Discrete Event Systems
Verification of Finite Automata (Part 2)

Romain Jacob
www.romainjacob.net

ETH Zurich (D-ITET)
December 2, 2021

Most materials from Lothar Thiele
Thank you for your feedback!

- Slightly too fast
- Reachability was covered too quickly
- More examples would be nice
- More interaction would be nice

Will hopefully improve already today 😊
Last week in Discrete Event Systems
Verification Scenarios

Example

\[y = (x_1 + x_2) \cdot x_3 \]

“The device can always be switched off.”

Comparison of specification and implementation

- reference system \rightarrow \text{data structure}
- system under test \rightarrow \text{data structure}

Proving properties

- property
- system under test \rightarrow \text{data structure}

fixed-point calculation
Comparison using BDDs

• Boolean (combinatorial) circuits: Compare specification and implementation, or compare two implementations.

• Method:
 • Representation of the two systems in ROBDDs, e.g., by applying the APPLY operator repeatedly.
 • Compare the structures of the ROBDDs.

• Example:
Sets and Relations using Boolean Expressions

- Representation of a relation $R \subseteq A \times B$
 - Binary encoding $\sigma(a), \sigma(b)$ of all elements $a \in A, b \in B$
 - Representation of R

$$(a, b) \in R \iff \psi_R(\sigma(a), \sigma(b))$$

- Example finite automaton:

 - Characteristic function of the relation R
 - Finite automaton

 - We remove the binary encoding for convenience in our notation; but u, q, q' are actually represented as binary vectors.
Reachability of States – State Diagram

Question
Is a state $q \in Q$ reachable by a sequence of state transitions?

$Q_0 = \{q_0\}$

$Q_1 = Q_0 \cup \{q_1\}$

$Q_2 = Q_1 \cup \{q_1, q_2\}$

$Q_3 = Q_2 \cup \{q_1, q_2\}$

Problem
Drawing state diagrams is not feasible in general.
Reachability of States – Boolean Expressions

Fixed-point computation
- Start with the initial state
- Determine the set of states that can be reached in one
- Take the union and iterate until a fixed-point is reached

\[Q_0 = \{q_0\} \]

\[Q_{i+1} = Q_i \cup \text{Suc}(Q_i, \delta) \quad \text{until } Q_{i+1} = Q_i \]

\[\psi_{Q_{i+1}}(q') = \psi_{Q_i}(q') + (\exists q : \psi_{Q_i}(q) \cdot \psi_\delta(q, q')) \]

Test by comparing the ROBDDs of \(Q_{i+1} = Q_i \)

\[Q_R = Q_0 \cup \bigcup_{i \geq 0} \text{Suc}(Q_i, \delta) \]

\[\psi_{Q_R}(q') = \psi_{Q_0}(q') \sum_{i \geq 0} (\exists q : \psi_{Q_i}(q) \cdot \psi_\delta(q, q')) \]

\(Q_R \): set of reachable states

Finite union if model is finite
Reachability of States – Example

State encoding

\[(x_1, x_0) = \sigma(q)\]

<table>
<thead>
<tr>
<th>(q)</th>
<th>(x_1)</th>
<th>(x_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Transition relation encoding

\[\psi_\delta(q, q')\]

entries where \(\psi_\delta(q, q') = 1\) only

As a Boolean function

\[\psi_\delta(q, q') = x'_0 \cdot (x_0 \cdot (x_1 + x'_1) + x_1 \cdot x'_0) + \overline{x_0} \cdot x'_0 \cdot x'_1\]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_0)</th>
<th>(x_1')</th>
<th>(x_0')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

e.g. \(q_0 \rightarrow q_1\)

