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Verification Scenarios

Example Comparison of specification and implementation
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Comparison using BDDs

A Boolean (combinatorial) circuits: Compare specification and implementation,
or compare two implementations.

A Method:
A Representation of the two systems in ROBDDs, e.g., by applying tA®PLY operator repeatedly.
A Compare the structures of the ROBDDs.

A Example:
APPLY
y=(x+x3) x5 \
Xy o compare
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Sets and Relations

characteristic function
A Representation of a subsei P 'O of subsetA

A Binary encoding, (Q of all elementsQN O /
A Subset6 is represented byoN 08 [, (&)

A Relation function: describe state transitions
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Reachabillity of States

A Problem: Is a staterj ¥ 0 reachable by a sequence of state transitions?

A Method:

A Represent set of states and the transformation relation as ROBDDs.

A Use these representations to transform from one set of states to another. 8etcorresponds to the
set of states reachable afteKiransitions.

A lterate the transformation until a fixedpoint is reached, i.e., until the set of states does not change
anymore (steadystate).

A Example:
= 1, b= A 0= A
q0 q0
q3 d1 q3 d1
q2 q2
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Today

Proving
properties
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Set of states as Boolean function
Binary Decision Diagram representation

Leverage efficient state representation
Explore successor sets of states

Temporal logic (CTL)
Encoding as reachability problem



Temporal Logic

A Verify properties of a finite automaton, for example
A Can we always reset the automaton?
A 1s every request followed by an acknowledgement?
A Are both outputs always equivalent?



Temporal Logic

A Veri _ £ o fin ¢ | Formula Examples
erlfy properties or a finite automaton, tor example JE— The printer is busy.

A Can we always reset the automaton? proposition The light is on.
A 1s every request followed by an acknowledgement?

Boolean logic %o %o ; %o
A Are both outputs always equivalent?



Temporal Logic

A Verify properties of a finite automaton, for example
A Can we always reset the automaton?
A 1s every request followed by an acknowledgement?
A Are both outputs always equivalent?

A Specification of the query in a formula of temporal logic.
A We use a simple forntalled Computation Tree Logic (CTL).

A Let us start with a minimal set of operators.
A Any atomic proposition is a CTL formula.
A CTL formula are constructed by composition

of other CTL formula.

Formula Examples
Atomic The printer is busy.
proposition The light is on.

Boolean logic %o %o ; %o
CTL logic EX %o



Temporal Logic

A Verify properties of a finite automaton, for example
A Can we always reset the automaton?
A 1s every request followed by an acknowledgement?
A Are both outputs always equivalent?

A Specification of the query in a formula of temporal logic.

A We use a simple forntalled Computation Tree Logic (CTL).

A Let us start with a minimal set of operators.
A Any atomic proposition is a CTL formula.

A CTL formula are constructed by composition
of other CTL formula.

Formula Examples
Atomic The printer is busy.
proposition The light is on.

Boolean logic %o %o ; %o
CTL logic EX %o

There exists
other logics
(e.g. LTL, CTL¥)



Formulation of CTL properties
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Formulation of CTL properties » ©
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A%o O «All %, %oholdson all paths Quantifiers
over paths

E%o O «EXists %, %oholdson at leastone path
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implies that %o has to hold eventually



Formulation of CTL properties

Based on atomic propositions¥%9 and quantifiers

A%o O «All %,
E%o O «EXists %,

X %o O «Next %,
F%o O «~inally %,
G%o O «Globally %,
%0U%0 O «%o Until %o »,

%oholdson all paths
%oholdson at leastone path

%oholdson the next state

%oholdsat somestate alongthe path
%oholdson all statesalongthe path

%0 holdsuntil %0 holds

implies that %o has to hold eventually

CTL quantifiers work in pairs we need one of each! {AE}
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Formulation of CTL properties

Based on atomic propositions¥%9 and quantifiers

A%o
E%o

X%o
F%o
G%o
%00 U%0

O

O

«All %,
«EXIsts %,

«Next %,
«~inally %,
«Globally %,

«%o Until %o »,

%oholdson all paths
%oholdson at leastone path

%oholdson the next state

%oholdsat somestate alongthe path
%oholdson all statesalongthe path

%0 holdsuntil %0 holds

implies that %o has to hold eventually

CTL quantifiers work in pairs we need one of each! {AE}

Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inally %0
G%0° Globally %o
%0U%0 © %o Until %o

