Discrete Event Systems
Verification of Finite Automata (Part 2)

Lana Josipović
Digital Systems and Design Automation Group
dynamo.ethz.ch

ETH Zurich (D-ITET)
December 1, 2022

Most materials from Lothar Thiele and Romain Jacob
Last week in Discrete Event Systems
Verification Scenarios

Example

\[y = (x_1 + x_2) \cdot x_3 \]

“The device can always be switched off.”

Comparison of specification and implementation

- reference system → data structure
- system under test → data structure
- comparison

Proving properties

- property
- fixed-point calculation
- system under test → data structure
Comparison using BDDs

• Boolean (combinatorial) circuits: Compare specification and implementation, or compare two implementations.

• Method:
 • Representation of the two systems in ROBDDs, e.g., by applying the APPLY operator repeatedly.
 • Compare the structures of the ROBDDs.

• Example:

\[y = (x_1 + x_2) \cdot x_3 \]

\[y = x_1 + x_2 + x_3 + x_3 \]
Sets and Relations

• Representation of a subset $A \subseteq E$:
 • Binary encoding $\sigma(e)$ of all elements $e \in E$
 • Subset A is represented by $a \in A \iff \psi_A(\sigma(a))$

• Relation function: describe state transitions

\[
\psi_\delta(\sigma(q), \sigma(q')) = \psi_\delta(q, q')
\]

\[
\begin{align*}
\sigma(e_1) &= (0, 1, 0) \\
\sigma(e_2) &= (0, 0, 0) \\
\psi_A(\sigma(e_1)) &= 0 \\
\psi_A(\sigma(e_2)) &= 1
\end{align*}
\]
Reachability of States

• Problem: Is a state $q \in Q$ reachable by a sequence of state transitions?

• Method:
 • Represent set of states and the transformation relation as ROBDDs.
 • Use these representations to transform from one set of states to another. Set Q_i corresponds to the set of states reachable after i transitions.
 • Iterate the transformation until a fixed-point is reached, i.e., until the set of states does not change anymore (steady-state).

• Example:

$Q_0 = \{q_0\}$
$Q_1 = \{q_0, q_1\}$
$Q_2 = \{q_0, q_1, q_2\}$
$Q_3 = \{q_0, q_1, q_2\}$
This week in
Discrete Event Systems
Efficient state representation
- Set of states as Boolean function
- Binary Decision Diagram representation

Computing reachability
- Leverage efficient state representation
- Explore successor sets of states

Today
Proving properties
- Temporal logic (CTL)
- Encoding as reachability problem
Temporal Logic

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?
Temporal Logic

• Verify properties of a finite automaton, for example
 • Can we always reset the automaton?
 • Is every request followed by an acknowledgement?
 • Are both outputs always equivalent?

<table>
<thead>
<tr>
<th>Formula</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic proposition</td>
<td>The printer is busy. The light is on.</td>
</tr>
<tr>
<td>Boolean logic</td>
<td>$\phi_1 + \phi_2 ; \neg \phi_1$</td>
</tr>
</tbody>
</table>
Temporal Logic

• Verify properties of a finite automaton, for example
 • Can we always reset the automaton?
 • Is every request followed by an acknowledgement?
 • Are both outputs always equivalent?

• Specification of the query in a formula of temporal logic.
• We use a simple form called Computation Tree Logic (CTL).

<table>
<thead>
<tr>
<th>Formula</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic proposition</td>
<td>The printer is busy.</td>
</tr>
<tr>
<td></td>
<td>The light is on.</td>
</tr>
<tr>
<td>Boolean logic</td>
<td>$\phi_1 + \phi_2 ; \neg \phi_1$</td>
</tr>
<tr>
<td>CTL logic</td>
<td>EX ϕ_1</td>
</tr>
</tbody>
</table>

• Let us start with a minimal set of operators.
 • Any atomic proposition is a CTL formula.
 • CTL formula are constructed by composition of other CTL formula.
Temporal Logic

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?

