
Temporal Logic and Model Checking

Jiahui Xu

DYNAMO group

dynamo.ethz.ch



Schedule

2

We have four exercise sessions:

• 30.11.2023: set operations, characteristic functions, BDDs

• 07.12.2023: reachability analysis and temporal logic

• 14.12.2023: Petri nets

• 21.12.2023: time Petri nets



Specification Using Temporal Logic

3

Elastic systems: computation modules interconnected by channels.

Channels: propagate data, equipped with bidirectional handshake signals.



Specification Using Temporal Logic

4

Elastic systems: computation modules interconnected by channels.

Channels: propagate data, equipped with bidirectional handshake signals.

Sender Receiver

T

This state is called transfer



Specification Using Temporal Logic

5

Elastic systems: computation modules interconnected by channels.

Channels: propagate data, equipped with bidirectional handshake signals.

Sender Receiver

This state is called idle

(no token)



Specification Using Temporal Logic

6

Elastic systems: computation modules interconnected by channels.

Channels: propagate data, equipped with bidirectional handshake signals.

Sender Receiver

This state is called stall

T



Specification Using Temporal Logic

7

(a) Liveness: each request (sender asserts a valid) in the channel should eventually be 

acknowledged (receiver asserts ready).

(b) Fairness: the receiver ready signal should assert infinitely often.

(c) Persistency: when the sender asserts its valid signal high, then it should be remained 

high until its respective ready is also high.

Your turn! Please describe the following properties using CTL formulas:

Elastic systems: computation modules interconnected by channels.

Channels: propagate data, equipped with bidirectional handshake signals.

For each of the problems, can you come up with more than 1 solution?

Over paths:

A𝜙 → All 𝜙

E𝜙 → Exists 𝜙

Path-specific:

X𝜙 → NeXt 𝜙

F𝜙 → Finally 𝜙

G𝜙 → Globally 𝜙

𝜙1U𝜙2 → 𝜙1Until 𝜙2



Specification Using Temporal Logic

8

(a) Liveness: each request (sender asserts a valid) in the channel should eventually be 

acknowledged (receiver asserts ready).

AG (valid → AF ready).

(b) Fairness: the receiver ready signal should assert infinitely often.

AG AF (ready).

(c) Persistency: when the sender asserts its valid signal high, then it should be remained 

high until its respective ready is also high.

AG ((valid ∧ ¬ready) → AX valid).

Your turn! Please describe the following properties using CTL formulas:

Elastic systems: computation modules interconnected by channels.

Channels: propagate data, equipped with bidirectional handshake signals.

Over paths:

A𝜙 → All 𝜙

E𝜙 → Exists 𝜙

Path-specific:

X𝜙 → NeXt 𝜙

F𝜙 → Finally 𝜙

G𝜙 → Globally 𝜙

𝜙1U𝜙2 → 𝜙1Until 𝜙2



Specification Using Temporal Logic

9

Elastic systems: computation modules interconnected by channels.

Channels: propagate data, equipped with bidirectional handshake signals.

If you are interested in the ongoing research on this topic…



Recap: CTL Formula vs the Set of States That Satisfy the CTL Formula

10

• AG a is a CTL formula

• ⟦AG a⟧ is the set of states that satisfy this formula

• We say a state machine TS satisfies the formula AG a if the set of initial states of 

TS is a subset of ⟦AG a⟧.

Some important concepts to clarify, here is an example (a is a property that a state 

can take):



Model Checking CTL Specifications (I)

11

Do they make a difference?

Determine the set of states where the formula holds:

Step 1: find ⟦AX a⟧, the set of states where AX a is true 

a: the property of 

shaded states {0, 3}

⟦AX a⟧ = {2, 3}, we name b as the CTL property AX a. 

Step 2: find ⟦EX b⟧, the set of states where EX b is true 

⟦EX AX a⟧ = ⟦EX b⟧ = {1, 2}. ⟦AX a⟧

⟦EX AX a⟧



Model Checking CTL Specifications (I)

12

Your turn! Determine the set of states where the formula holds:

a: the property of 

shaded states {0, 3}



Model Checking CTL Specifications (I)

13

Your turn! Determine the set of states where the formula holds:

{0, 1, 2, 3}

{0, 3}

{0, 1, 2, 3}
a: the property of 

shaded states {0, 3}



Model Checking CTL Specifications (II): Adapted from Exam HS22, Q7

14

• Consider a is an property that state s3 

holds.

• Find ⟦AF EG a⟧.
• Please also show how you find the 

fixed-point.

Step 0: 

initial set of states Q0 := {s3}.

Step 1: 

What is the predecessor set Pre(Q0)?

What is the set of states after the first iteration: Q1?

Hint: first, we need to find ⟦EG a⟧:

Your turn! Please complete the rest!

How to compute AF?



Model Checking CTL Specifications (II): Adapted from Exam HS22, Q7

15

• Consider a is an property that state s3 

holds.

• Find ⟦AF EG a⟧.
• Please also show how you find the 

fixed-point.

Step 0: 

initial set of states Q0 := {s3}.

Step 1: 

Predecessor set Pre(Q0) := {s1, s3, s4}

First iteration: Q1 := Pre(Q0) ∩ Q0 = {s3}

Q0 == Q1: we found a fixed-point!

Step 2: 

We say ⟦EG a⟧ = {s3}; we label all states that satisfy ⟦EG a⟧ with b.

We need to find ⟦AF b⟧. 

Step 3: 

⟦AF b⟧ is ⟦¬EG ¬b⟧. 

How to compute AF?



