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Thank you for your feedback!J

ÁReachability example Ą please check extended slides + exercise video

ÁPublished slides Ą full and partial slide deck available before the lecture

ÁBlackboard Ą Iɒll be more careful J
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Last week in
Discrete Event Systems



Verification Scenarios

comparison
reference system data structure

system under test data structure

Comparison of specification and implementation

property

system under test data structure

fixed-point calculation

Proving properties
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The device 
can always be 
switched off.ɕ

ɔ
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Example



Comparison using BDDs

ÅBoolean (combinatorial) circuits: Compare specification and implementation, 
or compare two implementations.

ÅMethod:
ÅRepresentation of the two systems in ROBDDs, e.g., by applying the APPLY operator repeatedly.

ÅCompare the structures of the ROBDDs.

ÅExample:

compare

APPLY

APPLY
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Sets and Relations

ÅRepresentation of a subset ὃṖὉ:
ÅBinary encoding„Ὡ of all elements Ὡɴ Ὁ

ÅSubsetὃis represented byὥᶰὃᵾ ‪ „ὥ

ÅRelation function: describe state transitions

characteristic function
of subset A
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Reachability of States

ÅProblem: Is a state ήɴ ὗreachable by a sequence of state transitions?

ÅMethod:
ÅRepresent set of states and the transformation relation as ROBDDs.

ÅUse these representations to transform from one set of states to another. Set ὗ corresponds to the 
set of states reachable after Ὥtransitions.

ÅIterate the transformation until a fixed-point is reached, i.e., until the set of states does not change 
anymore (steady-state).

ÅExample:
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This week in
Discrete Event Systems
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Efficient state 
representation

Computing 
reachability

Proving
properties

Á Set of states as Boolean function
Á Binary Decision Diagram representation

Á Leverage efficient state representation
Á Explore successor sets of states

Á Temporal logic (CTL)
Á Encoding as reachability problem

Today



Temporal Logic

ÅVerify properties of a finite automaton, for example
ÅCan we always reset the automaton?

ÅIs every request followed by an acknowledgement?

ÅAre both outputs always equivalent?
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Temporal Logic

ÅVerify properties of a finite automaton, for example
ÅCan we always reset the automaton?

ÅIs every request followed by an acknowledgement?

ÅAre both outputs always equivalent?

Formula Examples

Atomic
proposition

The printer is busy.
The light is on.

Boolean logic ‰ ‰ ; ‰

CTL logic EX‰
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Temporal Logic

ÅVerify properties of a finite automaton, for example
ÅCan we always reset the automaton?

ÅIs every request followed by an acknowledgement?

ÅAre both outputs always equivalent?

ÅSpecification of the query in a formula of temporal logic. 

ÅWe use a simple form called Computation Tree Logic (CTL).

ÅLet us start with a minimal set of operators. 
Å Any atomic proposition is a CTL formula.

Å CTL formula are constructed by composition
of other CTL formula.

Formula Examples

Atomic
proposition

The printer is busy.
The light is on.

Boolean logic ‰ ‰ ; ‰

CTL logic EX‰
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Temporal Logic

ÅVerify properties of a finite automaton, for example
ÅCan we always reset the automaton?

ÅIs every request followed by an acknowledgement?

ÅAre both outputs always equivalent?

ÅSpecification of the query in a formula of temporal logic. 

ÅWe use a simple form called Computation Tree Logic (CTL).

ÅLet us start with a minimal set of operators. 
Å Any atomic proposition is a CTL formula.

Å CTL formula are constructed by composition
of other CTL formula.

There exists 
other logics

(e.g. LTL, CTL*)

Formula Examples

Atomic
proposition

The printer is busy.
The light is on.

Boolean logic ‰ ‰ ; ‰

CTL logic EX‰
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Formulation of CTL properties
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Formulation of CTL properties

Based on atomic propositions (‰) and quantifiers

A‰ ᴼ «All ‰», ‰holdson all paths

E‰ ᴼ «Exists‰», ‰holdson at least onepath

Quantifiers 
over paths
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Formulation of CTL properties

Based on atomic propositions (‰) and quantifiers

A‰ ᴼ «All ‰», ‰holdson all paths

E‰ ᴼ «Exists‰», ‰holdson at least onepath

X‰ ᴼ «NeXt ‰», ‰holdson the next state

F‰ ᴼ «Finally‰», ‰holdsat somestate alongthe path

G‰ ᴼ «Globally‰», ‰holdson all statesalongthe path

‰U‰ ᴼ «‰Until ‰», ‰ holdsuntil ‰ holds

implies that ‰ has to hold eventually

Quantifiers 
over paths

Path-specific quantifiers
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Formulation of CTL properties

Based on atomic propositions (‰) and quantifiers

A‰ ᴼ «All ‰», ‰holdson all paths

E‰ ᴼ «Exists‰», ‰holdson at least onepath

X‰ ᴼ «NeXt ‰», ‰holdson the next state

F‰ ᴼ «Finally‰», ‰holdsat somestate alongthe path

G‰ ᴼ «Globally‰», ‰holdson all statesalongthe path
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implies that ‰ has to hold eventually

Quantifiers 
over paths

Path-specific quantifiers
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Formulation of CTL properties

Based on atomic propositions (‰) and quantifiers

A‰ ᴼ «All ‰», ‰holdson all paths

E‰ ᴼ «Exists‰», ‰holdson at least onepath

X‰ ᴼ «NeXt ‰», ‰holdson the next state

F‰ ᴼ «Finally‰», ‰holdsat somestate alongthe path

G‰ ᴼ «Globally‰», ‰holdson all statesalongthe path

‰U‰ ᴼ «‰Until ‰», ‰ holdsuntil ‰ holds

implies that ‰ has to hold eventually

Quantifiers 
over paths

Path-specific quantifiers
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

CTL quantifiers work in pairs: we need one of each! {A,E} {X,F,G,U}‰



CTL works on computation trees

Automaton
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



CTL works on computation trees

Automaton Computation tree

ɚ ɚ ɚɚ ɚ ɚ 19

Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



CTL works on computation trees

Requires fully-defined 
transition functions

Automaton of interest
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



CTL works on computation trees

Requires fully-defined 
transition functions

Each state has at least
one successor (can be itself)

Automaton of interest Automaton to work with
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



VisualizingCTL formula

ÁWe use this computation tree 
as a running example. 