- Specification of the query in a formula of temporal logic.
- We use a simple form called Computation Tree Logic (CTL).

- Let us start with a minimal set of operators.
 - Any atomic proposition is a CTL formula.
 - CTL formula are constructed by composition of other CTL formula.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Atomic proposition | The printer is busy.
The light is on. |
| Boolean logic | $\phi_1 + \phi_2 ; \neg \phi_1$ |
| CTL logic | EX ϕ_1 |

There exists other logics (e.g. LTL, CTL*)
Formulation of CTL properties
Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

$A\phi \rightarrow \langle \text{All } \phi \rangle$, \hspace{1em} ϕ holds on all paths

$E\phi \rightarrow \langle \text{Exists } \phi \rangle$, \hspace{1em} ϕ holds on at least one path

Quantifiers over paths
Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

$A\phi \rightarrow \mathrm{«All\ }\phi\mathrm{»}$, \hspace{1cm} ϕ holds on all paths

$E\phi \rightarrow \mathrm{« Exists \ }\phi\mathrm{»}$, \hspace{1cm} ϕ holds on at least one path

$X\phi \rightarrow \mathrm{«NeXt \ }\phi\mathrm{»}$, \hspace{1cm} ϕ holds on the next state

$F\phi \rightarrow \mathrm{«Finally \ }\phi\mathrm{»}$, \hspace{1cm} ϕ holds at some state along the path

$G\phi \rightarrow \mathrm{«Globally \ }\phi\mathrm{»}$, \hspace{1cm} ϕ holds on all states along the path

$\phi_1 U\phi_2 \rightarrow \mathrm{«\phi_1 Until \ }\phi_2\mathrm{»}$, \hspace{1cm} ϕ_1 holds until ϕ_2 holds

implies that ϕ_2 has to hold eventually

Quantifiers over paths

Path-specific quantifiers
Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

$A\phi \rightarrow \langle\text{All } \phi\rangle$, \hspace{1cm} ϕ holds on all paths

$E\phi \rightarrow \langle\text{Exists } \phi\rangle$, \hspace{1cm} ϕ holds on at least one path

$X\phi \rightarrow \langle\text{NeXt } \phi\rangle$, \hspace{1cm} ϕ holds on the next state

$F\phi \rightarrow \langle\text{Finally } \phi\rangle$, \hspace{1cm} ϕ holds at some state along the path

$G\phi \rightarrow \langle\text{Globally } \phi\rangle$, \hspace{1cm} ϕ holds on all states along the path

$\phi_1 U \phi_2 \rightarrow \langle\phi_1 \text{ Until } \phi_2\rangle$, \hspace{1cm} ϕ_1 holds until ϕ_2 holds

implies that ϕ_2 has to hold eventually

CTL quantifiers work in pairs: we need one of each! $\{A,E\} \{X,F,G,U\} \phi$
Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

\[
\begin{align*}
A\phi & \rightarrow \text{«All } \phi\text{»}, \quad \phi \text{ holds on all paths} \\
E\phi & \rightarrow \text{«Exists } \phi\text{»}, \quad \phi \text{ holds on at least one path} \\
X\phi & \rightarrow \text{«NeXt } \phi\text{»}, \quad \phi \text{ holds on the next state} \\
F\phi & \rightarrow \text{«Finally } \phi\text{»}, \quad \phi \text{ holds at some state along the path} \\
G\phi & \rightarrow \text{«Globally } \phi\text{»}, \quad \phi \text{ holds on all states along the path} \\
\phi_1 U \phi_2 & \rightarrow \text{«}\phi_1 \text{ Until } \phi_2\text{»}, \quad \phi_1 \text{ holds until } \phi_2 \text{ holds} \\
\end{align*}
\]

Quantifiers over paths

Path-specific quantifiers

CTL quantifiers work in pairs: we need one of each!

