Petri Nets (1)

Jiahui Xu
DYNAMO group

We have four exercise sessions:

- 30.11.2023: set operations, characteristic functions, BDDs
- 07.12.2023: reachability analysis and temporal logic
- 14.12.2023: Petri nets
- 21.12.2023: time Petri nets

Today's plan: many examples to help us understand the important concepts in Petri nets

Basic Notations

Set of places S: \{p1, p2, p3, p4\}
Set of transitions $\mathrm{T}:\{\mathrm{t} 1, \mathrm{t} 2\}$
Set of flow relations $\mathrm{F}:\{(\mathrm{p} 1, \mathrm{t} 1)$, ($\mathrm{t} 1, \mathrm{p} 2$), (t1, p3), (p2, t2), (p3, t2), (t2, p4)\}

p3's input set: $\{t 1\}$
p3's output set: $\{t 2\}$

Basic Notations

Set of places S: \{p1, p2, p3, p4\}
Set of transitions $\mathrm{T}:\{\mathrm{t} 1, \mathrm{t} 2\}$
Set of flow relations $\mathrm{F}:\{(\mathrm{p} 1, \mathrm{t} 1)$, ($\mathrm{t} 1, \mathrm{p} 2$),
(t1, p3), (p2, t2), (p3, t2), (t2, p4)\}

How many tokens are
needed to fire the t1

How many tokens are
generated after firing t1

A transition is said to be enabled if all places in the input set have sufficient tokens

A marking M : number of tokens on each place.

$$
M=[M(p 1), M(p 2), M(p 3), M(p 4)]
$$

$$
[1,0,0,0] \xrightarrow{\text { Fire t1 }}[0,1,1,0] \xrightarrow{\text { Fire t2 }}[0,0,0,1]
$$

The initial marking M0

Token game

Notation: $s_{1,5}$ means p 1 and p 5 are marked.
(b) Starting from the initial marking, which transitions are enabled after we fire t 1 and t 2 ? (c) What is the total number of tokens in the Petri net before and after t2 is fired? (d) Play a token game for the this Petri net, and draw the reachability graph.

(b) t5 is enabled after we fire t 1 and t 2

Behavioral properties

For different values of k, is the Petri net deadlock free? Is the Petri net \mathbf{N}-bounded? If yes, what is the smallest N ? How can we to prove the properties?

$$
\mathrm{k}=0 \text { : } 1 \text {-bounded and not deadlock free. }
$$

Proof: a reachability graph with all markings 1-bounded (in another exercise)

Can you give a different proof?

Fire sequence: t1 t3 t4

Your turn! What happens for other values of k ?

N-boundedness: in all reachable markings, no place holds more than N tokens.

Behavioral properties

For different values of k, is the Petri net deadlock free? Is the Petri net \mathbf{N}-bounded? If yes, what is the smallest N ? How can we to prove the properties?
$\mathrm{k}=1$: 1 -bounded and deadlock free.

No transition changes the total number of tokens.

All reachable markings have exactly 1 token

Initial marking has 1 token.

The only marking that deadlocks is when no place has token.

The deadlock marking is not reachable, thus, the Petri net is deadlock free

Place invariant ("AG p"): (M(p1) + M(p2) + M(p3) == 1)

Behavioral properties

For different values of k, is the Petri net deadlock free? Is the Petri net \mathbf{N}-bounded? If yes, what is the smallest N ? How can we to prove the properties?
$k>1$: unbounded and deadlock free.

Repeatedly fire $\mathrm{t} 1, \mathrm{t} 3, \mathrm{t} 4$ will accumulate tokens infinitely at p1

The net always has at least one token, therefore the deadlock marking is unreachable.

Coverability and Reachability Graph

A Petri net that has a

 finite number of statesNow we also want to characterize statespace with infinitely many states

Token game
Notation: $s_{1,5}$ means p1 and p5 are marked.
(b) Starting from the initial marking, which
transitions are enabled after we fire $t 1$ and t2? transitions are enabled after we fire t 1 and t 2 ?
(c) What is the total number of tokens in the Petri net before and after t 2 is fired?
(d) Play a token game for the this Petri net, and draw the reachability graph.

Behavioral properties
For different values of k, is the Petri net deadlock free? Is the Petri net \mathbf{N}-bounded? If yes, what is the smallest N ? How can we to prove the properties?
$\mathrm{k}>1$: unbounded and deadlock free

Repeatedly fire $\mathrm{t} 1, \mathrm{t} 3, \mathrm{t} 4$ will accumulate tokens infinitely at p 1

The net always has at least one oken, therefore the deadlock marking is unreachable

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Marking M covers $\mathbf{M}^{\text {' }}$

Now we also want to characterize statespace with infinitely many states

Marking M covers $\mathbf{M}^{\text {' }}$
Behavioral properties Coverability Tree - Algorithm

For different values of k, is the Petri net dea Special symbol ω, similar to ω : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$ the Petri net N -bounded? If yes, what is the How can we to prove the properties?