ÁWe suppose that the black and red states 
satisfy atomic properties p and q, respectively. 

ÁThe topmost state is the initial state; 
in the examples, it always satisfies the given formula.
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

Msatis̩es‰ ᵾ ήṺ‰where ή is the initial state of M



VisualizingCTL formula
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



VisualizingCTL formula
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Over paths:
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Path-specific:
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VisualizingCTL formula
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Over paths:
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VisualizingCTL formula
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Over paths:
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VisualizingCTL formula
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Over paths:
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VisualizingCTL formula
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Over paths:

A‰ᴼA ll ‰
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VisualizingCTL formula
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰
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VisualizingCTL formula
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



Formulation of CTL properties

Can be more 
than one pair

AG ‰ where ‰ EF ‰ ḳ AG EF ‰
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E,G,X,U are sufficient to define the whole logic.

Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

A and F are convenient, 
but not necessary

No need to know that one



Intuition for ɔAF p EG ( p)ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

ṿAF (p)



ṺEG ( p)ṿAF (p)

Intuition for ɔAF p EG ( p)ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



Interpreting CTL formula
Encoding Proposition

p I like chocolate

q It's warm outside

34

Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



Interpreting CTL formula
Encoding Proposition

p I like chocolate

q It's warm outside

Á AG p
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

Á AG p

Á EF p

Á AF EG p

Á EG AF p

Á p AU q



q

Ṻ‰

q ṺEF ‰

r

s

EF‰: ɔThere exists a path 
along which at some state ‰holds.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



q

Ṻ‰

q ṺAF ‰

r

s

AF‰: ɔOn all paths,
at some state ‰holds.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



q

Ṻ‰

q ṺAG ‰

r

s

AG‰: ɔOn all paths,
for all states ‰holds.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



q

Ṻ‰

q ṺEG ‰

r

s

EG‰: ɔThere exists a path
along which for all states ‰holds.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



q

Ṻ‰

q Ṻ‰EUɰ

Ṻɰ

r

s

‰EUɰ: ɔThere exists a path 
along which ‰holds until ɰholds.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



q

Ṻ‰

q Ṻ‰AUɰ

Ṻɰ

r

s

‰AUɰ: ɔOn all paths, 
‰holds until ɰholds.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



q

Ṻ‰

q ṺEX‰

r

s

EX‰: ɔThere exists a path 
along whichthe next statesatisfies ‰.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



AG EF ‰: ɔOn all paths and for all states,
there exists a path along which at some state 
‰holds.ɕ

q

Ṻ‰

q ṺAG EF‰

rr

s
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



q

Ṻ‰

q Ṻ?

rr

s
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AG EF ‰: ɔOn all paths and for all states,
there exists a path along which at some state 
‰holds.ɕ

What if we remove 
this edge?

Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

r Ṻ?
s Ṻ?



Specifying using CTL formula

Famous 
problem

Dining Philosophers

Á Five philosophers are sitting 
around a table, taking turns 
at thinking and eating. 

Á Each needs two forks to eat.

Á They put down forks. 
only once they have eaten.

Á There are only five forks.

Atomic 
proposition

ὩὭ: PhilosopherὭis currently eating.
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



Specifying using CTL formula

Á ɔPhilosophers 1 and 4 will never eat at the same time.ɕ

Á ɔEvery philosopher will get infinitely many turns to eat.ɕ 

Á ɔPhilosopher 2 will be the first to eat.ɕ
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



Computing CTL formula

ÅDefine ‰ as the set of all initial states of the finite automaton for which CTL formula‰is 
true. A finite automaton with initial state ή satisfies‰iff

ÅNow, we can use our ɔtrickɕ: computing with sets of states!

Å‪ ή is true if the state ήis in the set ‰ , i.e., it is a state for which the CTL formula is true. 

ÅTherefore, we can also say
characteristic function

of the set ‰

ήᶰ ‰

ήᶰ ‰ ḳ‪ ή
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



Computing CTL formula: EX ‰
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Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰



Computing CTL formula: EX ‰

ÅSuppose that Q is the set of initial states for which the formula‰is true. 
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Q

Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

Sets

Characteristic 
functions



Computing CTL formula: EX ‰

ÅSuppose that Q is the set of initial states for which the formula‰is true. 

ÅQɒ is the set of predecessor states of ὗ, i.e., the set of states that lead in 
one transition to a state in ὗ:

ὗ ὖὶὩὗȟ‏ ή ήɱḊ‪ ήᴂȟήẗ‪ ή
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Q
Qɒ

Over paths:

A‰ᴼA ll ‰

E‰ᴼExists ‰

Path-specific:

X‰ᴼNeXt ‰

F‰ᴼFinally ‰

G‰ᴼGlobally ‰

‰U‰ ᴼ‰Until ‰

Sets

Characteristic 
functions