\{A,E\} \{X,F,G,U\}$$
CTL works on computation trees

Automaton

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$
CTL works on computation trees

Over paths: $A \phi \rightarrow All \phi$
$E \phi \rightarrow Exists \phi$

Path-specific: $X \phi \rightarrow Next \phi$
$F \phi \rightarrow Finally \phi$
$G \phi \rightarrow Globally \phi$
$\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$
CTL works on computation trees

Automaton of interest

Requires fully-defined transition functions

Over paths:
- $A\phi \rightarrow \textbf{All} \ \phi$
- $E\phi \rightarrow \textbf{Exists} \ \phi$

Path-specific:
- $X\phi \rightarrow \text{NeXt} \ \phi$
- $F\phi \rightarrow \text{Finally} \ \phi$
- $G\phi \rightarrow \text{Globally} \ \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$
CTL works on computation trees

Automaton of interest

Requires fully-defined transition functions

Automaton to work with

Each state has at least one successor (can be itself)

Over paths:
\[A\phi \rightarrow \text{All } \phi \]
\[E\phi \rightarrow \text{Exists } \phi \]

Path-specific:
\[X\phi \rightarrow \text{NeXt } \phi \]
\[F\phi \rightarrow \text{Finally } \phi \]
\[G\phi \rightarrow \text{Globally } \phi \]
\[\phi_1 \text{ Until } \phi_2 \]
Visualizing CTL formula

- We use this computation tree as a running example.

- We suppose that the black and red states satisfy atomic properties p and q, respectively.

- The topmost state is the initial state; in the examples, it always satisfies the given formula.

M satisfies $\phi \iff q_0 \models \phi$ where q_0 is the initial state of M
Visualizing CTL formula

\(\forall \phi \rightarrow \text{All} \phi\)
\(\exists \phi \rightarrow \text{Exists} \phi\)
\(X\phi \rightarrow \text{Next} \phi\)
\(F\phi \rightarrow \text{Finally} \phi\)
\(G\phi \rightarrow \text{Globally} \phi\)
\(\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2\)
Visualizing CTL formula

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$

AG p

AF p
Visualizing CTL formula

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$
Visualizing CTL formula

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{NeXt } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$
Visualizing CTL formula

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{NeXt } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 \text{Until } \phi_2$
Visualizing CTL formula

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{NeXt } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$
Visualizing CTL formula

Over paths:
\(A \phi \rightarrow \text{All } \phi \)
\(E \phi \rightarrow \text{Exists } \phi \)
\(E \phi \rightarrow \text{Exits } \phi \)
Path-specific:
\(X \phi \rightarrow \text{NeXt } \phi \)
\(F \phi \rightarrow \text{Finally } \phi \)
\(G \phi \rightarrow \text{Globally } \phi \)
\(\phi_1 \cup \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2 \)
Visualizing CTL formula

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{NeXt } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$
Formulation of CTL properties

Can be more than one pair

\[AG \phi_1 \text{ where } \phi_1 = EF \phi_2 \equiv AG EF \phi_2 \]

A and F are convenient, but not necessary

\[AF\phi \equiv \neg EG(\neg \phi) \]
\[AG\phi \equiv \neg EF(\neg \phi) \]
\[AX\phi \equiv \neg EX(\neg \phi) \]
\[EF\phi \equiv \text{true EU}\phi \]

E, G, X, U are sufficient to define the whole logic.

No need to know that one

\[\phi_1 AU\phi_2 \equiv \neg([\neg(\neg \phi_1)EU(\neg(\phi_1 + \phi_2))] + EG(\neg \phi_2)) \]
Intuition for “AF p = ¬ EG (¬ p)”
Intuition for “AF p = ¬ EG (¬ p)”
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \text{Until } \phi_2$
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- AG p
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- \(\text{AG } p \)
 I will like chocolate from now on, no matter what happens.
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- AG p I will like chocolate from now on, no matter what happens.
- EF p
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- **AG p** I will like chocolate from now on, no matter what happens.
- **EF p** It's possible I may like chocolate someday, at least for one day.
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- **AG p**
 I will like chocolate from now on, no matter what happens.

- **EF p**
 It's possible I may like chocolate someday, at least for one day.

