1. Pumping Lemma

Is following language regular?

\[L = \{0^a1^b0^c1^d \mid a, b, c, d \geq 0 \text{ and } a = 1, b = 2 \text{ and } c = d\} \]
1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length. Let $w = 0110^p1^p$, $w \in L$ and $|w| > p$. We therefore consider the various cases.

* If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y creates a word with an illegal prefix (e.g. 1 0 1 for $y = 01$).

* If y consists of only 0s from the second block, the word $w' = xy_2z$ has more 0s than 1s in the last $|w'| - 3$ symbols and hence $c \neq d$. Note that y cannot contain 1s from the second block because of the requirement $|xy| \leq p$.

Therefore, L_1 cannot be regular and we have a contradiction.
1. Pumping Lemma

Assume for contradiction that \(L \) is regular, \(p \) is the pumping length. Let \(w = 0110^p1^p \), \(w \in L \) and \(|w| > p \).

From \(pL \), \(w \) can be split into 3 parts: \(w = xyz \), where \(|xy| \leq p \) and for any \(i \geq 0 \), we have \(xy^iz \in L \).

* If \(y \) starts anywhere within the first three symbols (i.e. 011) of \(w \), deleting \(y \) creates a word with an illegal prefix (e.g. 1 \(0 \) \(1 \) for \(y = 01 \)).

* If \(y \) consists of only 0s from the second block, the word \(w' = xy^2z \) has more 0s than 1s in the last \(|w'| - 3 \) symbols and hence \(c \neq d \).

Note that \(y \) cannot contain 1s from the second block because of the requirement \(|xy| \leq p \).

Therefore, \(L \) cannot be regular and we have a contradiction.
1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length.
Let $w = 0110^p1^p$, $w \in L$ and $|w| > p$.

From pL, w can be split into 3 parts: $w = xyz$, where $|xy| \leq p$ and for any $i \geq 0$, we have $xy^iz \in L$.

We therefore consider the various cases.
* If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y creates a word with an illegal prefix (e.g. 101 for $y = 01$).
* If y consists of only 0s from the second block,

Note that y cannot contain 1s from the second block because of the requirement $|xy| \leq p$. \
1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length. Let $w = 0110^p1^p$, $w \in L$ and $|w| > p$.

From pL, w can be split into 3 parts: $w = xyz$, where $|xy| \leq p$ and for any $i \geq 0$, we have $xy^iz \in L$.

We therefore consider the various cases.

* If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y creates a word with an illegal prefix (e.g. 10^p1^p for $y = 01$).
* If y consists of only 0s from the second block, the word $w' = xy^2z$ has more 0s than 1s in the last $|w'| - 3$ symbols and hence $c \neq d$.

Note that y cannot contain 1s from the second block because of the requirement $|xy| \leq p$.

Therefore, L cannot be regular and we have a contradiction.
2. Deterministic Finite Automata [Exam]

Transform the NFA into an equivalent DFA, while assuming $\Sigma = \{0, 1\}$. (Hint: Only construct states which are necessary!)

Diagram:

- States: $q_1, q_2, q_3, q_4, q_5, q_6$
- Transitions:
 - $q_1 \xrightarrow{0} q_2$
 - $q_1 \xrightarrow{1} q_3$
 - $q_2 \xrightarrow{1} q_3$
 - $q_2 \xrightarrow{\varepsilon} q_4$
 - $q_3 \xrightarrow{1} q_5$
 - $q_4 \xrightarrow{1} q_5$
 - $q_4 \xrightarrow{\varepsilon} q_6$
 - $q_5 \xrightarrow{1} q_6$
 - $q_6 \xrightarrow{0} q_1$
2. Deterministic Finite Automata [Exam]
2 Deterministic Finite Automata [Exam]
2. Deterministic Finite Automata [Exam]
3. Transforming Automata [Exam]

Consider the DFA over the alphabet \(\Sigma = \{0, 1\} \). Give a regular expression for the language \(L \) accepted by the automaton below. If you like, you can do this by ripping out states as presented in the lecture.

Hint: remove \(q_2, q_1, q_3 \)
3. Transforming Automata [Exam]

Add start and accept

Ripe out q2
3. Transforming Automata [Exam]

Add start and accept

Ripe out q2
3. Transforming Automata [Exam]

Add start and accept

Ripe out q2
3. Transforming Automata [Exam]

Ripe out q1
3. Transforming Automata [Exam]

Ripe out q3

\((01^*0)^*1(0 \cup 11^*0(01^*0)^*1)^*\)
4. Pumping Lemma

a) \(L = 1^n 02^n \geq 0 \)

Is \(L \) regular?

Assume \(L \) is regular.
We take \(w = 1^p 0 2^p \in L \),
\(w = xyz \) with \(|xy| \leq p \) and \(|y| \geq 1 \), because of \(|xy| \leq p \), \(xy \) can only consist of 1s.
According to the pumping lemma, we should have \(xy^iz \in L \).
However, by choosing \(i = 0 \) we delete at least one 1 and get a word \(w' = 1^{p-|y|} 0 2^p \) with \(|y| \geq 1 \).
\(w' \) is not in \(L \) since it has fewer 1s than 2s.
This means that \(w \) is not pumpable and hence, \(L \) is not regular.