Discrete Event Systems
Solution to Exercise Sheet 7

1 Bin Packing

The algorithm mentioned in the exercise has a competitive ratio of 2. The proof works as follows: First we show that the algorithm requires at most twice as many bins as the optimal offline algorithm. Consider the bins in the order in which they were closed. Consider two consecutive bins i and $i+1$. Assume that the algorithm fills bin i up to level $x \leq 1$. The next item (the first to be put into bin $i+1$) must be of size larger than $1-x$. Otherwise, the algorithm would not have opened a new bin. Therefore, any two consecutive bins must have total size strictly more than 1. Hence, considering the total size of all the items, we conclude the following: If the algorithm uses k bins, then the optimal offline algorithm requires strictly more than $k/2$ bins if k is even, and strictly more than $(k-1)/2$ bins if k is odd. In both cases the number of bins the optimal offline algorithm uses is larger than $k/2$.

Second, we show that there are indeed input sequences where the ratio of the used number of bins of our algorithm and the optimal offline algorithm gets arbitrarily close to 2. Consider the following input sequence:

$I = (1, \frac{2}{n}, 1, \frac{2}{n}, 1, \frac{2}{n}, \ldots, 1, \frac{2}{n})$.

Clearly, our algorithm Alg needs to open a new bin after every item. That is, the number of bins opened by Alg is $\text{cost}_{\text{Alg}}(I) = n$. On the other hand, the optimal algorithm Opt can put all $n/2$ objects of size 1 into one bin each and all the $n/2$ objects of size $2/n$ together into one bin. Hence, $\text{cost}_{\text{Opt}}(I) = n/2 + 1$. The competitive ratio r for input sequence I is therefore

$$r \geq \frac{\text{cost}_{\text{Alg}}(I)}{\text{cost}_{\text{Opt}}(I)} = \frac{n}{n/2 + 1} = \frac{2n}{n + 2}.$$

For large n, this tends to 2.

2 Paging

a) (i) LFU (Least Frequently Used): Replace the page that has been requested the smallest number of times since entering the fast memory.

The LFU strategy is not constant-competitive. Consider the following request sequence:

$I = (p_1, p_1, p_2, p_2, p_3, p_3, p_4, p_4, p_3, p_3, \ldots)$

In this sequence, LFU keeps on exchanging p_2 and p_4 ad infinitum, while the optimum algorithm keeps these two pages in the cache.
(ii) **LIFO (Last-in/First-out):** Replace the page most recently moved to the cache.

For the same reason as LFU, the LIFO strategy is also not constant-competitive. Consider the following request sequence:

\[I = (p_1, p_2, p_3, p_4, p_3, p_4, \ldots) \]

In this sequence, LIFO keeps on exchanging \(p_3 \) and \(p_4 \) forever. It is therefore not constant-competitive.

(iii) **FIFO (First-in/First-out):** Replace the page that has been in the cache longest.

The FIFO strategy has a competitive ratio of 3.

Proof. Observe that on any consecutive input subsequence which contains three or fewer distinct page references, FIFO incurs at most three page faults. Now, consider a 3-phase partition of the input sequence \(I \). A 3-phase partition is defined as follows: Phase 0 is the empty sequence. For every \(i \geq 1 \), phase \(i \) is the maximal sequence following phase \(i - 1 \) that contains at most three distinct page requests; that is, if phase \(i + 1 \) exists, its sequence begins with the fourth distinct page request since the start of the \(i \)-th phase.

Next, we consider how both strategies perform on each phase. For \(i = 1 \), FIFO and OPT will not incur any faults, since the cache can be filled with all three values. For any phase \(i \geq 2 \), FIFO incurs at most three page faults, because it cannot fault twice on the same page. It remains to show that OPT will incur at least one fault in each phase for \(i \geq 2 \) (on average). Let \(q \) be the first request of phase \(i - 1 \). Consider the subsequence of the input sequence starting with the second request of phase \(i - 1 \) up to and including the first request of phase \(i \). The optimal algorithm OPT can only have two additional pages cached (on top of \(q \)) at the beginning of our subsequence, and there are three different requests in the subsequence which are also all different from request \(q \). Hence, OPT must incur at least one page fault in this sequence.

Combining the two bounds, we have

\[\text{cost}_{FIFO}(I) \leq 3 \cdot \text{cost}_{OPT}(I). \]

A sequence for which FIFO actually yields (arbitrarily close to) three times as many page faults as OPT is given by

\[I = (p_1, p_2, p_3, p_4, p_1, p_2, \ldots) . \]

(iv) **LRU (Least Recently Used):** When eviction is necessary, replace the page whose most recent request was the earliest.

Like the FIFO strategy, LRU has a competitive ratio of 3. The reason is that (like FIFO), LRU has the property that on any consecutive input subsequence containing three or fewer distinct page references, it incurs at most three page faults. The remainder of the proof is then equivalent to the FIFO case, including the worst-case input sequence.

(v) **FWF (Flush When Full):** Whenever there is a page fault and there is no space left in the cache, evict all pages currently in the cache.