- **AF EG p**
 There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- **AG p**
 I will like chocolate from now on, no matter what happens.

- **EF p**
 It's possible I may like chocolate someday, at least for one day.

- **AF EG p**
 There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).

- **EG AF p**

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \text{Until } \phi_2$
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- **AG p**
 I will like chocolate from now on, no matter what happens.

- **EF p**
 It's possible I may like chocolate someday, at least for one day.

- **AF EG p**
 There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).

- **EG AF p**
 This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- **AG p**
 I will like chocolate from now on, no matter what happens.

- **EF p**
 It's possible I may like chocolate someday, at least for one day.

- **AF EG p**
 There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).

- **EG AF p**
 This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.

- **p AU q**
Interpreting CTL formula

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>q</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>

- **AG p**: I will like chocolate from now on, no matter what happens.
- **EF p**: It's possible I may like chocolate someday, at least for one day.
- **AF EG p**: There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- **EG AF p**: This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.
- **p AU q**: No matter what happens, I will like chocolate from now on. But when it gets warm outside, I don’t know whether I still like it. And it will get warm outside someday.
EF \(\phi \): “There exists a path along which at some state \(\phi \) holds.”

- **Over paths:**
 - All \(\phi \)
 - Exists \(\phi \)
 - Finally \(\phi \)
 - Globally \(\phi \)
 - Until \(\phi_1 \) \(\phi_2 \)

- **Path-specific:**
 - Next \(\phi \)

Diagram:

- Node q
- Node s
- Node r
- Node ?

The diagram illustrates how states q and r are connected, with \(q \models \text{EF} \phi \) and \(r \models ? \).
EF ϕ : “There exists a path along which at some state ϕ holds.”
EF ϕ : “There exists a path along which at some state ϕ holds.”
AF ϕ: “On all paths, at some state ϕ holds.”
AF ϕ : “On all paths, at some state ϕ holds.”

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 \cup \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$

q $\models \phi$

q $\models \text{AF } \phi$

r $\models \text{AF } \phi$

s $\models ?$
AF ϕ: “On all paths, at some state ϕ holds.”

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$
- $E\phi \rightarrow \text{Exists } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$

$\models \phi$

$q \models AF \phi$

$r \models AF \phi$

$s \not\models AF \phi$
AG ϕ : “On all paths, for all states ϕ holds.”
\textbf{AG} \ \phi \ : \ \textit{"On all paths, for all states} \ \phi \ \textit{holds."}
AG ϕ : "On all paths, for all states ϕ holds."

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$
- $E\phi \rightarrow \exists \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$

Diagram:
- $q \models AG \phi$
- $r \models AG \phi$
- $s \not\models AG \phi$
EG ϕ : “There exists a path along which for all states ϕ holds.”
EG \(\phi \): “There exists a path along which for all states \(\phi \) holds.”
EG \(\phi \): “There exists a path along which for all states \(\phi \) holds.”

Over paths:
- \(A\phi \rightarrow A\text{All } \phi \)
- \(E\phi \rightarrow E\text{Exists } \phi \)

Path-specific:
- \(X\phi \rightarrow N\text{Ext } \phi \)
- \(F\phi \rightarrow F\text{inally } \phi \)
- \(G\phi \rightarrow G\text{lobally } \phi \)
- \(\phi_1 U \phi_2 \rightarrow \phi_1 \text{ Until } \phi_2 \)

- \(q \models EG \phi \)
- \(r \models EG \phi \)
- \(s \not\models EG \phi \)
$\phi \mathsf{EU} \Psi$: “There exists a path along which ϕ holds until Ψ holds.”
\(\phi \mathcal{E} \mathcal{U} \Psi \) : “There exists a path along which \(\phi \) holds until \(\Psi \) holds.”
\(\phi \text{EU}\Psi \): “There exists a path along which \(\phi \) holds until \(\Psi \) holds.”
\(\phi \text{AU} \Psi : \text{"On all paths, } \phi \text{ holds until } \Psi \text{ holds."} \)
\(\phi \text{AU} \Psi\) : “On all paths, \(\phi\) holds until \(\Psi\) holds.”
\(\phi \text{AU}\Psi \): “On all paths, \(\phi \) holds until \(\Psi \) holds.”
EXφ : “There exists a path along which the next state satisfies ϕ.”
EXφ: “There exists a path along which the next state satisfies φ.”

