Motivation

- Why is a language such as $\{0^n 1^n \mid n \ge 0\}$ not regular?!?
- It's really simple! All you need to keep track is the number of 0's...
- In this chapter we first study context-free grammars
 - More powerful than regular languages
 - Recursive structure
 - Developed for human languages
 - Important for engineers (parsers, protocols, etc.)

- Palindromes, for example, are not regular.
- But there is a pattern.

- Palindromes, for example, are not regular.
- But there is a pattern.
- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
 - Base case: ε , 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are 0x0 and 1x1.

- Palindromes, for example, are not regular.
- But there is a pattern.
- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
 - Base case: ε , 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are 0x0 and 1x1.
- Notation: $x \rightarrow \varepsilon \mid 0 \mid 1 \mid 0x0 \mid 1x1$.
 - Each pipe ("|") is an or, just as in UNIX regexp's.
 - In fact, all palindromes can be generated from ε using these rules.

- Palindromes, for example, are not regular.
- But there is a pattern.
- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
 - Base case: ε , 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are 0x0 and 1x1.
- Notation: $x \rightarrow \varepsilon \mid 0 \mid 1 \mid 0x0 \mid 1x1$.
 - Each pipe ("|") is an or, just as in UNIX regexp's.
 - In fact, all palindromes can be generated from ϵ using these rules.
- Q: How would you generate 11011011?

Context Free Grammars (CFG): Definition

- Definition: A context free grammar consists of (V, Σ , R, S) with:
 - V: a finite set of variables (or symbols, or non-terminals)
 - Σ : a finite set set of terminals (or the alphabet)
 - *R*: a finite set of rules (or productions) of the form $v \rightarrow w$ with $v \in V$, and $w \in (\Sigma_{\varepsilon} \cup V)^*$ (read: "*v* yields *w*" or "*v* produces *w*")
 - $S \in V$: the start symbol.

Context Free Grammars (CFG): Definition

- Definition: A context free grammar consists of (V, Σ , R, S) with:
 - V: a finite set of variables (or symbols, or non-terminals)
 - Σ : a finite set set of terminals (or the alphabet)
 - *R*: a finite set of rules (or productions) of the form $v \rightarrow w$ with $v \in V$, and $w \in (\Sigma_{\varepsilon} \cup V)^*$ (read: "*v* yields *w*" or "*v* produces *w*")
 - $S \in V$: the start symbol.
- Q: What are (V, Σ, R, S) for our palindrome example?

Derivations and Language

Definition: The derivation symbol "⇒" (read "1-step derives" or "1-step produces") is a relation between strings in (Σ∪V)*. We write x⇒y if x and y can be broken up as x = svt and y = swt with v→w being a production in R.

Derivations and Language

- Definition: The derivation symbol "⇒" (read "1-step derives" or "1-step produces") is a relation between strings in (Σ∪V)*.
 We write x⇒y if x and y can be broken up as x = svt and y = swt with v→w being a production in R.
- Definition: The derivation symbol " \Rightarrow *", (read "derives" or "produces" or "yields") is a relation between strings in $(\Sigma \cup V)$ *. We write $x \Rightarrow$ * y if there is a sequence of 1-step productions from x to y. I.e., there are strings x_i with *i* ranging from 0 to *n* such that $x = x_0$, $y = x_n$ and $x_0 \Rightarrow x_1, x_1 \Rightarrow$ $x_2, x_2 \Rightarrow x_3, \dots, x_{n-1} \Rightarrow x_n$.

Derivations and Language

- Definition: The derivation symbol "⇒" (read "1-step derives" or "1-step produces") is a relation between strings in (Σ∪V)*.
 We write x⇒y if x and y can be broken up as x = svt and y = swt with v→w being a production in R.
- Definition: The derivation symbol " \Rightarrow *", (read "derives" or "produces" or "yields") is a relation between strings in $(\Sigma \cup V)$ *. We write $x \Rightarrow$ * y if there is a sequence of 1-step productions from x to y. I.e., there are strings x_i with *i* ranging from 0 to *n* such that $x = x_0$, $y = x_n$ and $x_0 \Rightarrow x_1, x_1 \Rightarrow$ $x_2, x_2 \Rightarrow x_3, \dots, x_{n-1} \Rightarrow x_n$.
- Definition: Let G be a context-free grammar. The context-free language (CFL) generated by G is the set of all terminal strings which are derivable from the start symbol. Symbolically: $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$