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M
$\mathrm{k}>1$: unbounded and deadlock free - Remove tag new from M ;
Repeatedly fire $\mathrm{t} 1, \mathrm{t} 3$, t 4 will The net ; $\begin{aligned} & \text { Repeatedly fire } \mathrm{t} 1, \mathrm{t} 3, \mathrm{t} 4 \text { will } \\ & \text { accumulate tokens infinitely at } \mathrm{p} 1\end{aligned} \begin{aligned} & \text { token, th } \\ & \text { marking }\end{aligned}$ If no transitions are enabled at M , tag it as deadlock; continue; marking

For each enabled transition t at M do

- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$.
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

```
[1, 0, 0] new
```


Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

$$
[1,0,0] \underset{\mathrm{t} 1}{\text { Enabled: }}
$$

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$.
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Your turn! Complete the rest of the coverability tree

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ω : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ω : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ω : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, M covers M' if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$.
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, M covers M' if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, M covers M' if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability Tree - Algorithm
Special symbol ω, similar to ∞ : $\forall \mathrm{n} \in \mathbf{N}: \omega>\mathrm{n} ; \omega=\omega \pm \mathrm{n} ; \omega \geq \omega$

Label initial marking M_{0} as root and tag it as new
while new tags exist, pick one, say M

- Remove tag new from M;
- If M is identical to an already existing marking, tag it as old; continue;
- If no transitions are enabled at M , tag it as deadlock; continue;
- For each enabled transition t at M do
- Obtain marking $M^{\prime}=M \cdot t$
- If there exists a marking $\mathrm{M}^{\prime \prime}$ on the path from the root to M s.t. $\mathrm{M}^{\prime}(p) \geq \mathrm{M}^{\prime \prime}(p)$ for each place p and $\mathrm{M}^{\prime} \neq \mathrm{M}^{\prime \prime}$, replace $\mathrm{M}^{\prime}(p)$ with ω for p where $\mathrm{M}^{\prime}(p)>\mathrm{M}^{\prime \prime}(p)$
- Introduce M^{\prime} as a node, draw an arc with label t from M to M^{\prime} and tag M^{\prime} new.

Coverability and Reachability Graph

Cover: for a Petri net, given two markings M and M^{\prime}, \mathbf{M} covers \mathbf{M}^{\prime} if for each place $p, M(p)>=M^{\prime}(p)$.

Coverability and Reachability Graph

Coverability graph: obtained by merging identical nodes and combine edges that connect the same nodes in the tree

Incidence Matrix

Use vector addition to represent "we fire t 1 " once

$$
M_{0}+u_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\underbrace{\left[\begin{array}{c}
-1 \\
+1 \\
+1 \\
0
\end{array}\right]}_{\substack{\text { Transition } \\
\text { vector } u 1}}
$$

Incidence Matrix

Use vector addition to represent "we fire t 1 " once

Incidence Matrix

Use vector addition to represent
"we fire t1" x1 times

$$
M_{0}+u_{1} \cdot x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
+1 \\
+1 \\
0
\end{array}\right] \cdot x_{1}
$$

Incidence Matrix

Use vector addition to represent "we fire t1" x1 times and "fire t2" x2 times

$$
M_{0}+u_{1} \cdot x_{1}+u_{2} \cdot x_{2}=\underbrace{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
+1 \\
+1 \\
0
\end{array}\right] \cdot x_{1}+\left[\begin{array}{c}
0 \\
-1 \\
-1 \\
+1
\end{array}\right] \cdot x_{2}}_{\substack{\text { Linear combinations of vectors } \\
\text { can be denoted as a matrix }}}
$$

Incidence Matrix

Use vector addition to represent "we fire t 1 " x 1 times and "fire t 2 " x 2 times

The incidence matrix

Incidence Matrix

Use vector addition to represent "we fire t 1 " x 1 times and "fire t 2 " x 2 times

Columns: the effect of firing the transitions

The incidence matrix

Incidence Matrix

$$
M_{0}+A^{+} \cdot \vec{x}-A^{-} \cdot \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

The downstream incidence matrix A^{+}

The upstream incidence matrix A^{-}

Incidence Matrix

$$
\begin{aligned}
\mathrm{M} & =\left(P_{A 0}, P_{A 1}, P_{A 2}, P_{R 1}, P_{R 2}, P_{B 0}, P_{B 1}, P_{B 2}\right) \\
\mathrm{x} & =\left(t_{A 0}, t_{A 1}, t_{A 2}, t_{B 0}, t_{B 1}, t_{B 2}\right)
\end{aligned}
$$