Over paths:
- $A\phi \rightarrow \text{All} \phi$
- $E\phi \rightarrow \text{Exists} \phi$

Path-specific:
- $X\phi \rightarrow \text{Next} \phi$
- $F\phi \rightarrow \text{Finally} \phi$
- $G\phi \rightarrow \text{Globally} \phi$
- $\phi_1 \text{U} \phi_2 \rightarrow \phi_1 \text{Until} \phi_2$

$q \models \phi$
$r \models \text{EX}\phi$
$s \models ?$
EX\(\phi\) : “There exists a path along which the next state satisfies \(\phi\).”
AG EF φ: “On all paths and for all states, there exists a path along which at some state φ holds.”

![Image of a diagram with nodes labeled q, s, r, and states connected by arrows. The diagram illustrates the paths and states associated with AG EF φ.]
AG EF \(\phi \): “On all paths and for all states, there exists a path along which at some state \(\phi \) holds.”
\textbf{AG EF }\phi: \textit{“On all paths and for all states, there exists a path along which at some state }\phi\textit{ holds.”}
AG EF \(\phi \): “On all paths and for all states, there exists a path along which at some state \(\phi \) holds.”

What if we remove this edge?

Over paths:
- \(A\phi \to \text{All } \phi \)
- \(E\phi \to \text{Exists } \phi \)

Path-specific:
- \(X\phi \to \text{Next } \phi \)
- \(F\phi \to \text{Finally } \phi \)
- \(G\phi \to \text{Globally } \phi \)
- \(\phi_1 U \phi_2 \to \phi_1 \text{ Until } \phi_2 \)
AG EF \(\phi \): “On all paths and for all states, there exists a path along which at some state \(\phi \) holds.”

What if we remove this edge?

- **q \not\models AG EF \(\phi \)**
- **r \not\models AG EF \(\phi \)**
- **s \models AG EF \(\phi \)**
Specifying using CTL formula

Famous problem

Dining Philosophers
- Five philosophers are sitting around a table, taking turns at thinking and eating.
- Each needs two forks to eat.
- They put down forks only once they have eaten.
- There are only five forks.

Atomic proposition

\(e_i \) : Philosopher \(i \) is currently eating.
Specifying using CTL formula

- “Philosophers 1 and 4 will never eat at the same time.”

- “Every philosopher will get infinitely many turns to eat.”

- “Philosopher 2 will be the first to eat.”
Specifying using CTL formula

- “Philosophers 1 and 4 will never eat at the same time.”
 \[\text{AG} \neg(e_1 \cdot e_4) \]

- “Every philosopher will get infinitely many turns to eat.”

- “Philosopher 2 will be the first to eat.”
Specifying using CTL formula

- “Philosophers 1 and 4 will never eat at the same time.”
 \[AG\neg(e_1 \cdot e_4) \]

- “Every philosopher will get infinitely many turns to eat.”
 \[AG(AF_{e_1} \cdot AF_{e_2} \cdot AF_{e_3} \cdot AF_{e_4} \cdot AF_{e_5}) \]

- “Philosopher 2 will be the first to eat.”
Specifying using CTL formula

- “Philosophers 1 and 4 will never eat at the same time.”
 \[\text{AG}(\neg (e_1 \cdot e_4)) \]

- “Every philosopher will get infinitely many turns to eat.”
 \[\text{AG}(\text{AF}e_1 \cdot \text{AF}e_2 \cdot \text{AF}e_3 \cdot \text{AF}e_4 \cdot \text{AF}e_5) \]

- “Philosopher 2 will be the first to eat.”
 \[\neg (e_1 + e_3 + e_4 + e_5) \text{ AU } e_2 \]
Computing CTL formula

