Discrete Event Systems Verification of Finite Automata (Part 2)

Lana Josipović Digital Systems and Design Automation Group dynamo.ethz.ch

ETH Zurich (D-ITET)

December 1, 2022

Most materials from Lothar Thiele and Romain Jacob

Last week in Discrete Event Systems

Verification Scenarios

Example

Comparison of specification and implementation $y = (x_1 + x_2) \cdot x_3$ reference system data structure → comparison system under test data structure

Comparison using BDDs

- Boolean (combinatorial) circuits: Compare specification and implementation, or compare two implementations.
- Method:
 - Representation of the two systems in ROBDDs, e.g., by applying the **APPLY** operator repeatedly.
 - Compare the structures of the ROBDDs.

Sets and Relations

Reachability of States

- Problem: Is a state $q \in Q$ reachable by a sequence of state transitions?
- Method:
 - Represent set of states and the transformation relation as ROBDDs.
 - Use these representations to transform from one set of states to another. Set Q_i corresponds to the set of states reachable after i transitions.
 - Iterate the transformation until a fixed-point is reached, i.e., until the set of states does not change anymore (steady-state).
- Example:

6

This week in Discrete Event Systems

Efficient state representation

Computing reachability

- Set of states as Boolean function
- Binary Decision Diagram representation

- Leverage efficient state representation
- Explore successor sets of states

- Temporal logic (CTL)
- Encoding as reachability problem

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?

Formula	Examples
Atomic proposition	The printer is busy. The light is on.
Boolean logic	$\phi_1+\phi_2$; $\neg\phi_1$

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?
- Specification of the query in a formula of temporal logic.
- We use a simple form called Computation Tree Logic (CTL).
- Let us start with a minimal set of operators.
 - Any atomic proposition is a CTL formula.
 - CTL formula are constructed by composition of other CTL formula.

Formula	Examples
Atomic proposition	The printer is busy. The light is on.
Boolean logic	$\phi_1+\phi_2$; $\neg\phi_1$
CTL logic	EX ϕ_1

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?
- Specification of the query in a formula of temporal logic.
- We use a simple form called Computation Tree Logic (CTL).
- Let us start with a minimal set of operators.
 - Any atomic proposition is a CTL formula.
 - CTL formula are constructed by composition of other CTL formula.

Formula	Examples
Atomic proposition	The printer is busy. The light is on.
Boolean logic	$\phi_1+\phi_2$; $\neg\phi_1$
CTL logic	EX ϕ_1

There exists other logics (e.g. LTL, CTL*)

Based on atomic propositions (ϕ) and quantifiers

Aφ $\mathsf{E}\phi$

 \rightarrow «All ϕ », ϕ holds on all paths \rightarrow «Exists ϕ », ϕ holds on at least one path

Quantifiers over paths

Based on atomic propositions (ϕ) and quantifiers

Aφ	\rightarrow «AII ϕ »,
Εφ	$\rightarrow $ «E xists ϕ »,

- ϕ holds on all paths ϕ holds on at least one path
- ϕ holds on the next state ϕ holds at some state along the path ϕ holds on all states along the path ϕ_1 holds until ϕ_2 holds implies that ϕ_2 has to hold eventually

Quantifiers over paths

Path-specific quantifiers

Based on atomic propositions (ϕ) and quantifiers

Aφ	\rightarrow «AII ϕ »,
Εφ	$\rightarrow $ «E xists ϕ »,

- ϕ holds on all paths ϕ holds on at least one path
- $X\phi \rightarrow \text{«NeXt }\phi\text{»},$ $F\phi \rightarrow \text{«Finally }\phi\text{»},$ $G\phi \rightarrow \text{«Globally }\phi\text{»},$ $\phi_1 U \phi_2 \rightarrow \text{«}\phi_1 Until $\phi_2\text{»},$
- ϕ holds on the next state ϕ holds at some state along the path ϕ holds on all states along the path ϕ_1 holds until ϕ_2 holds implies that ϕ_2 has to hold eventually

Quantifiers over paths

Path-specific quantifiers

CTL quantifiers work in pairs: we need one of each! $\{A,E\} \{X,F,G,U\}\phi$

Based on atomic propositions (ϕ) and quantifiers

Aφ	\rightarrow «AII ϕ »,
Εø	$\rightarrow \ll \mathbf{E} \times \mathbf{i} \operatorname{sts} \phi $

