Discrete Event Systems

Exercise Session 1

Roland Schmid
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
23 September 2021
Formal Definition of a Finite Automaton

A finite automaton (FA) is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

- \(Q\) is a finite set called the states
- \(\Sigma\) is a finite set called the alphabet
- \(\delta: Q \times \Sigma \rightarrow Q\) is the transformation function
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of accept states (a.k.a. final states).
Vending Machine Java Code

Soda vend(){
 int total = 0, coin;
 while (total != 45){
 receive(coin);
 if ((coin==10 && total==40)
 ||(coin==25 && total>=25))
 reject(coin);
 else
 total += coin;
 }
 return new Soda();
}
Vending Machine “Logics”
Cartesian Product Construction

• We want to construct a finite automaton M that recognizes any strings belonging to L_1 or L_2.

• Idea: Build M such that it simulates both M_1 and M_2 simultaneously and accept if either of the automatons accepts.
Formal Definition

- Given two automata
 \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) and \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \)

- Define the unioner of \(M_1 \) and \(M_2 \) by:
 \(M_\cup = (Q_1 \times Q_2, \Sigma, \delta_1 \times \delta_2, (q_1, q_2), F_\cup) \)

 - where the accept state \((q_1, q_2)\) is the combined start state of both automata

 - where \(F_\cup \) is the set of ordered pairs in \(Q_1 \times Q_2 \) with at least one state an accept state. That is: \(F_\cup = Q_1 \times F_2 \cup F_1 \times Q_2 \)

 - where the transition function \(\delta \) is defined as
 \(\delta((q_1, q_2), j) = (\delta_1(q_1, j), \delta_2(q_2, j)) = \delta_1 \times \delta_2 \)
Other constructions: Intersector

- Other constructions are possible, for example an intersector:

- Accept only when both ending states are accept states. So the only difference is in the set of accept states. Formally the intersector of M_1 and M_2 is given by $M_\cap = (Q_1 \times Q_2, \Sigma, \delta_1 \times \delta_2, (q_{0,1}, q_{0,2}), F_\cap)$, where $F_\cap = F_1 \times F_2$.
Complement

• How about the complement? The complement is only defined with respect to some universe.

• Given the alphabet Σ, the *default universe* is just the set of all possible strings Σ^*. Therefore, given a language L over Σ, i.e. $L \subseteq \Sigma^*$ the complement of L is $\Sigma^* - L$

• Note: Since we know how to compute set difference, and we know how to construct the automaton for Σ^* we can construct the automaton for \overline{L}.

• Question: Is there a simpler construction for \overline{L}?

• Answer: Just switch accept-states with non-accept states.