Model Checking CTL Specifications (II): Adapted from Exam HS22, Q7

16

• Consider a is an property that state s3 

holds.

• Find ⟦AF EG a⟧.
• Please also show how you find the 

fixed-point.

Step 3: 

⟦AF b⟧ is {s0, s1, s2, s3, s4} \ ⟦EG ¬b⟧. ⟦b⟧ = ⟦EG a⟧ = {s3} 
Step 4: 

initial set of states Q0 := {s0, s1, s2, s4}.

Step 5: 

Predecessor set Pre(Q0) := {s0, s1, s2}

First iteration: Q1 := Pre(Q0) ∩ Q0 = {s0, s1, s2}

Step 6: 

Predecessor set Pre(Q1) := {s0, s1, s2}

Second iteration: Q2 := Pre(Q1) ∩ Q1 = {s0, s1, s2}

Q1 == Q2: we found a fixed-point!

⟦EG ¬b⟧ = {s0, s1, s2} 



Model Checking CTL Specifications (II): Adapted from Exam HS22, Q7

17

• Consider a is an property that state s3 

holds.

• Find ⟦AF EG a⟧.
• Please also show how you find the 

fixed-point.

⟦b⟧ = ⟦EG a⟧ = {s3} 
Step 7: 

⟦EG ¬b⟧ = Q2 = {s0, s1, s2}

Step 8: 

⟦AF EG a⟧ = ⟦ ¬ EG ¬b⟧ = ⟦true⟧ \ ⟦EG ¬b⟧ = Q2 = {s3, s4}

Now you can implement a model checker that 

checks arbitrary CTL formula!

• In the exercise sheet there is also a discussion on how to 

formulate this as an algorithm (i.e., a model checking algorithm).



Comparison Between Two State Machines

18

Last time we saw how to compare two combinational circuits; today we will 

see how to check the equivalence of two state machines (sequential).

MA

MB

u

yA

yB

Problem: for arbitrary values of input u, do the two 

state machines always produce the same value of y?



Comparison Between Two State Machines

19

Idea: compute the joint machine, by enumerating all 

combinations of states

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine



Comparison Between Two State Machines

20

If state A or D are reachable (outputs are different), then 

two machines are not equivalent

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine



Comparison Between Two State Machines

21

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine
Initial state is C (XB=0, XB=1).

init



Comparison Between Two State Machines

22

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine• Suppose the translation relations of MA, MB, and the joint machine are 

RA, RB, and RJ.

• A transition for this product machine is denoted as (XA, XB, XA’, XB’).

• (XA, XB, XA’, XB’) is in the RJ if there exists a value of u such that (XA, XA’) 

is in RA and (XB, XB’) is in RB. 

init



Comparison Between Two State Machines

23

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine

Is this edge in RJ?

init

The edge is in RJ (i.e., such u exists):

• when u=1, (XA=0, XA’=1) is in RA; when u=1, (XB=1, XB’=0) is in RB

• Suppose the translation relations of MA, MB, and the joint machine are 

RA, RB, and RJ.

• A transition for this product machine is denoted as (XA, XB, XA’, XB’).

• (XA, XB, XA’, XB’) is in the RJ if there exists a value of u such that (XA, XA’) 

is in RA and (XB, XB’) is in RB. 



Comparison Between Two State Machines

24

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine

Is this edge in RJ?

init

The edge is not in RJ (i.e., such u doesn’t exist):

• when u=1, (XA=0, XA’=1) is in RA; when u=0, (XB=1, XB’=1) is in RB

• This is unsatisfiable!

• Suppose the translation relations of MA, MB, and the joint machine are 

RA, RB, and RJ.

• A transition for this product machine is denoted as (XA, XB, XA’, XB’).

• (XA, XB, XA’, XB’) is in the RJ if there exists a value of u such that (XA, XA’) 

is in RA and (XB, XB’) is in RB. 



Comparison Between Two State Machines

25

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine

Is this edge in RJ?

init

The edge is in RJ:

• when u=0, (XA=1, XA’=0) is in RA; when u=0, (XB=0, XB’=0) is in RB

• Suppose the translation relations of MA, MB, and the joint machine are 

RA, RB, and RJ.

• A transition for this product machine is denoted as (XA, XB, XA’, XB’).

• (XA, XB, XA’, XB’) is in the RJ if there exists a value of u such that (XA, XA’) 

is in RA and (XB, XB’) is in RB. 



Comparison Between Two State Machines

26

XA=0

XB=0

XA=0

XB=1

XA=1

XB=0

XA=1

XB=1

A B

C D

The state space of the joint 

state machine

init

The state machines are not equivalent! We 

have found a trace that leads us to state A



Comparison Between Two State Machines

27

Your turn! Determine the followings:

(a) Determine the characteristic function ψ𝐴(x𝐴, x𝐴
′ , 𝑢) and ψ𝐵(x𝐵, x𝐵

′ , 𝑢) of the transition relation for the two 

state machines A and B.

(b) Determine the characteristic function ψ𝑓(x𝐴, x𝐴
′ , x𝐵 , x𝐵

′ ) of the transition relation for the joint state 

machines. Note: ψ𝑓 x𝐴, x𝐴
′ , x𝐵 , x𝐵

′ ≔ ∃𝑢:ψ𝐴 x𝐴, x𝐴
′ , 𝑢 ∙ ψ𝐵 x𝐵, x𝐵

′ , 𝑢 .

(c) Determine the characteristic function ψ𝑋(x𝐴, x𝐵) of the set of reachable states of the product state 

machines.