 ϕ holds on all paths ϕ holds on at least one path

 ϕ holds on the next state ϕ holds at some state along the path ϕ holds on all states along the path ϕ_1 holds until ϕ_2 holds implies that ϕ_2 has to hold eventually Quantifiers over paths

Path-specific quantifiers

CTL quantifiers work in pairs: we need one of each! $\{A,E\} \{X,F,G,U\}\phi$

17

CTL works on computation trees

Automaton

CTL works on computation trees

Automaton of interest

Requires fully-defined transition functions

CTL works on computation trees

Automaton of interest

Automaton to work with

Requires fully-defined transition functions

Each state has at least one successor (can be itself)

- We use this computation tree as a running example.
- We suppose that the black and red states satisfy atomic properties p and q, respectively.

 The topmost state is the initial state; in the examples, it always satisfies the given formula.

Over paths:

M satisfies $\phi \iff q_0 \vDash \phi$ where q_0 is the initial state of M

Path-specific:

Can be more than one pair

A and F are convenient, but not necessary

AG
$$\phi_1$$
 where $\phi_1 = EF \phi_2 \equiv AG EF \phi_2$

E,G,X,U are sufficient to define the whole logic.

$$AF\phi \equiv \neg EG(\neg \phi)$$
$$AG\phi \equiv \neg EF(\neg \phi)$$
$$AX\phi \equiv \neg EX(\neg \phi)$$
$$EF\phi \equiv true EU\phi$$

No need to know that one $\blacktriangleright \phi_1 AU \phi_2 \equiv \neg ([(\neg \phi_1) EU \neg (\phi_1 + \phi_2)] + EG(\neg \phi_2))$

Over paths:	Path-specific:
$A\phi ightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi o Ex$ ists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \to \phi_1 \cup ntil \phi_2$

Intuition for "AF $p = \neg EG (\neg p)$ "

Intuition for "AF $p = \neg EG (\neg p)$ "

Interpreting CTL formula

Encoding	Proposition
р	I like chocolate
q	lt's warm outside

Over paths:	Path-specific:
$A\phi ightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Interpreting CTL formula

Encoding	Proposition
р	I like chocolate
q	lt's warm outside

- AG p
- EF p
- AF EG p
- EG AF p

p AU q

EF ϕ : "There exists a path along which at some state ϕ holds."

Over paths:	Path-specific:
$A\phi ightarrow A \parallel \phi$	$X\phi \rightarrow NeXt \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

AF ϕ : "On all paths, at some state ϕ holds ."

Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

AG ϕ : "On all paths, for all states ϕ holds."

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

EG ϕ : "There exists a path along which for all states ϕ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

 $\bigcirc \vDash \phi \\ q \vDash EG \phi \\ r \vDash ? \\ s \vDash ?$

 $\phi EU\Psi$: "There exists a path along which ϕ holds until Ψ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

$\phi AU\Psi$: "On all paths, ϕ holds until Ψ holds."

Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

$\mathsf{EX}\phi$: "There exists a path along which the next state satisfies ϕ ."

Over paths:	Path-specific:
$A\phi ightarrow A \parallel \phi$	$X\phi ightarrow NeXt \phi$
$\Xi\phi ightarrow \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup ntil \phi_2$

 $\bigcirc \vDash \phi$ $q \vDash EX\phi$ $r \vDash ?$ $s \vDash ?$

AG EF ϕ : "On all paths and for all states, there exists a path along which at some state ϕ holds."

Over paths: Path-specific: $A\phi \rightarrow A \parallel \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup \mathsf{ntil} \phi_2$

AG EF ϕ : "On all paths and for all states, there exists a path along which at some state ϕ holds." Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

Specifying using CTL formula

Famous problem **Dining Philosophers**

- Five philosophers are sitting around a table, taking turns at thinking and eating.
- Each needs two forks to eat.
- They put down forks. only once they have eaten.
- There are only five forks.

Atomic proposition

 e_i : Philosopher *i* is currently eating.

71

Specifying using CTL formula

"Philosophers 1 and 4 will never eat at the same time."

"Every philosopher will get infinitely many turns to eat."

"Philosopher 2 will be the first to eat."

