Automata & languages

A primer on the Theory of Computation

Laurent Vanbever

nsg.ethz.ch

ETH Zürich (D-ITET)

26 September 2024

Part 2 out of 5

Last week was all about

Deterministic Finite Automaton

We saw three main concepts

Regular Language

Formal definition

Regular Language

A language *L* is *regular* if some finite automaton recognizes it

Formal definition

Regular Language

Formal definition

A finite automaton is a 5-tuple

$$(Q, \Sigma, \delta, q_0, F)$$

Regular Language

Formal definition

Closure

If L_1 and L_2 are regular, then so are:

$$L_1 \cup L_2$$
 $L_1 \cap L_2$ $\overline{L_1}$ $L_1 \oplus L_2$ $L_1 - L_2$

$$L_1 \oplus L_2$$
 $L_1 - L_2$

Finite Automata

Thu Sept 26

- 2 Equivalence
 - DFA
 - NFA
 - Regular Expression