HS 2023

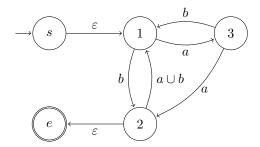
Prof. L. Vanbever / R. Schmid based on Prof. R. Wattenhofer's material

Discrete Event Systems

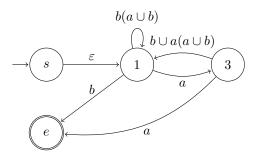
Exercise Sheet 3

1 From DFA to Regular Expression

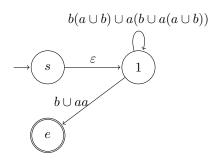
First generate the GNFA:



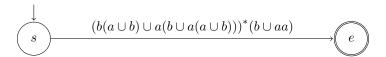
Then begin by ripping out any node. We start by removing node 2:



Then, we remove node 3:



Finally, we remove node 1 and derive the corresponding regular expression:



Note that we could have ripped out states in any particular order. However, some orders lead to smaller results than others:

$$\mathbf{1-2-3:} \ \left(\underbrace{b((a \cup b)b)^*}_{s \to t}\right) \cup \left(\left(\underbrace{a \cup (b((a \cup b)b)^*(a \cup b)a)}_{s \to (3)}\right) \left(\underbrace{ba \cup (a((a \cup b)b)^*(a \cup b)a)}_{\text{loop at } (3)}\right)^* \left(\underbrace{a((a \cup b)b)^*}_{(3) \to t}\right)\right)$$

1-3-2:
$$(\underbrace{\emptyset}_{s \to t}) \cup (\underbrace{b \cup (a(ba)^*(a \cup bb))}_{s \to (2)}) (\underbrace{(a \cup b)b \cup (a \cup b)a(ba)^*(a \cup bb)}_{\text{loop at } (2)})^* (\underbrace{\varepsilon}_{(2) \to t})$$

$$\textbf{2-1-3:} \ \left(\underbrace{(b(a\cup b))^*b}_{s\to t}\right) \cup \left(\underbrace{(b(a\cup b))^*a}_{s\to (3)}\right) \left(\underbrace{(b\cup a(a\cup b))(b(a\cup b))^*a}_{\text{loop at } (3)}\right)^* \left(\underbrace{(a\cup (b\cup a(a\cup b)))(b(a\cup b))^*b}_{(3)\to t}\right)$$

$$\textbf{2-3-1: } \big(\underbrace{\emptyset}_{s \to t}\big) \cup \big(\underbrace{\varepsilon}_{s \to (1)}\big) \big(\underbrace{b(a \cup b) \cup a(b \cup a(a \cup b))}_{\text{loop at } (1)}\big)^* \big(\underbrace{b \cup aa}_{(1) \to t}\big)$$

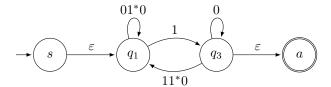
$$\textbf{3-1-2: } \big(\underbrace{\emptyset}_{s \to t}\big) \cup \big(\underbrace{(ab)^*(b \cup aa)}_{s \to (2)}\big) \big(\underbrace{(a \cup b)(ab)^*(b \cup aa)}_{\text{loop at } (2)}\big)^* \big(\underbrace{\varepsilon}_{(2) \to t}\big)$$

3-2-1:
$$(\underbrace{\emptyset}_{s \to t}) \cup (\underbrace{\varepsilon}_{s \to (1)}) (\underbrace{ab \cup (b \cup aa)(a \cup b)}_{\text{loop at } (1)})^* (\underbrace{b \cup aa}_{(1) \to t})$$

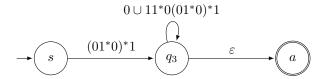
Hint: The annotations indicate where each of these subformulas can be found in the last step. Generally, it is a good idea to start ripping out states based on their in-degree multiplied with their out-degree, as this is the amount of edges they will affect. One can count loops as both in-and outgoing edges because they complicate the resulting formulas as well.

2 Transforming Automata [Exam HS14]

The regular expression can be obtained from the finite automaton using the transformation presented in the script. After ripping out state q_2 , the corresponding GNFA looks like this:



After also removing state q_1 , the GNFA looks as follows.



Eliminating the last state q_3 yields the final solution, which is $(01*0)*1(0 \cup 11*0(01*0)*1)*$.

Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular expression. The order q_3, q_2, q_1 , for example, results in $((0 \cup 10^*1)1^*0)^*10^*$.

3 Pumping Lemma

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length p. Construct a suitable word $w \in L$ with $|w| \ge p$ ("there exists $w \in L$ ") and show that for all divisions of w into three parts, w = xyz, with $|x| \ge 0$, $|y| \ge 1$, and $|xy| \le p$, there exists a pumping exponent $i \ge 0$ such that $w' = xy^iz \notin L$. If this is the case, L is not regular.

