and

(L̃(s) ∧ x̃) implies LB(b),
3. (s, b) ∈ Init ′ iff s ∈ Init and b ∈ InitB , and
4. (s, b) ∈ Acc′ iff b ∈ Acc.

Finally, we have:

Theorem 3. For any LKS M and SE-LTL formula φ,

M � φ iff L(M ⊗ B¬φ�) = ∅.

Note that the state/event product does not require an enlargement of the
LKS M (although we consider below just such an enlargement in the course of
the proof of the theorem).

Proof. Observe that a state of M can have several differently-labeled transitions
emanating from it. However, by duplicating states (and transitions) as necessary,
we can transform M into a ∼-equivalent LKS M ′ having the following property:
for every state s of M ′, the transitions emanating from s are all labeled with
the same (single) event. As a result, the validity of an SE-LTL atomic event
proposition a in a given state of M ′ does not depend on the particular path to
be taken from that state, and can therefore be recorded as a propositional state
variable of the state itself. Formally, this gives rise to a Kripke structure M ′′

over atomic state propositions P ∪ Σ.
We now claim that

L(M ⊗ B¬φ�) = ∅ iff L(M ′′ × B¬φ�) = ∅. (1)

To see this, notice first that there is a bijection between L(M) and L(M ′′)
(which we denote π �→ π′′). Next, observe that any path in L(M ⊗B¬φ�) can be
decomposed as a pair (π, β), where π ∈ L(M) and β ∈ L(B¬φ�); likewise, any
path in L(M ′′ × B¬φ�) can be decomposed as a pair (π′′, β), where π′′ ∈ L(M ′′)
and β ∈ L(B¬φ�). A straightforward inspection of the relevant definitions then
reveals that (π, β) ∈ L(M ⊗B¬φ�) iff (π′′, β) ∈ L(M ′′ ×B¬φ�), which establishes
our claim.

Finally, we clearly have M � φ iff M ′ � φ iff M ′′ � φ�. Combining this
with Theorem 2 and Equation 1 above, we get M � φ iff L(M ⊗ B¬φ�) = ∅, as
required. ��

The significance of Theorem 3 is that it enables us to make use of the highly
optimized algorithms and tools available for verifying LTL formulas on Kripke
structures to verify SE-LTL specifications on labeled Kripke structures, at no
additional cost.

5 A Surge Protector

We describe a safety-critical current surge protector in order to illustrate the
advantages of state/event-based implementations and specifications over both
the pure state-based and the pure event-based approaches.
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The surge protector is meant at all times to disallow changes in current
beyond a varying threshold. The labeled Kripke structure in Figure 1 captures
the main functional aspects of such a protector in which the possible values of
the current and threshold are 0, 1, and 2. The threshold value is stored in the
variable m, and changes in threshold and current are respectively communicated
via the events m0, m1, m2, and c0, c1, c2.6 Note, for instance, that when m = 1
the protector accepts changes in current to values 0 and 1, but not 2 (in practice,
an attempt to hike the current up to 2 should trigger, say, a fuse and a jump to
an emergency state, behaviors which are here abstracted away).

m=1m=0 m=2
m0
c0

m2

c0

m1

m0

m2

m1

m0

m1 c1

m2
c0

c2
c1

Fig. 1. The LKS of a surge protector

The required specification is neatly captured as the following SE-LTL for-
mula:

φse = G((c2 → m = 2) ∧ (c1 → (m = 1 ∨ m = 2))).

By way of comparison, Figure 2 represents the (event-free) Kripke structure
that captures the same behavior as the LKS of Figure 1. In this pure state-based
formalism, nine states are required to capture all the reachable combinations of
threshold (m = i) and last current changes (c = j) values.