Example: Infix Expressions

- Infix expressions involving {+, ×, a, b, c, (,)}
- *E* stands for an expression (most general)
- *F* stands for factor (a multiplicative part)
- *T* stands for term (a product of factors)
- V stands for a variable: *a*, *b*, or *c*
- Grammar is given by:
 - $\quad E \xrightarrow{} T \quad \mid E + T$
 - $T \xrightarrow{} F \mid T \times F$
 - $F \rightarrow V \mid (E)$
 - $V \rightarrow a \mid b \mid c$
- Convention: Start variable is the first one in grammar (E)

Example: Infix Expressions

- Consider the string *u* given by $a \times b + (c + (a + c))$
- This is a valid infix expression. Can be generated from *E*.
- 1. A sum of two expressions, so first production must be $E \Rightarrow E + T$
- 2. Sub-expression $a \times b$ is a product, so a term so generated by sequence E+ $T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow^* a \times b + T$
- 3. Second sub-expression is a factor only because a parenthesized sum. $a \times b + T \Rightarrow a \times b + F \Rightarrow a \times b + (E) \Rightarrow a \times b + (E + T) \dots$
- 4. $E \Rightarrow E + T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow F \times F + T \Rightarrow V \times F + T \Rightarrow a \times F + T \Rightarrow a \times V + T \Rightarrow$ $a \times b + T \Rightarrow a \times b + F \Rightarrow a \times b + (E) \Rightarrow a \times b + (E + T) \Rightarrow a \times b + (T + T) \Rightarrow a \times b + (F$ $+T) \Rightarrow a \times b + (V + T) \Rightarrow a \times b + (c + T) \Rightarrow a \times b + (c + F) \Rightarrow a \times b + (c + (E)) \Rightarrow a \times b$ $+ (c + (E + T)) \Rightarrow a \times b + (c + (T + T)) \Rightarrow a \times b + (c + (F + T)) \Rightarrow a \times b + (c + (a + T)) \Rightarrow$ $a \times b + (c + (a + F)) \Rightarrow a \times b + (c + (a + V)) \Rightarrow a \times b + (c + (a + c))$

Left- and Right-most derivation

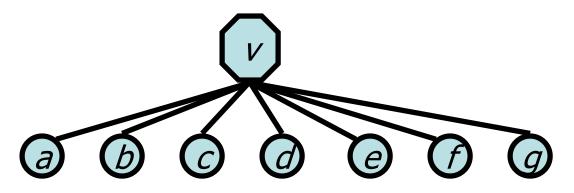
- The derivation on the previous slide was a so-called left-most derivation.
- In a right-most derivation, the variable most to the right is replaced. $-E \Rightarrow E + T \Rightarrow E + F \Rightarrow E + (E) \Rightarrow E + (E + T) \Rightarrow \text{etc.}$

Ambiguity

- There can be a lot of ambiguity involved in how a string is derived.
- Another way to describe a derivation in a unique way is using derivation trees.

Derivation Trees

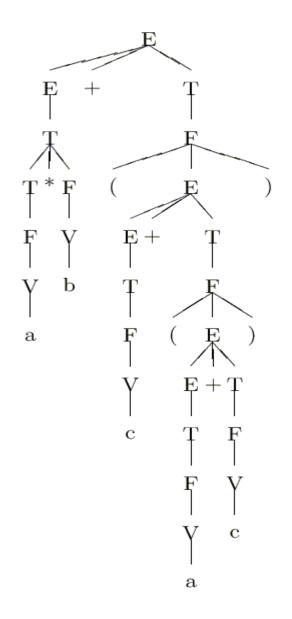
In a derivation tree (or parse tree) each node is a symbol. Each parent is a variable whose children spell out the production from left to right. For, example v → abcdefg:



- The root is the start variable.
- The leaves spell out the derived string from left to right.

Derivation Trees

- On the right, we see a derivation tree for our string a×b + (c + (a + c))
- Derivation trees help understanding semantics! You can tell how expression should be evaluated from the tree.