\(q_2 \rightarrow q_2\)
\[
\psi_{Q_{i+1}}(q') = \psi_{Q_i}(q') + (\exists q : \psi_{Q_i}(q) \cdot \psi_\delta(q, q'))
\]

\[
Q_0 = \{q_0\}
\]

\[
\psi_{Q_0}(q') = \overline{x_1} \cdot \overline{x_0}
\]

\[
Q_1 = Q_0 \cup \{q_1\}
\]

\[
\psi_{Q_1}(q') = \overline{x_1} \cdot \overline{x_0} + \overline{x_1} \cdot x_0 = \overline{x_1}
\]

\[
Q_2 = Q_1 \cup \{q_1, q_2\}
\]

\[
\psi_{Q_2}(q') = x_1' - (x_1' \cdot \overline{x_0} + \overline{x_1} \cdot x_0') = \overline{x_1} + \overline{x_0'}
\]

\[
Q_3 = Q_2 \cup \{q_1, q_2\}
\]

\[
\psi_{Q_3}(q') = (\overline{x_1} + \overline{x_0'}) + (\overline{x_1} + \overline{x_0'}) = \overline{x_1} + \overline{x_0'}
\]
Comparison of Finite Automata

For simplicity, we only consider Moore automata, i.e., the output depends on the current state only. The output function is $\omega : Q \rightarrow \Sigma$ and $y = \omega(q)$.

Strategy

1. Compute the set of jointly reachable states.
2. Compare the output values of the two finite automata.
This week in
Discrete Event Systems
Efficient state representation

- Set of states as Boolean function
- Binary Decision Diagram representation

Computing reachability

- Leverage efficient state representation
- Explore successor sets of states

Proving properties

- Temporal logic (CTL)
- Encoding as reachability problem
Temporal logics

• Verify properties of a finite automaton, for example
 • Can we always reset the automaton?
 • Is every request followed by an acknowledgement?
 • Are both outputs always equivalent?

• Specification of the query in a formula of temporal logic.
• We use a simple form called Computation Tree Logic (CTL).

• Let us start with a minimal set of operators.
 • Any atomic proposition is a CTL formula.
 • CTL formula are constructed by composition of other CTL formula.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic proposition</td>
<td>The printer is busy.</td>
</tr>
<tr>
<td></td>
<td>The light is on.</td>
</tr>
<tr>
<td>Boolean logic</td>
<td>$\phi_1 + \phi_2 ; \neg\phi_1$</td>
</tr>
<tr>
<td>CTL logic</td>
<td>$\text{EX } \phi_1$</td>
</tr>
</tbody>
</table>
Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

- $A\phi \rightarrow \llbracket \text{All } \phi \rrbracket$, ϕ holds on all paths
- $E\phi \rightarrow \llbracket \text{Exists } \phi \rrbracket$, ϕ holds on at least one path
- $X\phi \rightarrow \llbracket \text{Next } \phi \rrbracket$, ϕ holds on the next state
- $F\phi \rightarrow \llbracket \text{Finally } \phi \rrbracket$, ϕ holds at some state along the path
- $G\phi \rightarrow \llbracket \text{Globally } \phi \rrbracket$, ϕ holds on all states along the path
- $\phi_1 U \phi_2 \rightarrow \llbracket \phi_1 \text{ Until } \phi_2 \rrbracket$, ϕ_1 holds until ϕ_2 holds

implies that ϕ_2 has to hold eventually

Quantifiers over paths

Path-specific quantifiers
Formulation of CTL properties

CTL quantifiers works in pairs

\{A,E\} \{X,F,G,U\} \phi \quad \text{You need one of each!}

Can be more than one pair

AG \ \phi_1 \text{ where } \phi_1 = EF \ \phi_2 \quad \equiv \quad AG \ EF \ \phi_2

E,G,X,U are sufficient to define the whole logic.
A and F are convenient, but not necessary

No need to know that one
\phi_1 A U \phi_2 \equiv \neg[(\neg \phi_1) E U \neg(\phi_1 + \phi_2)] + EG(\neg \phi_2)
CTL works on computation trees

Automaton

Computation tree
CTL works on computation trees

Required fully-defined transition functions

Each state has at least one successor (can be itself)

\[M \text{ satisfies } \phi \iff q_0 \models \phi \]
where \(q_0 \) is the initial state of \(M \)
Visualizing CTL formula

- We use this computation tree as a running example.

- We suppose that the black and red states satisfy atomic properties p and q, respectively.