Quantifiers
over paths

%00



CTL works on computation trees

Automaton

Over paths:
A% All %o
E%0C EXists %o

Path-specific:

X%0C NexXt %o

F%0C Finally %o
G%0° Globally %o
%0U%0 © %o Until %o



Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

CTL works on computation trees "o U © %0l %

Computation tree

Automaton




Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

CTL works on computation trees o U © 0l %

Automaton of interest
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Requires fully-defined
transition functions
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Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

CTL works on computation trees o U © 0l %

Automaton of interest

O

VA
S
Q/O O

Requires fully-defined
transition functions

Automaton to work with

:u :: ;

Each state has at least
one successor (can be itself)

21



Over paths:
A% All %o
E%0C EXists %o

VisualizingCTL formula

We usethis computation tree {p) / v \

as a running example.

We suppose thatthe black and redstates O O Q
satisfy atomic propertiesp and g, respectively v *{q} r/ \\

The topmost stateis the initial state;
In the examples, it alwaysatisfies the giverformula.

Msat i% ve§ U%wheren isthe initial state of M

Path-specific:

X%0C NexXt %o
F%0C Finally %o
G%0° Globally %o
%0U%0 © %o Until %o



Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

VisualizingCTL formula "o U © %0l %

AG p




Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

VisualizingCTL formula "o U © %0l %

AG p




Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

VisualizingCTL formula "o U © %0l %



Over paths: Path-specific:

A%0C  All %o X%0C Next %o

E%0©C EXists %o F%o0° inaIIy %0
G%0©

VisualizingCTL formula e




Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

VisualizingCTL formula "o U © %0l %

EGp
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Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

VisualizingCTL formula "o U © %0l %

EGp

o



VisualizingCTL formula

EXp

T

Over paths:
A% All %o
E%0C EXists %o

Path-specific:

X%0C NexXt %o
F%0C Finally %o
G%0° Globally %o
%0U%0 © %o Until %o



VisualizingCTL formula

EXp

T

Over paths:
A% All %o
E%0C EXists %o

Path-specific:

X%0C NexXt %o
F%0C Finally %o
G%0° Globally %o
%0U%0 © %o Until %o




Over paths: Path-specific:

A% All %o X%00 Next %o

E%0C EXists%o  F%o© Finally %o
G%0° Globally %o

Formulation of CTL properties o Uk © 56Ut %

Can be more
than one pair

A and F are convenient,
but not necessary

No need to know that one

>

AG %0 where%o EF %o k AG EF %o

E,G,X,U are sufficient to define the whole logic.

AF¢ = —EG(—9)
AGop = —EF(—0¢)
AXop —-EX(—¢)
EF¢p = trueEU¢
91AUQ2 = —([(=¢1)EUA(d1 + ¢2)] + EG(—¢2))

31



Over paths: Path-specific:
A%0C  All %o X%0C Next %o
E%0©C EXists %o F%o0° inaIIy %0

|l ntui ti on fEG( po AF O Sl

v AF (p) O



Over paths: Path-specific:
A%0C  All %o X%0C Next %o
E%0©C EXists %o F%o0° inaIIy %0

|l ntui ti on fEG( po AF O Sl

v AF (p) Q UEG( p) O
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Interpreting CTL formula

Encoding

P
q

Proposition
| like chocolate
It's warm outside

Over paths:
A% All %o
E%0C EXists %o

Path-specific:

X%0C NexXt %o

F%0C Finally %o
G%0° Globally %o
%0U%0 © %o Until %o



Interpreting CTL formula

Encoding Proposition
p | like chocolate
q It's warm outside

AGp
EFp
AFEGDp

EG AF p

pAUQ

Over paths:
A% All %o
E%0C EXists %o

Path-specific:

X%0C NexXt %o
F%0C Finally %o
G%0° Globally %o
%0U%0 © %o Until %o



Over paths: Path-specific:
A%0C  All %o X%0C Next %o
E%0©C EXists %o F%o0° Finally %0

EF %0. Tlmere exists a path 0 Clobally%
- %0 U%0 © %o lUntil %o
along whichat some state%oh o | d s . » ’
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q U EF%o
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AF %0. Op all paths,
at some state%oholds. ¢

&

&

Over paths: Path-specific:
A%0C  All %o X%0C Next %o
E%0C EXists%o F%.C Finally %o

g
r

S

G%0° Globally %o
%0 U%0 © %o lUntil %o

© U %o

AF%o
?