The data (9 states and 39 transitions) compares unfavorably with that of
the LKS in Figure 1 (3 states and 9 transitions). Moreover, as the allowable
current ranges increase, the number of states of the LKS will grow linearly, as
opposed to quadratically for the Kripke structure. The number of transitions of
both will grow quadratically, but with a roughly four-fold larger factor for the
Kripke structure. These observations highlight the advantages of a state/event
approach, which of course will be more or less pronounced depending on the
type of system under consideration.

6 The reader may object that we have only allowed for boolean variables in our defi-
nition of labeled Kripke structures; it is however trivial to implement more complex
types, such as bounded integers, as boolean encodings, and we have therefore elided
such details here.
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m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

Fig. 2. The Kripke structure of a surge protector

Another advantage of the state/event approach is witnessed when one tries
to write down specifications. In this instance, the specification we require is

φs = G(((c = 0 ∨ c = 2) ∧ X(c = 1)) → (m = 1 ∨ m = 2)) ∧
G(((c = 0 ∨ c = 1) ∧ X(c = 2)) → m = 2),

which is arguably significantly more complex than φse.
The pure event-based specification φe capturing the same requirement is also

clearly more complex than φse:

φe = G(m0 → ((¬c1) W (m1 ∨ m2))) ∧
G(m0 → ((¬c2) W m2)) ∧
G(m1 → ((¬c2) W m2)).

The greater simplicity of the implementation and specification associated
with the state/event formalism is not purely a matter of aesthetics, or even a
safeguard against subtle mistakes; experiments also suggest that the state/event
formulation yields significant gains in both time and memory during verification.
We implemented three parameterized instances of the surge protector as simple
C programs, in one case allowing message passing (representing the LKS), and in
the other relying solely on local variables (representing the Kripke structure). We
also wrote corresponding specifications respectively as SE-LTL and LTL formulas
(as above) and converted these into Büchi automata using the tool Wring [Wri].
Figure 3 records the number of Büchi states and transitions associated with
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the specification, as well as the time taken by MAGIC to construct the Büchi
automaton and confirm that the corresponding implementation indeed meets
the specification.

Range Pure State Pure Event State/Event
St Tr B-T T-T St Tr B-T T-T St Tr B-T T-T

2 4 5 253 383 6 10 245 320 3 4 184 252
3 8 12 270 545 12 23 560 674 4 6 298 407
4 14 23 492 1141 20 41 1597 1770 5 8 243 391
5 22 38 1056 2326 30 64 3795 4104 6 10 306 497
6 32 57 2428 4818 42 92 12077 12660 7 12 614 962
7 44 80 6249 10358 56 125 54208 55064 8 14 930 1321
8 58 107 17503 24603 72 163 372784 374166 9 16 2622 3133
9 74 138 55950 67553 ∗ ∗ ∗ ∗ 10 18 8750 9488
10 92 173 195718 213969 ∗ ∗ ∗ ∗ 11 20 33556 34503
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12 22 135252 136500
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 13 24 534914 536451
13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Fig. 3. Comparison of pure state-based, pure event-based and state/event-based for-
malisms. Values of c and m range between 0 and Range. St and Tr respectively
denote the number of states and transitions of the Büchi automaton corresponding to
the specification. B-T is the Büchi construction time and T-T is the total verification
time. All times are reported in milliseconds. A ∗ indicates that the Büchi automaton
construction did not terminate in 10 minutes.

A careful inspection of the table in Figure 3 reveals several consistent trends.
First, the number of Büchi states increases quadratically with the value of Range
for both the pure state-based and pure event-based formalisms. In contrast, the
increase is only linear when both states and events are used. We notice a simi-
lar pattern among the number of transitions in the Büchi automata. The rapid
increase in the sizes of Büchi automata will naturally contribute to increased
model checking time. However, we notice that the major portion of the total
verification time is required to construct the Büchi automaton. While this time
increases rapidly in all three formalisms, the growth is observed to be most be-
nign for the state/event scenario. The net result is clearly evident from Figure 3.
Using both states and events allows us to push the limits of c and m beyond
what is possible by using either states or events alone.

