Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Networked Systems Group (NSG)

Prof. L. Vanbever / R. Schmid based on Prof. R. Wattenhofer's material

Discrete Event Systems Exercise Sheet 5

1 Revisiting Context-Free Grammars

Consider the context-free languages from last week (cf. Exercise 4.1) on the alphabet $\Sigma = \{0, 1\}$:

- a) $L_1 = \{w \mid \text{the length of } w \text{ is odd}\}$
- **b)** $L_2 = \{w \mid \text{contains more 1s than 0s}\}$

For each of them, give a context-free grammar in Chomsky Normal Form (CNF) and try finding a grammar with the minimum number of non-terminal symbols. If possible, give a right-linear and a left-linear grammar for the language.

2 Regular, Context-Free or Not?

For the following languages, determine whether they are context free or not. Prove your claims!

- **a)** $L = \{1^k \mid k \text{ prime}\}$
- **b)** $L = \{w \# x \# y \# z \mid w, x, y, z \in \{a, b\}^* \text{ and } |w| = |z|, |x| = |y|\}$
- c) $L = \{w \# x \# y \# z \mid w, x, y, z \in \{a, b\}^* \text{ and } |w| = |y|, |x| = |z|\}$
- d) $L = \{x \mid x \in \{0,1\}^*, \text{ and } x \text{ contains an even number of '0's and an even number of '1's}\}$

3 Tandem-Pumping Lemma [Exam HS21]

Given the alphabet $\Sigma = \{0, 1, \#\}$, consider the language:

 $L = \left\{ a \# b \# c \mid a, b, c \in \{0, 1\}^*, \ c = 2a, \ \#_0(b) = \#_0(c) \right\}$

for unsigned binary numbers a, b, and c. For example, $0#10#0 \in L$ and $1#00#010 \in L$. Recall: $\#_0(w)$ denotes the number of occurrences of the symbol $0 \in \Sigma$ in a word $w \in \Sigma^*$.

- a) Show that $w = 1^p \# 0 \# 1^p 0$ is tandem-pumpable in L. Hint: Split up w = uvxyz such that x = # 0 #.
- **b)** Use the tandem-pumping lemma to show that L is not context-free. Hint: Choose a string w = a#b#c where $1 \notin b$, i.e. $b \in 0^*$.
- c) Can we use any string w = a # b # c where $b = b_1 1 b_2$ to apply the tandem-pumping lemma?

 $\mathrm{HS}\ 2023$

4 Java is not regular! [Bonus question]

Prove that the programming language java is not regular! More precisely, show that a single statement in java cannot be recognized by a regular language. Hint: Assume that strings in your program do not contain the symbols "{" or "}".