- The topmost state is the initial state; in the examples, it always satisfies the given formula.
Visualizing CTL formula

AG p

AF p
Visualizing CTL formula

AX p

p AU q
Visualizing CTL formula

EG p

EF p
Visualizing CTL formula

EX p

p EU q
Intuition for “AF \(p = \neg EG (\neg p) \)”
Interpreting CTL formula

- AG \(p \)
- EF \(p \)
- AF EG \(p \)
- EG AF \(p \)
- \(p \) AU \(q \)

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>I like chocolate</td>
</tr>
<tr>
<td>(q)</td>
<td>It's warm outside</td>
</tr>
</tbody>
</table>
Interpreting CTL formula

- **AG p**
 I will like chocolate from now on, no matter what happens.

- **EF p**
 It's possible I may like chocolate someday, at least for one day.

- **AF EG p**
 There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).

- **EG AF p**
 This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.

- **p AU q**
 No matter what happens, I will like chocolate from now on. But when it gets warm outside, I don’t know whether I still like it. And it will get warm outside someday.
$\textbf{EF} \ \phi : \ \text{“There exists a path along which at some state } \phi \text{ holds.”}$
EF ϕ : “There exists a path along which at some state ϕ holds.”

$q \models EF \phi$
$r \not\models EF \phi$
$s \not\models EF \phi$
AF ϕ: “On all paths, at some state ϕ holds.”
AF ϕ: “On all paths, at some state ϕ holds.”
$\text{AG } \phi : \text{ “On all paths, for all states } \phi \text{ holds.”} $
AG ϕ : “On all paths, for all states ϕ holds.”

- $q \models \phi$
- $r \models \text{AG } \phi$
- $s \not\models \text{AG } \phi$
$\textbf{EG } \phi : \text{ “There exists a path along which for all states } \phi \text{ holds.”} $
EG ϕ : “There exists a path along which for all states ϕ holds.”
\(\phi E U \psi\) : “There exists a path along which \(\phi\) holds until \(\psi\) holds.”
$\phi_{EU}\Psi$: "There exists a path along which ϕ holds until Ψ holds.”

$q \models \phi_{EU}\Psi$

$r \models \phi_{EU}\Psi$

$s \not\models \phi_{EU}\Psi$
$\phi \text{AU}\Psi$: “On all paths, ϕ holds until Ψ holds.”
$\phi \mathbf{A} \Psi$: “On all paths, ϕ holds until Ψ holds.”
EX\(\phi\) : “There exists a path along which the next state satisfies \(\phi\).”
EX\(\phi\) : “There exists a path along which the next state satisfies \(\phi\).”
AG EF \(\phi \): “On all paths and for all states, there exists a path along which at some state \(\phi \) holds.”

\[
q \models \phi \\
q \models \text{AG EF } \phi \\
r \models ? \\
s \models ?
\]
\(\text{AG EF } \phi : \text{ "On all paths and for all states, there exists a path along which at some state } \phi \text{ holds."} \)
Specifying using CTL formula

Famous problem

Dining Philosophers

- Five philosophers are sitting around a table, taking turns at thinking and eating.
- Each needs two forks to eat.
- They put down forks only once they have eaten.
- There are only five forks.

Atomic proposition

e_i : Philosopher i is currently eating.
Specifying using CTL formula

- “Philosophers 1 and 4 will never eat at the same time.”

- “Every philosopher will get infinitely many turns to eat.”

- “Philosopher 2 will be the first to eat.”
Specifying using CTL formula

- “Philosophers 1 and 4 will never eat at the same time.”
 \[AG\neg(e_1 \cdot e_4) \]

- “Every philosopher will get infinitely many turns to eat.”
 \[AG(\text{AF}e_1 \cdot \text{AF}e_2 \cdot \text{AF}e_3 \cdot \text{AF}e_4 \cdot \text{AF}e_5) \]

- “Philosopher 2 will be the first to eat.”
 \[\neg (e_1 + e_3 + e_4 + e_5) \text{AU } e_2 \]
Computing CTL formula

