Petri Nets (2)

Jiahui Xu
DYNAMO group

We have four exercise sessions:

- 30.11.2023: set operations, characteristic functions, BDDs
- 07.12.2023: reachability analysis and temporal logic
- 14.12.2023: Petri nets
- 21.12.2023: time Petri nets

Today's plan:

- Simulating time Petri nets
- Modeling arithmetic using Petri nets
- Q \& A
- 令

Adding time-dependent behaviors to Petri nets

Set of places

Set of transitions
Set of flow relations $\boldsymbol{\text { Delay functions }}$
Marking 十 Event list
Initial marking

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net
@ tau $=0, \mathrm{t} 1$ is activated:
Place a firing event on the event list at tau $=0+\mathrm{d}(\mathrm{t} 1)$.

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(t 1,3)$

No transition can be fired @ tau=0
Go to the next event @ tau = 3

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(\mathrm{t} 1,3)$
1	3	t 1		

No transition can be fired @ tau=0
Go to the next event @ tau = 3

Determining which transition will be fired, update the marking vector, update the event list

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

@ tau $=3$, t2 is activated:
Place an event @ tau = $3+\mathrm{d}(\mathrm{t} 2)=7$

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time
@ tau = 3, t1 is fired, loses
activation, and not activated
again

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(t 1,3)$
1	3	t 1	$[0,1,1,0]$	

Determining which transition will be fired, update the marking vector, update the event list

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

@ tau $=3$, t2 is activated:
Place an event @ tau $=3+\mathrm{d}(\mathrm{t} 2)=7$

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time
@ tau = 3, t1 is fired, loses
activation, and not activated
again

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(\mathrm{t} 1,3)$
1	3	t 1	$[0,1,1,0]$	$(\mathrm{t} 2,7)$

No transition can be fired @ tau=3
Go to the next event @ tau=7

Determining which transition will be fired, update the marking vector, update the event list

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(\mathrm{t} 1,3)$
1	3	t 1	$[0,1,1,0]$	$(\mathrm{t} 2,7)$
2	7	t 2		

No transition can be fired @ tau=3
Go to the next event @ tau=7
Determining which transition will be fired, update the marking vector, update the event list

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(\mathrm{t} 1,3)$
1	3	t 1	$[0,1,1,0]$	$(\mathrm{t} 2,7)$
2	7	t 2		

Determining which transition will be fired, update the marking vector, update the event list

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(\mathrm{t} 1,3)$
1	3	t 1	$[0,1,1,0]$	$(\mathrm{t} 2,7)$
2	7	t 2	$[0,0,0,1]$	

Determining which transition will be fired, update the marking vector, update the event list

Adding time-dependent behaviors to Petri nets

Simulating a time Petri net

- Step: event index
- Tau: simulation time
- Fired transition: the fired transition
- Event list: a list of enabled transitions and their firing time

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[1,0,0,0]$	$(\mathrm{t} 1,3)$
1	3	t 1	$[0,1,1,0]$	$(\mathrm{t} 2,7)$
2	7	t 2	$[0,0,0,1]$	-

@ tau = 7, No event on the list

Determining which transition will be fired, update the marking vector, update the event list

Adding time-dependent behaviors to Petri nets

Adding time-dependent behaviors to Petri nets

Adding time-dependent behaviors to Petri nets

Both t1 and t2 are activated
Choose exactly one of them

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token is removed from any of its input places!

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token is removed from any of its input places!

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token is removed from any of its input places!

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token is removed from any of its input places!

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token is removed from any of its input places!

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token is removed from any of its input places!

Adding time-dependent behaviors to Petri nets

A transition loses its activation whenever a token is removed from any of its input places!

Adding time-dependent behaviors to Petri nets

*When several transitions $@$ tau $=0$
are enabled at the same
time, choose the one with
the smallest index first

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$

Adding time-dependent behaviors to Petri nets

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 2

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 2

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$

Your turn! Please determine the simulation outcome for the next 4 steps (i.e., until step = 5)!