- a) We claim that L_1 is not regular and prove our claim with the pumping lemma recipe:
 - 1. Assume for contradiction that L_1 was regular.
 - 2. There must exist some p, s.t. any word $w \in L_1$ with $|w| \ge p$ is pumpable.
 - 3. Choose the string $w = 1^p 02^p \in L_1$ with length |w| > p.
 - 4. Consider all ways to split w = xyz s.t. $|xy| \le p$ and $|y| \ge 1$. \rightarrow Hence, $y \in 1^+$.
 - 5. Observe that $xy^0z \notin L_1$ a contradiction to p being a valid pumping length.
 - 6. Consequently, L_1 cannot be regular.
- b) Language L_2 can be shown to be non-regular using the pumping lemma. We will showcase how this might look without using the recipe presented above: Assume for contradiction that L_2 is regular and let p be the corresponding pumping length.

Choose w to be the word 0110^p1^p . Because w is an element of L_2 and has length more than p, the pumping lemma guarantees that w can be split into three parts, w = xyz, where $|xy| \le p$ and for any $i \ge 0$, we have $xy^iz \in L_2$. In order to obtain the contradiction, we must prove that for every possible partition into three parts w = xyz where $|xy| \le p$, the word w cannot be pumped. We therefore consider the various cases.

- (1) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping with i = 0) creates a word with an illegal prefix (e.g. $10^p 1^p$ for y = 01).
- (2) If y consists of only 0s from the second block, the word $w' = xy^2z$ has more 0s than 1s in the last |w'| 3 symbols and hence $c \neq d$.

Note that y cannot contain 1s from the second block because of the requirement $|xy| \leq p$. We have shown that for all possible divisions of w into three parts, the pumped word is not in L_2 . Therefore, L_2 cannot be regular and we have a contradiction.

Be Careful!

One may think one could show the same based on the closure properties of regular languages. However, this only works in **one direction!** That is, for an operator $\diamond \in \{\cup, \cap, \bullet\}$, we have:

If L_1 and L_2 are regular, then $L = L_1 \diamond L_2$ is also regular.

If either L_1 or L_2 or both are non-regular, we cannot deduce the non-regularity of L or vice-versa. Moreover, L being regular does not imply that L_1 and L_2 are regular as well. This may sound counter-intuitive which is why we give examples for the three operators.

- $L = L_1 \cup L_2$: Let L_1 be any non-regular language and L_2 its complement. Then $L = \Sigma^*$ is regular.
- $L = L_1 \cap L_2$: Let L_1 be any non-regular language and L_2 its complement. Then $L = \emptyset$ is regular.
- $L = L_1 \bullet L_2$: Let $L_1 = \{a^*\}$ (a regular language) and $L_2 = \{a^p \mid p \text{ is prime}\}$ (a non-regular language) then $L = \{aaa^*\}$ is regular.

Hence, to prove that a language L_x is non-regular, you assume it to be regular for contradiction. Then you combine it with a regular language L_r to obtain a language $L = L_x \diamond L_r$. If L is non-regular, L_x could not have been regular either.

4 Pumping Lemma Revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. This means, there exists a number p, such that every word $w \in L$ with $|w| \ge p$ can be written as w = xyz with $|xy| \le p$ and $|y| \ge 1$, such that $xy^iz \in L$ for all $i \ge 0$.

In order to obtain the contradiction, we need to find at least one word $w \in L$ with $|w| \ge p$ that does not adhere to the above proposition. We choose $w = xyz = 1^{p^2}$ and consider the case i = 2 for which the Pumping Lemma claims $w' = xy^2z \in L$.

We can relate the lengths of w = xyz and $w' = xy^2z$ as follows.

$$p^2 = |w| = |xyz| < |w'| = |xy^2z| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$$

So we have $p^2 < |w'| < (p+1)^2$ which implies that |w'| cannot be a square number since it lies between two consecutive square numbers. Hence, $w' \notin L$ and L cannot be regular.

b) Consider the alphabet $\Sigma = \{a_1, a_2, ..., a_n\}$ and the language $L = \bigcup_{i=1}^n a_i^* = a_1^* \cup a_2^* \cup \cdots \cup a_n^*$. In other words, each word of the language L contains an arbitrary number of just **one** symbol a_i . The language is regular, as it is the union of regular languages, and the smallest possible pumping number p for L is 1. But any DFA needs at least n+2 states to accept the empty word, distinguish the n different characters of the alphabet, and for a failing state. Thus, for a DFA, we cannot deduce any information from p about the minimum number of states. The same argument holds for an NFA.

5 Minimum Pumping Length

To begin with, observe that the minimum pumping length p of a language $L = L_1 \cup L_2$ is at most $p \leq \max\{p_1, p_2\}$, where p_1 and p_2 are the minimum pumping lengths of L_1 and L_2 , respectively. This holds because if there is already a string w that is pumpable in L_1 , then w will also be pumpable in L. Hence, let $L_1 = 1*0+1+0*$ and $L_2 = 111+0+$.