Ambiguity

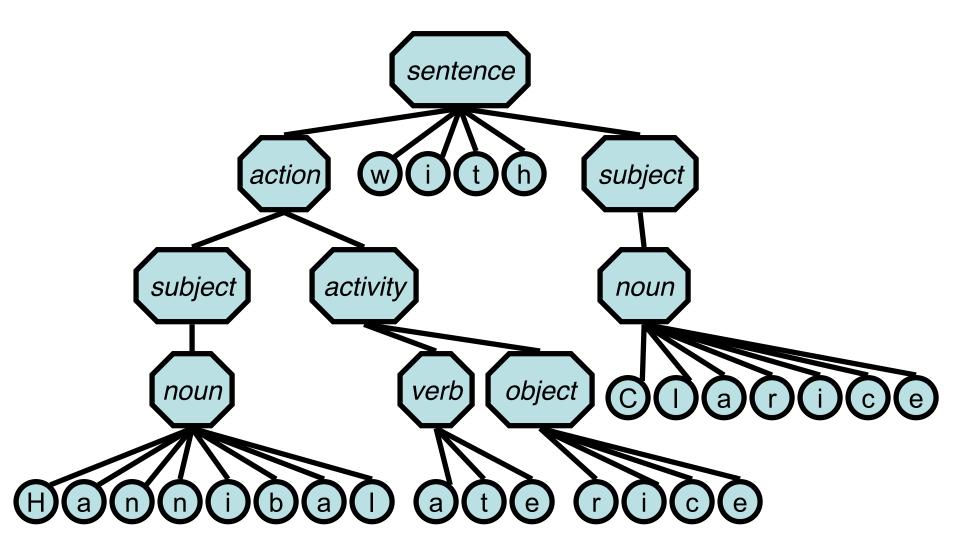
<sentence> <action></action></sentence>	\rightarrow	<action> <action> with <subject> <subject><activity></activity></subject></subject></action></action>
<subject></subject>	\rightarrow	<noun> <noun> and <subject></subject></noun></noun>
<activity></activity>	\rightarrow	<verb> <verb><object></object></verb></verb>
<noun></noun>	\rightarrow	Hannibal Clarice rice onions
<verb></verb>	\rightarrow	ate played
<prep></prep>	\rightarrow	with and or
<object></object>	\rightarrow	<noun> <noun><prep><object></object></prep></noun></noun>

- Clarice played with Hannibal
- Clarice ate rice with onions
- Hannibal ate rice with Clarice
- Q: Are there any suspect sentences?

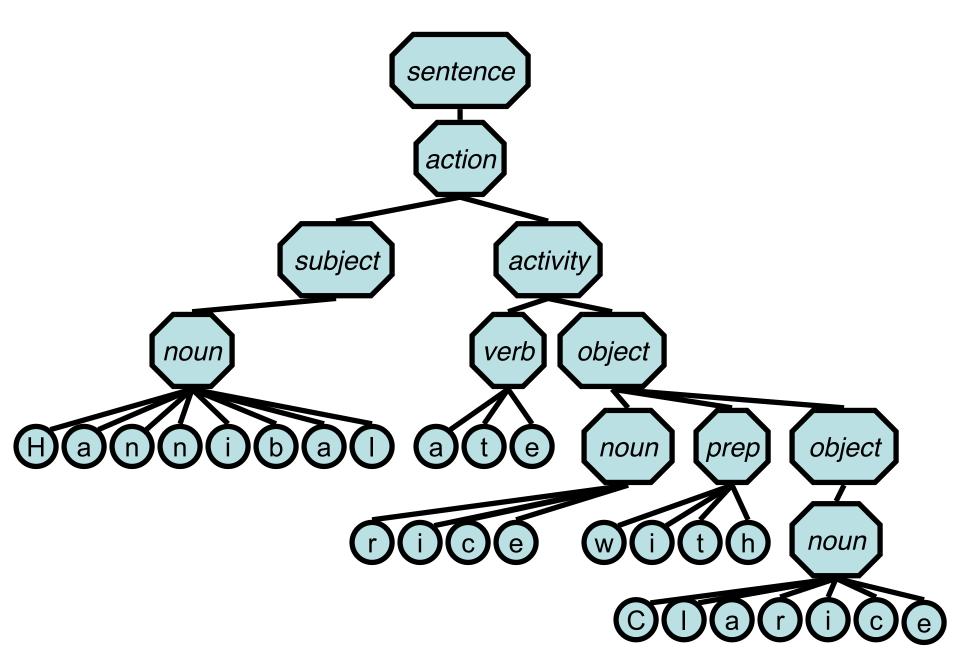
Ambiguity

- A: Consider "Hannibal ate rice with Clarice"
- This could either mean
 - Hannibal and Clarice ate rice *together*.
 - Hannibal ate rice and *ate* Clarice.
- This ambiguity arises from the fact that the sentence has two different parse-trees, and therefore two different interpretations:

Hannibal and Clarice Ate



Hannibal the Cannibal



Ambiguity: Definition

• Definition:

A string x is said to be **ambiguous** relative the grammar G if there are two essentially different ways to derive x in G.

- x admits two (or more) different parse-trees
- equivalently, x admits different left-most [resp. right-most] derivations.
- A grammar G is said to be ambiguous if there is some string x in L(G) which is ambiguous.

Ambiguity: Definition

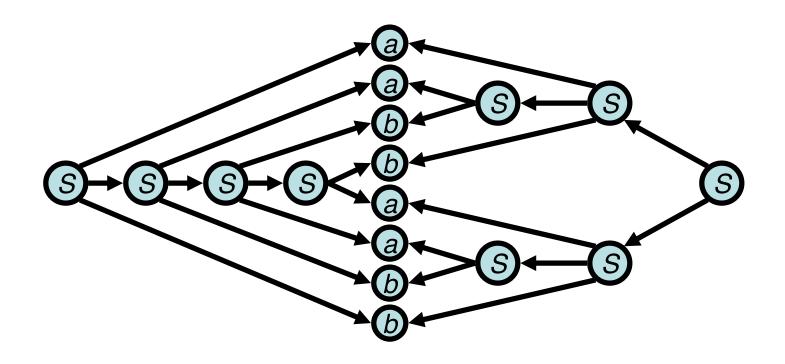
• Definition:

A string x is said to be **ambiguous** relative the grammar G if there are two essentially different ways to derive x in G.

- *x* admits two (or more) different parse-trees
- equivalently, x admits different left-most [resp. right-most] derivations.
- A grammar G is said to be ambiguous if there is some string x in L(G) which is ambiguous.
- Question: Is the grammar $S \rightarrow ab \mid ba \mid aSb \mid bSa \mid SS$ ambiguous?
 - What language is generated?

Ambiguity

- Answer: L(G) = the language with equal no. of a' s and b' s
- Yes, the language is ambiguous:



CFG's: Proving Correctness

- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider the grammar

 $G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$

- We claim that $L(G) = L = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\},\$ where $n_a(x)$ is the number of a's in x, and $n_b(x)$ is the number of b's.
- *Proof*: To prove that L = L(G) is to show both inclusions:
 - *i.* $L \subseteq L(G)$: Every string in L can be generated by G.
 - *ii.* $L \supseteq L(G)$: G only generate strings of L.
 - This part is easy, so we concentrate on part i.

- $L \subseteq L(G)$: Show that every string x with the same number of a's as b's is generated by G. Prove by induction on the length n = |x|.
- Base case: The empty string is derived by $S \rightarrow \varepsilon$.
- Inductive hypothesis: Assume n > 0. Let u be the smallest non-empty prefix of x which is also in L.
 - Either there is such a prefix with |u| < |x|, then x = uv whereas $v \in L$ as well, and we can use $S \rightarrow SS$ and repeat the argument.
 - Or x = u. In this case notice that u can't start and end in the same letter. If it started and ended with a then write x = ava. This means that v must have 2 more b's than a's. So somewhere in v the b's of x catch up to the a's which means that there's a smaller prefix in L, contradicting the definition of u as the smallest prefix in L. Thus for some string v in L we have x = avb OR x = bva. We can use either $S \rightarrow aSb$ OR $S \rightarrow bSa$.

Designing Context-Free Grammars

- As for regular languages this is a creative process.
- However, if the grammar is the union of simpler grammars, you can design the simpler grammars (with starting symbols S₁, S₂, respectively) first, and then add a new starting symbol/production
 S → S₁ | S₂.
- If the CFG happens to be regular as well, you can first design the FA, introduce a variable/production for each state of the FA, and then add a rule $x \rightarrow ay$ to the CFG if $\delta(x,a) = y$ is in the FA. If a state x is accepting in FA then add $x \rightarrow \varepsilon$ to CFG. The start symbol of the CFG is of course equivalent to the start state in the FA.
- There are quite a few other tricks. Try yourself...