72

Computing CTL formula

• Define $[\![\phi]\!]$ as the set of all initial states of the finite automaton for which CTL formula ϕ is true. A finite automaton with initial state q_0 satisfies ϕ iff

$q_0 \in [\![\phi]\!]$

- Now, we can use our "trick": computing with sets of states!
 - $\psi_{\llbracket \phi \rrbracket}(q)$ is true if the state q is in the set $\llbracket \phi \rrbracket$, i.e., it is a state for which the CTL formula is true.
 - Therefore, we can also say

Computing CTL formula: EX ϕ

Computing CTL formula: EX ϕ

• Suppose that Q is the set of initial states for which the formula ϕ is true.

Sets
$$Q = \llbracket \phi \rrbracket$$

Characteristic functions

$$\psi_Q(q)$$

Computing CTL formula: EX ϕ

- Suppose that Q is the set of initial states for which the formula ϕ is true.
- Q' is the set of predecessor states of Q, i.e., the set of states that lead in one transition to a state in Q:

$$Q' = Pre(Q, \delta) = \{q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_{Q}(q)\}$$

Sets
$$Q = \llbracket \phi \rrbracket \longrightarrow Q' = \llbracket \operatorname{EX} \phi \rrbracket = \operatorname{Pre}(\llbracket \phi \rrbracket, \delta)$$

Characteristic $\psi_Q(q) \longrightarrow \psi_{Q'}(q') = (\exists q : \psi_Q(q) \cdot \psi_\delta(q',q))$

Computing CTL formula: EX ϕ

• Example for EX ϕ : Compute EX q_2

Computing CTL formula: EX ϕ

• Example for EX ϕ : Compute EX q_2

$$[[q_2]] = \{q_2\}$$

$$Q' = [[EX q_2]] = \underline{Pre(\{q_2\}, \delta)} = \{q_1, q_2, q_3\}$$

$$|$$

$$\{q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_Q(q)\}$$

Computing CTL formula: EX ϕ

• Example for EX ϕ : Compute EX q_2

$$\begin{bmatrix} q_{2} \\ q_{3} \\ q_{4} \\ q_{2} \end{bmatrix} = \{q_{2}\} \\ Q' = \llbracket EX \ q_{2} \rrbracket = Pre(\{q_{2}\}, \delta) = \{q_{1}, q_{2}, q_{3}\} \\ Q' = \llbracket EX \ q_{2} \rrbracket = Pre(\{q_{2}\}, \delta) = \{q_{1}, q_{2}, q_{3}\} \\ q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_{Q}(q)\}$$

As $q_0 \notin \llbracket EX q_2 \rrbracket = \{q_1, q_2, q_3\}$, the CTL formula EX q_2 is not true.

Computing CTL formula: EF ϕ

- Start with the set of initial states for which the formula ϕ is true.
- Add to this set the set of predecessor states. Repeat for the resulting set of states,, until we reach a fixed-point.

 $Q_i = Q_{i-1} \cup \operatorname{Pre}(Q_{i-1}, \delta)$ for all i > 1 until a fixed point Q' is reached $\llbracket \operatorname{EF} \phi \rrbracket = Q'$

Computing CTL formula: EF ϕ

• Example for $EF\phi$: Compute EFq_2

Computing CTL formula: EF ϕ

Computing CTL formula: EF ϕ

Computing CTL formula: EF ϕ

Computing CTL formula: EF ϕ

As $q_0 \in \llbracket \mathrm{EF} q_2
rbracket = \{q_0, q_1, q_2, q_3\}$, the CTL formula EF q_2 is true.

Computing CTL formula: EG ϕ

- Start with the set of initial states for which the formula ϕ is true.
- Cut this set with the set of predecessor states. Repeat for the resulting set of states, ..., until we reach a fixed-point.

 $Q_0 = \llbracket \phi \rrbracket$

 $Q_i = Q_{i-1} \cap \operatorname{Pre}(Q_{i-1}, \delta)$ for all i > 1 until a fixed point Q' is reached

89

Computing CTL formula: EG ϕ

• Example for EG ϕ : Compute EG q_2

$$Q_0 = [\![q_2]\!] = \{q_2\}$$

Computing CTL formula: EG ϕ

• Example for EG ϕ : Compute EG q_2 $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q',q)\} = \{q_1, q_2, q_3\}$ $Q_0 = \llbracket q_2 \rrbracket = \{q_2\}$ $Q_1 = \{q_2\} \cap \operatorname{Pre}(\{q_2\}, \delta) = \{q_2\}$ $\llbracket \operatorname{EG} q_2 \rrbracket = Q_2 = \{q_2\}$

As $q_0 \not\in \llbracket \mathrm{EG} q_2
rbracket = \{q_2\}$, the CTL formula EG q_2 is not true.