- The minimum pumping length of L_2 cannot be 4 because 1110 cannot be pumped. Now consider the string s that belongs to L_2 and that has a size of 5. If s=11110, then it can be divided into xyz where x=111, y=1 and z=0 and thus can be pumped. If s=11100, then it can be divided into xyz where x=111, y=0 and z=0 and thus can be pumped. Similarly, all longer words can be pumped. The minimum pumping length for L2 is thus 5.
- \bullet A string s of size 3 and belonging to L1 can always be pumped.

Considering the word 1110, observe that it can also not be pumped in $L = L_1 \cup L_2$. In conclusion, the minimum pumping length of L is 5.

6 The art of being regular

We use the pumping lemma to show that L is not regular. To begin with, consider the equivalent language $L = \{a\#b \mid a = 2b\}$ and assume (for a contradiction) that L is regular. Hence, the pumping lemma holds and there is some valid pumping number p. We choose the string $w = 100^p \# 10^p$ where $a = 100^p$ is equal to 2b ($b = 10^p$) for $p \ge 0$. Since |w| > p, we know that w must be pumpable for some split w = xyz. Following $|xy| \le p$, we must consider two cases:

- a) $x = \varepsilon$, $y \in 10^*$: Arithmetic is wrong for xy^0z . Left side is 0 but the right side isn't.
- b) $x \in 10^*$, $y \in 0^+$: Arithmetic is wrong for xy^0z . Decreased left side but not right. In particular, it is no longer the case that a > b (required since $b \neq 0$).

Hence, we conclude that the pumping lemma does not hold for the language L, which can thus not be regular.

Bonus tasks: - solutions provided by student Angéline Pouget in HS20

• Determine whether $L = \{x \# y \mid x + y = 3y\}$ is context-free.

To begin with, we observe that

$$L = \{x \# y \mid x + y = 3y\}$$

= \{x \# y \| x = 2y\}
= \{w 0 \# w \| w \in 1(0 \cdot 1)^*\}.

We prove that $L = \{w0\#w \mid w \in 1(0 \cup 1)^*\}$ is not context-free using the tandem-pumping lemma. First, we assume for contradiction that L is context-free and hence there is a number p such that any string in L of length $\geq p$ is tandem-pumpable within a substring of length p. We choose $w = 1^p0^p$ and thereby consider the word $\alpha = w0\#w = 1^p0^p0\#1^p0^p$ with $|\alpha| \geq p$.

We now want to split $\alpha = uvxyz$ with $|vy| \ge 1$, $|vxy| \le p$ and $uv^ixy^iz \in L$ for all $i \ge 0$. Because we have $|vxy| \le p$, there are the following options:

- $-\#\notin vxy\ (vxy=1^m\ \text{or}\ vxy=0^m\ \text{with}\ 1\leq m\leq p\ \text{or}\ vxy=1^n0^s\ \text{with}\ n+s\leq p).$ Any one of these sequences can either be before or after the # but independent of this choice, if we pump v and y and choose for example i=0, we will have $\alpha'=w'0\#w''$ with $w'\neq w$ and hence $\alpha'\notin L$.
- $-\# \in vxy$. In this case, we can choose x=# because we know that there is only one # and therefore this cannot be the pumpable part. This leaves us with $v=0^n$ and $y=1^s$ with $1 \le n+s \le p-1$ and if we for example set i=0 this leaves us with $\alpha'=1^p0^{p+1-n}\#1^{p-s}0^p$ which is $\notin L$.

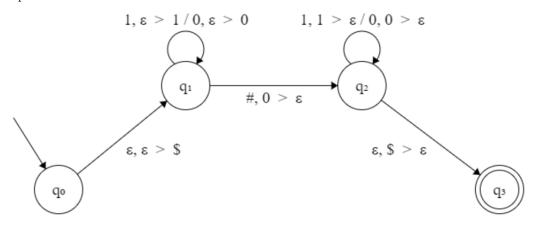
Because we have now considered all possible splits of this word into $\alpha = uvxyz$, we can safely say that language L is not context-free.

• Show whether $L' = \{x \# y \mid x + reverse(y) = 3 \cdot reverse(y)\}$ is context-free. The reverse()-function takes an integer as a bitstring and reverses the order of its bits.

Let w' = reverse(w). Applying the same transformations as above, we obtain

$$L' = \{x \# y \mid x = 2 \cdot reverse(y)\} = \{w 0 \# w' \mid w \in 1(0 \cup 1)^*\}.$$

We can show that this language is context-free by drawing a push-down automaton that accepts this language. This automaton is depicted below with ">" representing stack operations " \rightarrow ".



We could have alternatively shown that the language is context-free by providing a context free grammar (V, Σ, R, S) such as the following:

$$-V = \{S\}$$

$$- \Sigma = \{0, 1, \#\}$$

$$-~R:~S\rightarrow 1S1\mid 0S0\mid 0\#$$

$$-S = S$$