The FWF algorithm also has a competitive ratio of 3. Consider the first phase, i.e., the first consecutive input subsequence containing three distinct page references. Clearly, FWF does not operate a flush. Now, consider the subsequent phase. In this phase, there can be at most one flush and hence, three page faults. Similarly, in every subsequent phase, there can be at most one flush and three page faults. From this observation, the proof follows like in the FIFO case, again including the worst-case input sequence for the FIFO algorithm.
b) We prove the following theorem:

Theorem. There exists no deterministic online paging algorithm \textit{Alg} with a competitive ratio better than 3.

Proof. Assume that there are four pages, \(p_1, \ldots, p_4 \). We prove that there is an arbitrarily long request sequence \(I \) for which \(|I| = \text{cost}_\text{Alg}(I) \geq 3 \cdot \text{cost}_\text{Opt}(I) \). Without loss of generality, assume that \textit{Alg} initially holds \(p_1, p_2, \) and \(p_3 \) in its cache. We define a “cruel” request sequence \(I = (r_1, r_2, r_3, \ldots) \) inductively: \(r_1 = p_4 \), and \(r_{i+1} \) is defined to be the unique page that is not in \textit{Alg}’s cache just after serving the request sequence \(r_1, \ldots, r_i \). In other words, the adversary always requests the one page that \textit{Alg} does not have in its cache. Clearly, \(I \) can be made arbitrarily long and \textit{Alg} has a page fault on each request in \(I \), hence \(|I| = \text{cost}_\text{Alg}(I) \). In the following, we assume that the length of \(I \) is a multiple of 3 (which we may do since we can choose our input sequence).

We now show that it is possible to serve every request sequence \(I \) with at most \(|I|/3 \) page faults in the offline case. An offline algorithm knows the complete request sequence in advance. Consider the 3-phase partition of any input sequence: the sequences of any two consecutive phases \(i \) and \(i + 1 \) will differ by exactly one request value, since we can only have four different requests. Thus, the offline algorithm will always be able to keep the same two values in the cache for any pair of consecutive phases. This reduces the number of faults to at most one in every 3-phase. Each 3-phase contains at least three elements, otherwise it is not maximal. Hence, our offline algorithm has at most one page fault every three requests.

Clearly, it holds that

\[
\text{cost}_\text{Opt}(I) \leq \frac{|I|}{3} = \frac{\text{cost}_\text{Alg}(I)}{3},
\]

which finishes the proof of the theorem. \(\square \)

3 Memory

a) Turn over every card once in \(n \) moves. Then collect all \(n \) pairs. This is 2–competitive.

b) There exists a \((2n - 1)/n \)–competitive strategy and \((2n - 1)/n \) is also a lower bound for the competitive ratio of any deterministic strategy:

(i) No strategy can guarantee to collect all pairs in a solitaire Memory game in less than \(2n - 1 \) moves: We can assume that if no uncollected pairs are known to the player, then she will turn over a new card in the first step of her move. We can also assume that if the first card has no known matching partner, that then the player will turn over another unknown card as the second step of her move. Deviating from these rules would not decrease the number of needed moves. In a similar fashion, we can assume that, if a pair of cards is known and not collected after a move, the player will collect them at the end – doing it at an earlier point would incur the same costs of one move per pair.

The cards could be positioned in such a way, that the player will open the cards in the following order:

\[
(1, 2), (3, 1), (4, 2), (5, 3), \ldots, \\
(n - 2, n - 4), (n - 1, n - 3), (n, n - 2), (n, n - 1).
\]

From the first \(\{(1, 2)\} \) to the \((n - 1) \)th move \(\{n, n - 2\} \), the first card that is turned over is always an unknown card that has no known matching partner. Therefore, the only viable option is to turn over a second card during that move. From the second to the \((n - 1) \)th move, this reveals a card that has a known matching partner from
a previous move. Also in the first move, no pair is collected. Therefore, the player needs at least \((n - 1)\) moves where no pair is made. Since collecting the pairs needs \(n\) additional moves at the end, each strategy needs at least \((n - 1) + n = 2n - 1\) moves to finish collecting all pairs.

(ii) There exists a strategy that can guarantee to collect all pairs in a solitaire Memory game in at most \(2n - 1\) moves. We use the following strategy: First the player turns over \((2n - 2)\) cards in \((n - 1)\) moves. Due to the pigeonhole principle, the player now knows the location of at least \((n - 2)\) pairs (or has collected some of them already), since only two cards were not turned over yet. In the worst case, we can now collect these \((n - 2)\) pairs with another \((n - 2)\) moves, needing \((n - 1) + (n - 2) = 2n - 3\) moves in total so far. The player now turns over one of the last two remaining cards. If the player knows the location of the matching partner, she can collect this pair. Else, since only one card was not turned over yet, this last card is the matching partner. Since now only 2 cards are not collected on the table, they must be a pair. Adding these two moves to the \(2n - 3\) previous moves results in total in \(2n - 1\) moves.

c) Assume that there are still \(i\) pairs left and let \(X_i\) be a random variable indicating the number of moves until the next pair is found. After the first card has been picked, there are still \(2i - 1\) other cards on the table. So the probability to pick the matching card in the current move is \(p = \frac{1}{2i-1}\). As \(X_i\) is geometrically distributed with parameter \(p\), we have \(E[X_i] = \frac{1}{p} = 2i - 1\).

Let \(X\) be the number of moves to find all pairs and we have \(X = \sum_{i=1}^{n} X_i\). By linearity of expectation, we calculate the expected number of moves to find all pairs as

\[
E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} (2i - 1) = n^2.
\]