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 3

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$
2	3	t 1	$[0,2]$	$(\mathrm{t} 2,5),(\mathrm{t} 3,4)$

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 3

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$
2	3	t 1	$[0,2]$	$(\mathrm{t} 2,5),(\mathrm{t} 3,4)$

@ tau = 3:
t3 is not deactivated

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 4

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$
2	3	t 1	$[0,2]$	$(\mathrm{t} 2,5),(\mathrm{t} 3,4)$
3	4	t 3	$[2,2]$	

@ tau = 4, token is consumed from p2:
t2 and t3 both lose activation, and immediately reactivated.

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 4

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$
2	3	t 1	$[0,2]$	$(\mathrm{t} 2,5),(\mathrm{t} 3,4)$
3	4	t 3	$[2,2]$	$(\mathrm{t} 1,5),(\mathrm{t} 2,6),(\mathrm{t} 3,6)$

@ tau = 4, token is consumed from p2:
t2 and t3 both lose activation, and immediately reactivated.

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 5

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$
2	3	t 1	$[0,2]$	$(\mathrm{t} 2,5),(\mathrm{t} 3,4)$
3	4	t 3	$[2,2]$	$(\mathrm{t} 1,5),(\mathrm{t} 2,6),(\mathrm{t} 3,6)$
4	5	t 1	$(0,3]$	$(\mathrm{t} 2,6),(\mathrm{t} 3,6)$

@ tau = 3:
t 3 is not deactivated when firing t 1

Adding time-dependent behaviors to Petri nets

* When several transitions are enabled at the same time, choose the one with the smallest index first
@ tau = 6 cen

Step	tau	Fired transition	Marking vector	Event list
0	0	-	$[0,1]$	$(\mathrm{t} 3,2)$
1	2	t 3	$[2,1]$	$(\mathrm{t} 1,3),(\mathrm{t} 3,4)$
2	3	t 1	$[0,2]$	$(\mathrm{t} 2,5),(\mathrm{t} 3,4)$
3	4	t 3	$[2,2]$	$(\mathrm{t} 1,5),(\mathrm{t} 2,6),(\mathrm{t} 3,6)$
4	5	t 1	$[0,3]$	$(\mathrm{t} 2,6),(\mathrm{t} 3,6)$
5	6	t 2	$(\mathrm{t} 1,7),(\mathrm{t} 3,8)$	

@ tau = 6, token is consumed from p2:
t2 and t3 both lose activation, t3 is immediately reactivated

Inhibitor Arc

T1 is enabled
t1

T 1 is disabled by the inhibitor arc t1

Calculation with Petri nets

T1 is enabled
t1

T1 is disabled by the inhibitor arc t1

Goal of the exercise: model a function $f_{i}(x, y)$ using a Petri net.

- The Petri net must contain two places P_{x} and P_{y} that hold x and y tokens respectively in the beginning.
- The net must contain a place P_{z} which holds $f_{i}(x, y)$ tokens when the net is dead
- The Petri nets are supposed to work for arbitrary numbers of tokens in P_{x} and P_{y}.

1. $f_{1}(x, y):=5 x+y, \forall x, y \geq 0$
2. $f_{2}(x, y):=x-2 y, \forall y \geq 0, x>2 y$
3. $f_{3}(x, y):=x y, \forall x, y \geq 0$

For f3, we need to first create a token duplicator that duplicates the tokens from P_{x} to P_{z} (this maybe requires the use of one or more inhibitor arcs).

$$
f_{1}(x, y):=5 x+y, \forall x, y \geq 0
$$

$$
f_{2}(x, y):=x-2 y, \forall y \geq 0, x>2 y
$$

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

t2 disabled by the inhibitor arc

t3 disabled by the inhibitor arc

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

t2 disabled by the

t3 disabled by the inhibitor arc

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

Token duplicated from px to pz

Token duplicator

$$
f_{3}(x, y):=x y, \forall x, y \geq 0
$$

Idea: supply p2 with exactly py tokens (duplicate tokens from px to pz for py times)