• Define $\llbracket \phi \rrbracket$ as the set of all initial states of the finite automaton for which CTL formula ϕ is true. A finite automaton with initial state q_0 satisfies ϕ iff

$$q_0 \in \llbracket \phi \rrbracket$$

• Now, we can use our “trick”: computing with sets of states!
 • $\psi_{\llbracket \phi \rrbracket}(q)$ is true if the state q is in the set $\llbracket \phi \rrbracket$, i.e., it is a state for which the CTL formula is true.
 • Therefore, we can also say

$$q_0 \in \llbracket \phi \rrbracket \equiv \psi_{\llbracket \phi \rrbracket}(q_0) \quad \text{characteristic function of the set} \; \llbracket \phi \rrbracket$$

<table>
<thead>
<tr>
<th>Over paths:</th>
<th>Path-specific:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A\phi \rightarrow \text{All } \phi$</td>
<td>$X\phi \rightarrow \text{NeXt } \phi$</td>
</tr>
<tr>
<td>$E\phi \rightarrow \text{Exists } \phi$</td>
<td>$F\phi \rightarrow \text{Finally } \phi$</td>
</tr>
<tr>
<td>$G\phi \rightarrow \text{Globally } \phi$</td>
<td>$\phi_1 \mathbin{\text{Until}} \phi_2$</td>
</tr>
<tr>
<td>$\phi_1 \mathbin{\text{Until}} \phi_2$</td>
<td>$\phi_1 \mathbin{\text{Until}} \phi_2$</td>
</tr>
</tbody>
</table>
Computing CTL formula: $\text{EX } \phi$

Over paths:
- $A\phi \rightarrow \text{All } \phi$
- $E\phi \rightarrow \text{Exists } \phi$

Path-specific:
- $X\phi \rightarrow \text{Next } \phi$
- $F\phi \rightarrow \text{Finally } \phi$
- $G\phi \rightarrow \text{Globally } \phi$
- $\phi_1 \text{Until } \phi_2$

Diagram:
- EX p
Computing CTL formula: EX ϕ

- Suppose that Q is the set of initial states for which the formula ϕ is true.

Sets

$Q = \llbracket \phi \rrbracket$

Characteristic functions

$\psi_Q(q)$
Computing CTL formula: EX ϕ

- Suppose that Q is the set of initial states for which the formula ϕ is true.
- Q' is the set of predecessor states of Q, i.e., the set of states that lead in one transition to a state in Q:

\[Q' = \text{Pre}(Q, \delta) = \{ q' | \exists q : \psi_\delta(q', q) \cdot \psi_Q(q) \} \]

Sets

- $Q = [\phi] \quad \rightarrow \quad Q' = [\text{EX}\phi] = \text{Pre}([\phi], \delta)$

Characteristic functions

- $\psi_Q(q) \quad \rightarrow \quad \psi_{Q'}(q') = (\exists q : \psi_Q(q) \cdot \psi_\delta(q', q))$
Computing CTL formula: EX ϕ

- Example for EX ϕ: Compute EX q_2

\[
[q_2] = \{q_2\}
\]
Computing CTL formula: EX \(\phi \)

- Example for EX \(\phi \): Compute EX \(q_2 \)

\[
[q_2] = \{q_2\} \\
Q' = [EX q_2] = Pre(\{q_2\}, \delta) = \{q_1, q_2, q_3\} \\
{q' | \exists q : \psi_\delta(q', q) \cdot \psi_Q(q)}
\]
Computing CTL formula: EX φ

- Example for EX φ: Compute EX q₂

 \[
 [q₂] = \{q₂\} \\
 Q' = [EX q₂] = Pre(\{q₂\}, δ) = \{q₁, q₂, q₃\}
 \]

 \[
 \{q' \mid \exists q : ψ₅(q', q) \cdot ψ_Q(q)\}
 \]

As \(q₀ \notin [EX q₂] = \{q₁, q₂, q₃\} \), the CTL formula EX q₂ is not true.
Computing CTL formula: EF ϕ