6 Compositional Counterexample-Guided Verification

We now discuss how our framework enables us to verify SE-LTL specifications
on parallel compositions of labeled Kripke structures incrementally and compo-
sitionally.
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When trying to determine whether an SE-LTL specification holds on a given
LKS, the following result is the key ingredient needed to exploit abstractions in
the verification process:

Theorem 4. Let M and A be LKSs with M � A. Then for any SE-LTL formula
φ over M which mentions only propositions (and events) of A,

if A � φ then M � φ.

Proof. This follows easily from the fact that every path of M is matched by a
corresponding property-preserving path of A. ��

Let us now assume that we are given a collection M1, . . . , Mn of LKSs, as
well as an SE-LTL specification φ, with the task of determining whether M1 ‖
. . . ‖ Mn � φ. We first create initial abstractions A1 � M1, . . . , An � Mn, in a
manner to be discussed shortly. We then check whether A1 ‖ . . . ‖ An � φ. In the
affirmative, we conclude (by Theorems 1 and 4) that M1 ‖ . . . ‖ Mn � φ as well.
In the negative, we are provided with a counterexample πA ∈ L(A1 ‖ . . . ‖ An)
such that πA � φ. We must then determine whether this counterexample is real or
spurious, i.e., whether it corresponds to a counterexample π ∈ L(M1 ‖ . . . ‖ Mn).

This validation check can be performed compositionally, as follows. Accord-
ing to Theorem 1, the counterexample is real iff for each i, the projection πA�Ai

corresponds to (the prefix of) a valid behavior of Mi. To this end, we ‘simu-
late’ πA�Ai on Mi. If Mi accepts the path, we go on to the next component.
Otherwise, we refine our abstraction Ai, yielding a new abstraction A′

i with
Mi � A′

i � Ai and such that A′
i also rejects the projection πA�A′

i of the spuri-
ous counterexample πA.

This process is iterated until either the specification is proved, or a real coun-
terexample is found. Termination follows from the fact that the LKSs involved
are all finite, and therefore admit only finitely many distinct abstractions.7

The advantage of this approach is that all the abstractions that we con-
sider in this paper are existential abstraction quotients of LKSs. In other
words, abstractions are obtained by lumping together states of the original
LKSs, and have therefore smaller state spaces. Formally, given an LKS M =
(S, Init , P,L, T, Σ, E) and a partition ≈ of the state space S, an existential ab-
straction quotient of M is any LKS A = (SA, InitA, PA, LA, TA, ΣA, EA) such
that

1. SA = S/≈,
2. InitA = {[s] ∈ S/≈ | ∃s′ ∈ [s] � s′ ∈ Init},
3. PA ⊆ P , and for all s, s′ ∈ S, if s ≈ s′ then L(s) ∩ PA = L(s′) ∩ PA,
4. for all s ∈ S, LA([s]) = L(s) ∩ PA,
7 When the LKSs M1, . . . , Mn are generated from C programs via predicate ab-

straction, as is the case for MAGIC, termination will depend on whether MAGIC is
eventually able to generate sufficiently strong predicates. Although this in general
cannot be guaranteed, as a result of the undecidability of the halting problem, in
practice it has not been observed to cause any problems.
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5. ΣA = Σ, and
6. for all s, s′ ∈ S and a ∈ Σ, [s1]

a−→ [s2] iff there exists s′
1 ∈ [s1], s′

2 ∈ [s2]
such that s′

1
a−→ s′

2.

We now have:

Theorem 5. For M an LKS and ≈ a partition of S, any existential abstraction
quotient A of M as defined above is a genuine abstraction of M in the sense of
Section 3.1: M � A.

Note that an abstraction of M is entirely determined by the partition ≈ and
the set PA of atomic state propositions. In our case, given an SE-LTL formula
φ, we shall fix PA to be stateprop(φ), the set of all atomic state propositions
appearing in φ. Abstractions of M can therefore be identified with partitions ≈
of S that meet condition 3 above; we denote the corresponding abstraction by
M/≈.