• In order to compute CTL formula, we first define $[[\phi]]$ as the set of all initial states of the finite automaton for which CTL formula ϕ is true. Then we can say that a finite automaton with initial state q_0 satisfies ϕ iff

$$q_0 \in [[\phi]]$$

• Now, we can use our “trick”: computing with sets of states!
 • $\psi_{[[\phi]]}(q)$ is true if the state q is in the set $[[\phi]]$, i.e., it is a state for which the CTL formula is true.
 • Therefore, we can also say

$$q_0 \in [[\phi]] \equiv \psi_{[[\phi]]}(q_0)$$

characteristic function
of the set $[[\phi]]$

• When we compute the CTL-formulas, we start from the innermost terms.
• Remember: We suppose that every state has at least one successor state (could be itself).
Computing CTL formula

- We now show how to compute some operators in CTL. All others can be determined using the equivalence relations between operators that we listed earlier.
- $\text{EX } \phi$: Let us first define the set of predecessor states of Q, i.e., the set of states that lead in one transition to a state in Q:

$$Q' = \text{Pre}(Q, \delta) = \{q' \mid \exists q : \psi_\delta(q', q) \cdot \psi_Q(q)\}$$

Suppose that Q is the set of initial states for which the formula ϕ is true. Then we can write

\begin{align*}
Q &= [\phi] \\
\psi_Q(q) &\rightarrow \\
\text{sets} \quad \{ &
Q' = [\text{EX } \phi] = \text{Pre}([\phi], \delta) \\
\psi_{Q'}(q') = (\exists q : \psi_Q(q) \cdot \psi_\delta(q', q))
\}
\end{align*}
Computing CTL formula
Computing CTL formula

• Example for EX ϕ : Compute EX q_2

\[
[q_2] = \{q_2\}
\]

\[
Q' = [EX q_2] = Pre(\{q_2\}, \delta) = \{q_1, q_2, q_3\}
\]

\[
\{q' \mid \exists q : \psi_\delta(q', q) \cdot \psi_Q(q)\}
\]

As $q_0 \notin [EX q_2] = \{q_1, q_2, q_3\}$, the CTL formula EX q_2 is not true.
Computing CTL formula

- **EF ϕ:** The idea here is to start with the set of initial states for which the formula ϕ is true. Then we add to this set the set of predecessor states. For the resulting set of states we do the same, ..., until we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).

$$Q_0 = \lbrack\phi\rbrack$$

$$Q_i = Q_{i-1} \cup \text{Pre}(Q_{i-1}, \delta) \quad \text{for all } i > 1 \text{ until a fixed-point } Q' \text{ is reached}$$

$$\lbrack\text{EF}\phi\rbrack = Q'$$
Computing CTL formula
Computing CTL formula

• Example for $\text{EF}\phi$: Compute $\text{EF} q_2$

$$Q_0 = \llbracket q_2 \rrbracket = \{q_2\}$$

$$Q_1 = \{q_2\} \cup \text{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$$

$$Q_2 = \{q_1, q_2, q_3\} \cup \text{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$$

$$Q_3 = \{q_0, q_1, q_2, q_3\} \cup \text{Pre}(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$$

$$\llbracket \text{EF} q_2 \rrbracket = Q_3 = \{q_0, q_1, q_2, q_3\}$$

As $q_0 \in \llbracket \text{EF} q_2 \rrbracket = \{q_0, q_1, q_2, q_3\}$, the CTL formula $\text{EF} q_2$ is true.
Computing CTL formula

- **EG ϕ:** The idea here is to start with the set of initial states for which the formula ϕ is true. Then we cut this set with the set of predecessor states. For the resulting set of states we do the same, ..., until we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).

\[
Q_0 = \llbracket \phi \rrbracket \\
Q_i = Q_{i-1} \cap \text{Pre}(Q_{i-1}, \delta) \quad \text{for all } i > 1 \text{ until a fixed-point is reached}
\]
Computing CTL formula

EG p
Computing CTL formula

• Example for EG ϕ: Compute $\text{EG } q_2$

\[
Q_0 = [q_2] = \{q_2\}
\]
\[
Q_1 = \{q_2\} \cap \text{Pre}(\{q_2\}, \delta) = \{q_2\}
\]
\[
\text{[EG}q_2]\] = Q_2 = \{q_2\}
\]

\[
\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_1, q_2, q_3\}
\]