C - Cr (o

?
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Over paths: Path-specific:
A%0C  All %o X%0C Next %o

AG %0 OD a” paths’ E%C EXists%o F%0© Finally %o

G%.© Clobally %o

forall states%oh ol ds . 6 ol © Ll
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C - Cr (o
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Over paths: Path-specific:
A%0C  All %o X%0C Next %o
E%0C EXists%o F%.C Finally %o

EG %0: Tleere exists a path ol
along whichfor all states%och ol d s . » ol © ot
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%EUW : Tlere exists a path
along which%oholds until u holdsg

Over paths: Path-specific:

A%00 All %o X%0C Next %o

E%0C EXists%o F%.C Finally %o
G%.© Clobally %o
%0 U%0 © %o lUntil %o

] Ouw
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Over paths: Path-specific:
A%0C  All %o X%0C Next %o

%AUU.I OD a” paths’ E%0C EXists%o F%© Finally %o

G%.© Clobally %o

%oholds until y holds ¢ ol © ol ntl o
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Over paths: Path-specific:
A%0C  All %o X%0© Next %o

EX%o: Tlere exists a path e S
= - - %0 U%o0 © %o lUntil %o
along whichthe next state satisfies%o ¢ ’

O U %o

q U EX%o
! ruU?
sU?
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Over paths: Path-specific:
A%0C  All %o X%0© Next %o

E%0C EXists%o F%.C Finally %o
AG EF %0: O all pathsand for all states G Closellyity
there exists a pathalong whichat some state

%h ol ds . ¢

© U %o

AG EPbo
?
?

—
C - Cr (1
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Over paths: Path-specific:
A%0C  All %o X%0C Next %o
E%0C EXists%o F%.C Finally %o

AG EF %0: O all pathsand for all states GHa® Clobally %

%0 U%0 © %o lUntil %o

%h ol ds . ¢
'

L)
—/

What if we remove ’
g ‘ this edge? ‘

o

L )
)
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Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

Specifying using CTL formula o Uk © 56Ut %

Famous Dining Philosophers 1 i

problem Five philosophers are sitting
around a table, taking turns 5 e O v 2
at thinking and eating. @# O O %@
Each needs two forks to eat. . .
They put down forks. O ’ @
only once they have eaten. 4 ?s é@ 3
There are only five forks.

Atomic Q,: Philosopherds currently eating

proposition 71



Specifying using CTL formula

Over paths:
A% All %o
E%0C EXists %o

Path-specific:

X%0C NexXt %o
F%0C Finally %o
G%0° Globally %o
%0U%0 © %o Until %o

Philosophers 1 and 4 will never1§at at the

oOEvery phil osopher

O Phi | oXxwilpettee first to eat.c

Wi




Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inally %0
G%0° Globally %o

Computing CTL formula Kol © Ll

A Define [%] as the set of all initial states of the finite automaton for which CTL formuleéois
true. A finite automaton with initial state r} satisfies%oiff

n N [

ANow, we can use our otricke: computing with
AT [ 11 istrue if the state i is in the set[%{, i.e., it is a state for which the CTL formula is true.

A Therefore, we can also say
characteristicfunction

r 0 4
nNM% k1pgn of the set [%]




Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inally %0
G%0° Globally %o

Computing CTL formula EX %o Kol © Ll
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Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

Computing CTL formula EX %o Kol © Ll

A Suppose thatQ is the set of initial states for which the formula%ois true.

e
O
/N %
OO0 O OO0
e 5 TdHT L
» F 1T /I
Chaseene g o7 do



Over paths: Path-specific:

A%0©  All %o X%0© Next %o

E%0© EXists %o  F%00 inaIIy %0
G%0° Globally %o

Computing CTL formula EX %o Kol © oLl

A Suppose thatQ is the set of initial states for which the formula%ois true.

AQp is the set ofD0,pe,thdsetofstwtesdhatleadtimt es o f
one transition to a state inv:

o o QD
6 Oi@A) (ImmD @RI 0) =XPp @ Q
O
SN
O O O O O
- 51801 &
+ AN

functions

o |
Characteristic . ;
vo(o) — NG = CP = C; C; C;