Theorem 6. Let M be an LKS and let M/≈ be an abstraction of M . For any
refinement ≈′ of the partition ≈, M/≈′ is an abstraction of M that is also a
refinement of M/≈: M � M/≈′ � M/≈.

We leave the proofs of Theorems 5 and 6 to the reader.
To define the initial abstraction M/≈1, we let s ≈1 s′ iff L(s)∩stateprop(φ) =

L(s′) ∩ stateprop(φ) and enabled(s) = enabled(s′), where enabled(s) denotes the
set of actions that appear in transitions originating from s, etc.

We must refine our abstraction whenever we encounter a spurious counterex-
ample πAk

∈ L(M/≈k) \ L(M). We achieve this, in fully automated fashion, by
constructing a refinement ≈k+1 of the partition ≈k which splits abstract states
along the path πAk

. The approach we take is very similar to that presented in
[COYC03]; unfortunately, the details involved are too lengthy to reproduce here,
and we refer the reader to that paper for a thorough account of the technique.

As discussed above, MAGIC iterates this abstraction-validation-refinement
procedure component-wise until the property φ of interest is either established
(M1|| . . . ||Mn � φ) or refuted (M1|| . . . ||Mn � φ).

7 Experimental Results

We experimented with two broad sets of benchmarks. All our experiments were
performed on an AMD Athlon XP 1600+ machine with 900 MB RAM running
RedHat Linux 7.1. The first set of our examples were based on OpenSSL-0.9.6c,
an open-source implementation of the SSL protocol. This is a popular protocol
used for secure exchange of sensitive information over untrusted networks. SSL
involves an initial handshake between a client and a server that attempt to
establish a secure channel between themselves. The target of our verification
process was the implementation of this handshake, comprising of about 350
lines of ANSI C code each for the server and the client.

From the official SSL specification [SSL] we derived a set of nine properties
that every correct SSL implementation should satisfy. The first five properties are
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Name St(B) Tr(B) St(Mdl) T(BA) T(Mdl) T(Ver) T(Total) Mem
srvr-1-ss 4 5 5951 213 32195 1654 34090 -
srvr-1-se 3 4 4269 209 18116 1349 19674 -

srvr-2-ss 11 23 4941 292 31331 2479 34102 -
srvr-2-se 3 4 4269 196 17897 1317 19410 -

srvr-3-ss 37 149 5065 1147 26958 4031 32137 -
srvr-3-se 3 4 4269 462 17950 1908 20319 -

srvr-4-ss 16 41 5446 806 29809 7382 39341 28.6
srvr-4-se 7 14 4333 415 21453 3513 25906 24.1

srvr-5-ss 25 47 7951 690 48810 6842 56888 39.3
srvr-5-se 20 45 4331 497 18808 2925 22765 24.2

clnt-1-ss 16 41 4867 793 24488 1235 26953 25.8
clnt-1-se 7 14 3693 376 17250 583 18683 22.1

clnt-2-ss 25 47 7574 699 43592 1649 46444 38.1
clnt-2-se 18 40 3691 407 15304 1087 17269 21.2

ssl-1-ss 25 47 24799528 874 65585 * * 850.5
ssl-1-se 20 45 13558984 655 33091 2172139 2206983 162.4

ssl-2-ss 25 47 32597042 836 66029 * * 346.6
ssl-2-se 18 40 15911791 713 34641 4148550 4185068 320.7

UCOS-BUG 8 14 873 205 3409 261 3880 -
UCOS-1 8 14 873 194 3365 2797 6357 -
UCOS-2 5 8 873 123 3372 2630 6127 -

Fig. 4. Experimental results with OpenSSL and Micro-C OS. St(B) and Tr(B) =
respectively the number of states and transitions in the Büchi automaton; St(Mdl) =
number of states in the model; T(Mdl) = model construction time; T(BA) = Büchi
construction time; T(Ver) = model checking time; T(Total) = total verification time.
All reported times are in milliseconds. Mem is the total memory requirement in MB. A
* indicates that the model checking did not terminate within 2 hours and was aborted.
In such cases, other measurements were made at the point of forced termination. A -
indicates that the corresponding measurement was not taken.