- Start with the set of initial states for which the formula ϕ is true.
- Add to this set the set of predecessor states. Repeat for the resulting set of states, ..., until we reach a fixed-point.

\[Q_0 = \llbracket \phi \rrbracket \]
\[Q_i = Q_{i-1} \cup \text{Pre}(Q_{i-1}, \delta) \quad \text{for all } i > 1 \text{ until a fixed point } Q' \text{ is reached} \]
\[\llbracket EF\phi \rrbracket = Q' \]
Computing CTL formula: $EF \phi$

- Example for $EF\phi$: Compute EFq_2

\[
Q_0 = [q_2] = \{q_2\}
\]
Computing CTL formula: EF \(\phi \)

- Example for EF\(\phi \): Compute EF \(q_2 \)

\[
Q_0 = [q_2] = \{q_2\}
\]

\[
Q_1 = \{q_2\} \cup \text{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}
\]

\[
\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_1, q_2, q_3\}
\]
Computing CTL formula: EF ϕ

- Example for EFϕ: Compute EF q_2

 \[
 Q_0 = [q_2] = \{q_2\} \\
 Q_1 = \{q_2\} \cup \text{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\} \\
 Q_2 = \{q_1, q_2, q_3\} \cup \text{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}
 \]

 \[
 \{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_1, q_2, q_3\}
 \]
Computing CTL formula: $\text{EF } \phi$

- Example for $\text{EF } \phi$: Compute $\text{EF } q_2$

$$Q_0 = [q_2] = \{q_2\}$$

$$Q_1 = \{q_2\} \cup \text{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$$

$$Q_2 = \{q_1, q_2, q_3\} \cup \text{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$$

$$Q_3 = \{q_0, q_1, q_2, q_3\} \cup \text{Pre}(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$$

$$\lbrack \text{EF } q_2 \rbrack = Q_3 = \{q_0, q_1, q_2, q_3\}$$

$$\{q' \mid \exists q \text{ with } \psi_{Q}(q) \cdot \psi_{\delta}(q', q) \} = \{q_1, q_2, q_3\}$$
Computing CTL formula: EF φ

Example for EFφ: Compute EF q₂

\[Q_0 = [q_2] = \{q_2\} \]
\[Q_1 = \{q_2\} \cup \text{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\} \]
\[Q_2 = \{q_1, q_2, q_3\} \cup \text{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\} \]
\[Q_3 = \{q_0, q_1, q_2, q_3\} \cup \text{Pre}(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\} \]
\[[\text{EF} q_2] = Q_3 = \{q_0, q_1, q_2, q_3\} \]

As \(q_0 \in [\text{EF} q_2] = \{q_0, q_1, q_2, q_3\} \), the CTL formula EF q₂ is true.
Computing CTL formula: $EG \phi$

- Start with the set of initial states for which the formula ϕ is true.
- Cut this set with the set of predecessor states. Repeat for the resulting set of states,, until we reach a fixed-point.

$$Q_0 = \llbracket \phi \rrbracket$$

$$Q_i = Q_{i-1} \cap \text{Pre}(Q_{i-1}, \delta) \quad \text{for all } i > 1 \text{ until a fixed point } Q' \text{ is reached}$$
Computing CTL formula: $\text{EG } \phi$

- Example for $\text{EG } \phi$: Compute $\text{EG } q_2$

\[
Q_0 = [q_2] = \{q_2\}
\]
Computing CTL formula: $\text{EG} \phi$

- Example for $\text{EG} \phi$: Compute $\text{EG} q_2$

 Let $\psi_q(q) = \exists q' \in Q(q) : \psi(q', q)$

 $$\{q' \mid \exists q \text{ with } \psi_{Q}(q) \cdot \psi_{\delta}(q', q)\} = \{q_1, q_2, q_3\}$$

 $$[\text{EG} q_2] = Q_2 = \{q_2\}$$

 As $q_0 \notin [\text{EG} q_2] = \{q_2\}$, the CTL formula $\text{EG} q_2$ is not true.
Computing CTL formula: $\phi_1 E U \phi_2$