Computing CTL formula: $\phi_1 EU\phi_2$

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

- Start with the set of initial states for which the formula ϕ_2 is true.
- Add to this set the set of predecessor states for which the formula ϕ_1 is true. Repeat for the resulting set of states we do the same, ..., until we reach a fixed-point.
- Like EF ϕ_2 ; the only difference is that, on our path backwards, we always make sure that also ϕ_1 holds.

 $Q_i = Q_{i-1} \cup (\operatorname{Pre}(Q_{i-1}, \delta) \cap \llbracket \phi_1 \rrbracket)$ for all i > 1 until a fixed point is reached

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

Computing CTL formula: $\phi_1 EU\phi_2$

• Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

Computing CTL formula: $\phi_1 EU\phi_2$

• Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q',q)\} = \{q_0,q_2\}$ $Q_0 = \llbracket q_1 \rrbracket = \{q_1\}$ $Q_1 = \{q_1\} \cup (\underline{\operatorname{Pre}(\{q_1\}, \delta)} \cap \{q_0\}) = \{q_0, q_1\}$

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne Xt \phi$
$E\phi o Exists \phi$	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \bigcup$ ntil ϕ_2

Computing CTL formula: $\phi_1 EU\phi_2$

• Example for $\phi_1 EU\phi_2$: Compute $q_0 EU q_1$ $q_0 = \llbracket q_1 \rrbracket = \{q_1\}$ $Q_0 = \llbracket q_1 \rrbracket = \{q_1\}$ $Q_0 = \llbracket q_1 \rrbracket = \{q_1\}$ $Q_1 = \{q_1\} \cup (\operatorname{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$ $Q_2 = \{q_0, q_1\} \cup (\operatorname{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$ $\llbracket q_0 \operatorname{EU} q_1 \rrbracket = Q_2 = \{q_0, q_1\}$ $\{q_0, q_2, q_3\}$

As $q_0 \in [\![q_0\mathrm{EU}q_1]\!] = \{q_0,q_1\}$, the CTL formula q_0 EU q_1 is true.

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi o \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \bigcup$ ntil ϕ_2

Computing CTL formula: $\phi_1 EU\phi_2$

• Example for $\phi_1 EU\phi_2$: Compute $q_0 EU q_1$ $q_0 = [[q_1]] = \{q_1\}$ $Q_0 = [[q_1]] = \{q_1\}$ $Q_1 = \{q_1\} \cup (\operatorname{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$ $Q_2 = \{q_0, q_1\} \cup (\operatorname{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$ $[[q_0 EUq_1]] = Q_2 = \{q_0, q_1\}$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_0, q_2\}$

As $q_0 \in [\![q_0\mathrm{EU}q_1]\!] = \{q_0,q_1\}$, the CTL formula q_0 EU q_1 is true.

Compute other CTL expressions as: $AF\phi \equiv \neg EG(\neg \phi) \quad AG\phi \equiv \neg EF(\neg \phi) \quad AX\phi \equiv \neg EX(\neg \phi)$

So... what is model-checking exactly?

It explores the state space of M such as to either

- prove that $M \vDash \phi$, or
- return a trace where the formula does not hold in M.

So... what is model-checking exactly?

It explores the state space of M such as to either

• prove that $M \vDash \phi$, or

return a trace where the formula does not hold in M. — a counter-example

Extremely useful!
 Debugging the model

Searching a specific execution sequence

Your turn to practice! after the break

- Familiarise yourself with CTL logic and how to compute sets of states satisfying a given formula
- Convert a concrete problem into a state reachability question (adapted from state-of-the-art research!)

Efficient state representation

Computing reachability

- Set of states as Boolean function
- Binary Decision Diagram representation

- Leverage efficient state representation
- Explore successor sets of states

- Temporal logic (CTL)
- Encoding as reachability problem

Conclusion and perspectives

Next week(s)

Petri Nets

- asynchronous DES model
- tailored model concurrent distributed systems
- capture an infinite state space with a finite model

a computer a network

How they work? How to use them for modeling systems? How to verify them?
Thanks for your attention and see you next week! ③

Lana Josipović Digital Systems and Design Automation Group dynamo.ethz.ch

ETH Zurich (D-ITET)

December 1, 2022

Most materials from Lothar Thiele and Romain Jacob