relevant only to the server, the next two apply only to the client, and the last two
properties refer to both a server and a client executing concurrently. For instance,
the first property states that whenever the server asks the client to terminate the
handshake, it eventually either gets a correct response from the client or exits
with an error code. The second property expresses the fact that whenever the
server receives a handshake request from a client, it eventually acknowledges the
request or returns with an error code. The third property states that a server
never exchanges encryption keys with a client once the cipher scheme has been
changed.

Each of these properties were then expressed in SE-LTL, once using only
states and again using both states and events. Table 4 summarizes the results
of our experiments with these benchmarks. The SSL benchmarks have names of
the form x-y-z where x denotes the type of the property and can be either srvr,
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clnt or ssl, depending on whether the property refers respectively to only the
server, only the client, or both server and client. y denotes the property number
while z denotes the specification style and can be either ss (only states) or se
(both states and events). We note that in each case the numbers for state/event
properties are considerably better than those for the corresponding pure-state
properties.

The second set of our benchmarks were obtained from the source code of ver-
sion 2.00 of Micro-C OS. This is a popular, lightweight, real-time, multi-tasking
operating system written in about 3000 lines of ANSI C. The OS uses a lock
to ensure mutual exclusion for critical section code. Using SE-LTL we expressed
two properties of the OS: (i) the lock is acquired and released alternately starting
with an acquire and (ii) every time the lock is acquired it is eventually released.
These properties were expressed using only events.

We found a bug in the OS that causes it to violate the first property. We
informed the developers of the OS about this bug and were told that it has
been detected and fixed. The developers also kindly supplied us with the latest
source code for the OS, and we are currently attempting to find errors in it. The
second property was found to be valid. In Figure 4 these experiments are named
UCOS-BUG and UCOS-2 respectively. Next we fixed the bug and verified that the
first property holds for the corrected OS. This experiment is called UCOS-1 in
Figure 4.

8 Conclusion and Future Work

In this paper, we have presented an expressive framework for modeling and ver-
ifying linear-time temporal specifications on concurrent software systems. Our
approach involves both states and events, and is predicated on a compositional
counterexample-guided abstraction refinement scheme. We have also shown how
standard automata-theoretic techniques for verifying linear temporal logic for-
mulas can be ported to our framework at no extra cost, and have implemented
these on our C model checker MAGIC. We have also carried out a number of
experiments on the source code for OpenSSL-0.9.6c and Micro-C OS version 2,
discovering a bug in the latter. These experiments have led us to conclude that
not only does a state/event formalism facilitate the formulation of appropriate
specifications (as compared to standard pure state-based or event-based frame-
works), but also yield significant improvements in both verification time and
memory usage.

There remain many avenues for further research. One is to consider alterna-
tive specification formalisms, such branching-time temporal logics. In our current
framework, it may be possible to further optimize the automata-theoretic part of
the verification, by directly transforming SE-LTL formulas into labeled Büchi au-
tomata. Doing so should yield more compact automata-based representations of
specifications, resulting in a smaller overall state space. Another direction is to in-
vestigate other, more aggressive (and perhaps specification-dependent), notions
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of abstraction. We are also currently working on a compositional CEGAR-based
algorithm to check deadlock-freedom.

MAGIC is at present an explicit model checking tool—it could be worthwhile
to incorporate symbolic and partial order techniques to improve its efficiency
further. Another interesting area of research is to develop mechanisms to handle
shared variables. Other modifications under consideration include the modeling
of fairness constraints. Lastly, we are currently attempting to model and verify
the source code of a controller for a large industrial metal-casting plant.
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