Incidence Matrix

(a) Construct a reachability graph, and determine the deadlock state (no transition is enabled in a deadlock state).
(b) Determine the upstream and downstream incidence matrices A^{+}and A^{-}and the incidence matrix A . What is the marking you obtain by firing $t_{A 0}$ and $t_{B 0}$?
(c) Can you show why the marking after firing $t_{A 0}$ and $t_{B 0}$ is a deadlock state by using the upstream incidence matrix A^{-}?
(d) Can we make the Petri net deadlock-free by adding one place and a few transitions?

$$
M_{0}+A^{+} \cdot \vec{x}-A^{-} \cdot \vec{x}=\underbrace{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]}_{\begin{array}{c}
\text { The upstream } \\
\text { incidence matrix } A^{+}
\end{array}} \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]}_{\begin{array}{c}
\text { The downstream } \\
\text { incidence matrix } A^{-}
\end{array}} \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\begin{aligned}
\mathrm{M} & =\left(P_{A 0}, P_{A 1}, P_{A 2}, P_{R 1}, P_{R 2}, P_{B 0}, P_{B 1}, P_{B 2}\right) \\
\mathrm{x} & =\left(t_{A 0}, t_{A 1}, t_{A 2}, t_{B 0}, t_{B 1}, t_{B 2}\right)
\end{aligned}
$$

Incidence Matrix

$$
\text { matrix } A^{+} \quad \text { matrix } A^{-} \quad \text { matrix } A
$$

$\left[\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrrrrr}-1 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & -1 & 1 \\ 0 & -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1\end{array}\right]$

$$
\begin{aligned}
\mathrm{M} & =\left(P_{A 0}, P_{A 1}, P_{A 2}, P_{R 1}, P_{R 2}, P_{B 0}, P_{B 1}, P_{B 2}\right) \\
\mathrm{x} & =\left(t_{A 0}, t_{A 1}, t_{A 2}, t_{B 0}, t_{B 1}, t_{B 2}\right)
\end{aligned}
$$

Incidence Matrix

This state is a deadlock state because it is not covered by any vectors in A

$$
\begin{aligned}
\mathrm{M} & =\left(P_{A 0}, P_{A 1}, P_{A 2}, P_{R 1}, P_{R 2}, P_{B 0}, P_{B 1}, P_{B 2}\right) \\
\mathrm{x} & =\left(t_{A 0}, t_{A 1}, t_{A 2}, t_{B 0}, t_{B 1}, t_{B 2}\right)
\end{aligned}
$$

Incidence Matrix

This marking has to be avoided

$$
\begin{aligned}
\mathrm{M} & =\left(P_{A 0}, P_{A 1}, P_{A 2}, P_{R 1}, P_{R 2}, P_{B 0}, P_{B 1}, P_{B 2}\right) \\
\mathrm{x} & =\left(t_{A 0}, t_{A 1}, t_{A 2}, t_{B 0}, t_{B 1}, t_{B 2}\right)
\end{aligned}
$$

Incidence Matrix

This marking has to be avoided
Solution: add a lock

$$
\begin{aligned}
\mathrm{M} & =\left(P_{A 0}, P_{A 1}, P_{A 2}, P_{R 1}, P_{R 2}, P_{B 0}, P_{B 1}, P_{B 2}\right) \\
\mathrm{x} & =\left(t_{A 0}, t_{A 1}, t_{A 2}, t_{B 0}, t_{B 1}, t_{B 2}\right)
\end{aligned}
$$

How to prove that a marking is reachable?

If a marking M 1 is reachable, then the state equation has a non-negative solution \vec{x} If the state equation has no non-negative solution \vec{x}, then marking M 1 is not reachable

But not true vice versa!

How to prove that a marking is reachable?

$$
M_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=M_{0}+A \cdot \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
+1 & -1 \\
+1 & -1 \\
0 & +1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This marking is reachable, and the state equation has a solution $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
M_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=M_{0}+A \cdot \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
+1 & -1 \\
+1 & -1 \\
-1 & +2
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This marking is not reachable, but the state equation has a solution $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Take away message: state equation has a solution
is not a proof for reachability!

How to prove that a marking is reachable?

Your turn! How can you prove that the marking [101, 99, 4] is reachable or not reachable?

How to prove that a marking is reachable?

Your turn! How can you prove that the marking [101, 99, 4] is reachable or not reachable?

The state equation has a solution [100, 99, 4], but it does not prove the reachability of the marking

How to prove that a marking is reachable?

Your turn! How can you prove that the marking [101, 99, 4] is reachable or not reachable?

The state equation has a solution [306, 0, 207, 203], but it does not prove the reachability of the marking

The only way to prove reachability is a firing sequence:

$$
\underbrace{t 1->t 3->~ t 4}_{x 203} \quad->\underbrace{t 1}_{x 103} \quad->\underbrace{t 3}_{x 4}
$$