As $q_0 \notin \text{[EG}q_2]\] = \{q_2\}$, the CTL formula $\text{EG } q_2$ is not true.
Computing CTL formula

- $\phi_1 EU \phi_2$: The idea here is to start with the set of initial states for which the formula ϕ_2 is true. Then we add to this set the set of predecessor states for which the formula ϕ_1 is true. For the resulting set of states we do the same, ..., until we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).

$$Q_0 = \llbracket \phi_2 \rrbracket$$

$$Q_i = Q_{i-1} \cup (\text{Pre}(Q_{i-1}, \delta) \cap \llbracket \phi_1 \rrbracket) \quad \text{for all } i > 1 \text{ until a fixed-point is reached}$$

Like EF ϕ_2, the only difference is that on our path backwards, we always make sure that also ϕ_1 holds.
Computing CTL formula
Computing CTL formula

• Example for $\phi_1 E U \phi_2$: Compute $q_0 E U q_1$

\[q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q) = \{q_0, q_2\} \]

\[
Q_0 = [q_1] = \{q_1\} \\
Q_1 = \{q_1\} \cup (\text{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\
Q_2 = \{q_0, q_1\} \cup (\text{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\
[q_0 E U q_1] = Q_2 = \{q_0, q_1\} = \{q_0, q_2, q_3\} \\
\]

As $q_0 \in [q_0 E U q_1] = \{q_0, q_1\}$, the CTL formula $q_0 E G q_1$ is true.
So... what is model-checking exactly?

Model-checking is an algorithm which takes two inputs

- a DES model M
- a formula ϕ

It explores the state space of M such as to either

- prove that $M \models \phi$, or
- return a trace where the formula does not hold in M.

Finite automata
Petri nets
Kripke machine
...

CTL, LTL, ...
So... what is model-checking exactly?

Model-checking is an algorithm which takes two inputs

- a DES model M
- a formula ϕ

It explores the state space of M such as to either

- prove that $M \models \phi$, or
- return a trace where the formula does not hold in M.

Extremely useful!
- Debugging the model
- Searching a specific execution sequence

Finite automaton
Petri nets
Kripke machine
...

CTL, LTL, ...

a counter-example
Let’s see how it works in practice...

UPPAAL model-checker
- free for academia
- (much) more general than what we show here
- can verify the timed behavior of communicating finite automata

Example
Modeling and verification of a simple protocol for ATM-Money-Withdrawal
Step 1. ATM without Cancel

send event “bank_card”

AG

EF —

A[] Eric.IDLE imply (Bank.Money imply Pocket.No_money)
E<> Pocket.Money
A[] Eric.IDLE imply (Bank.No_money imply Pocket.Money)

initial state

enabled by event “cash”

communicating finite automata
Step 2. ATM with Cancel

A[] Eric.IDLE imply (Bank.Money imply Pocket.No_money)
E<> Pocket.Money
A[] Eric.IDLE imply (Bank.No_money imply Pocket.Money)
Your turn to practice!

after the break

1. Familiarise yourself with CTL logic and how to compute sets of states satisfying a given formula

2. Convert a concrete problem into a state reachability question (adapted from state-of-the-art research!)
Conclusion and perspectives

Example

\[y = (x_1 + x_2) \cdot x_3 \]

```
  x1 +
    +
  x2 --
    +
  x3 --
    +
    -> y
```

```
\[ y = x_1 + x_2 \cdot x_3 \]
```

“The device can always be switched off.”

Comparison of specification and implementation

- reference system → data structure → comparison
- system under test → data structure

Proving properties

- property
- system under test → data structure → fixed-point calculation
Conclusion and perspectives

Next week(s) Petri Nets

- asynchronous DES model
- tailored model concurrent distributed systems
- capture an infinite state space with a finite model

How they work?
How to use them for modeling systems?
How to verify them?
See you next week!
in Discrete Event Systems

Romain Jacob
www.romainjacob.net

ETH Zurich (D-ITET)
December 2, 2021

Most materials from Lothar Thiele