- Start with the set of initial states for which the formula ϕ_2 is true.
- Add to this set the set of predecessor states for which the formula ϕ_1 is true. Repeat for the resulting set of states we do the same, ..., until we reach a fixed-point.
- Like $EF \phi_2$; the only difference is that, on our path backwards, we always make sure that also ϕ_1 holds.

$$Q_0 = [\phi_2]$$

$$Q_i = Q_{i-1} \cup (\text{Pre}(Q_{i-1}, \delta) \cap [\phi_1])$$ for all $i > 1$ until a fixed point is reached
Computing CTL formula: $\phi_1 EU \phi_2$

- Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

![Diagram showing states and transitions]

$$Q_0 = [q_1] = \{q_1\}$$
Computing CTL formula: $\phi_1 EU \phi_2$

- Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

* Diagram *

\[Q_0 = [q_1] = \{q_1\} \]
\[Q_1 = \{q_1\} \cup (\text{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \]

\[\{q' | \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_0, q_2\} \]
Computing CTL formula: $\phi_1 EU \phi_2$

- Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

\[
\begin{align*}
Q_0 &= [q_1] = \{q_1\} \\
Q_1 &= \{q_1\} \cup (\text{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\
Q_2 &= \{q_0, q_1\} \cup (\text{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\
[q_0 EU q_1] &= Q_2 = \{q_0, q_1\} \\
\end{align*}
\]

As $q_0 \in [q_0 EU q_1] = \{q_0, q_1\}$, the CTL formula $q_0 EU q_1$ is true.
Computing CTL formula: $\phi_1 EU \phi_2$

- Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

\[
\begin{align*}
Q_0 &= [q_1] = \{q_1\} \\
Q_1 &= \{q_1\} \cup (\text{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\
Q_2 &= \{q_0, q_1\} \cup (\text{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\
[q_0 EU q_1] &= Q_2 = \{q_0, q_1\} = \{q_0, q_2, q_3\}
\end{align*}
\]

As $q_0 \in [q_0 EU q_1] = \{q_0, q_1\}$, the CTL formula $q_0 EU q_1$ is true.

Compute other CTL expressions as:

\[
\begin{align*}
AF\phi &\equiv \neg EG(\neg \phi) & AG\phi &\equiv \neg EF(\neg \phi) & AX\phi &\equiv \neg EX(\neg \phi)
\end{align*}
\]
So... what is model-checking exactly?

Model-checking is an algorithm which takes two inputs

- a DES model M
- a formula ϕ

It explores the state space of M such as to either

- prove that $M \models \phi$, or
- return a trace where the formula does not hold in M.
So... what is model-checking exactly?

Model-checking is an algorithm which takes two inputs

- a DES model M
- a formula ϕ

It explores the state space of M such as to either

- prove that $M \vDash \phi$, or
- return a trace where the formula does not hold in M. — a counter-example

Extremely useful!

- Debugging the model
- Searching a specific execution sequence

Finite automato
Petri nets
Kripke machine
...
CTL, LTL, ...
Your turn to practice!

after the break

1. Familiarise yourself with CTL logic and how to compute sets of states satisfying a given formula

2. Convert a concrete problem into a state reachability question (adapted from state-of-the-art research!)
Efficient state representation

- Set of states as Boolean function
- Binary Decision Diagram representation

Computing reachability

- Leverage efficient state representation
- Explore successor sets of states

Proving properties

- Temporal logic (CTL)
- Encoding as reachability problem
Conclusion and perspectives

Next week(s) Petri Nets

- asynchronous DES model
- tailored model concurrent distributed systems
- capture an infinite state space with a finite model

How they work?
How to use them for modeling systems?
How to verify them?
Thanks for your attention and see you next week! 😊

Lana Josipović
Digital Systems and Design Automation Group
dynamo.ethz.ch

ETH Zurich (D-ITET)
December 1, 2022

Most materials from Lothar Thiele and Romain Jacob