CFG's: Proving Correctness (Alternative proof)

- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider again our grammar

 $G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$

- We claim that $L(G) = L = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\},\$ where $n_a(x)$ is the number of a's in x, and $n_b(x)$ is the number of b's.
- *Proof*: To prove that L = L(G) is to show both inclusions:
 - *i.* $L \subseteq L(G)$: Every string in L can be generated by G.
 - *ii.* $L \supseteq L(G)$: G only generate strings of L.

CFG's: Proving Correctness

- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider again our grammar $G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$

We claim that L(G) = L = { $x \in \{a, b\}^* | n_a(x) = n_b(x) \}$,

where $n_a(x)$ is the number of a's in x, and $n_b(x)$ is the number of b's.

- *Proof*: To prove that L = L(G) is to show both inclusions:
 - *i.* $L \subseteq L(G)$: Every string in L can be generated by G.
 - *ii.* $L \supseteq L(G)$: G only generate strings of L.

Part *ii*. is easy (see why?), so we'll concentrate on part *i*.

- $L \subseteq L(G)$: Show that every string x with the same number of a's as b's is generated by G. Prove by induction on the length n = |x|.
- Base case: The empty string is derived by $S \rightarrow \varepsilon$
- Inductive hypothesis:

Assume that G generates all strings of equal number of a's and b's of (even) length up to n.

Consider any string of length *n*+2. There are essentially 4 possibilities:

- 1. awb
- 2. bwa
- *3. awa*
- 4. bwb

• Inductive hypothesis:

Consider any string of length *n*+2. There are essentially 4 possibilities:

- 1. awb
- 2. bwa
- 3. awa
- 4. bwb

Given $S \Rightarrow^* w$, awb and bwa are generated from w using the rules $S \rightarrow aSb$ and $S \rightarrow bSa$ (induction hypothesis)

• Inductive hypothesis:

Now, consider a string like *awa*. For it to be in *L* requires that *w* isn't in *L* as *w* needs to have 2 more *b*'s than *a*'s.

- Split *awa* as follows: $_0a_1 \dots _{-1}a_0$ where the subscripts after a prefix v of *awa* denotes $n_a(v) - n_b(v)$
- Think of this as counting starting from 0.
 Each a adds 1. Each b subtracts 1. At the end, we should be at 0.

Somewhere along the string (in *w*), the counter crosses 0 (more b's)

• Inductive hypothesis:

Somewhere along the string (in w), the counter crosses 0:

$$\underbrace{\begin{array}{c}u\\ a_{1} \dots \\ v\end{array}}^{u} \xrightarrow{-1} x_{0} y \dots \xrightarrow{-1} a_{0} \text{ with } x, y \in \{a, b\}$$

- *u* and *v* have an equal number of *a*'s and *b*'s and are shorter than *n*.
- − Given $S \Rightarrow^* u$ and $S \Rightarrow^* v$, the rule $S \rightarrow SS$ generates awa = uv (induction hypothesis)
- The same argument applies for strings like bwb

Push-Down Automata (PDA)

- Finite automata where the machine interpretation of regular languages.
- Push-Down Automaton are the machine interpretation for grammars.
- The problem of finite automata was that they couldn't handle languages that needed some sort of unbounded memory... something that could be implemented easily by a single (unbounded) integer register!
- Example: To recognize the language L = {0ⁿ1ⁿ | n ≥ 0}, all you need is to count how many 0's you have seen so far...
- Push-Down Automata allow even more than a register: a full stack!

Recursive Algorithms and Stacks

- A stack allows the following basic operations
 - Push, pushing a new element on the top of the stack.
 - Pop, removing the top element from the stack (if there is one).
 - Peek, checking the top element without removing it.
- General Principle in Programming: *Any recursive algorithm* can be turned into a non-recursive one using a stack and a while-loop which exits only when stack is empty.

Recursive Algorithms and Stacks

- A stack allows the following basic operations
 - Push, pushing a new element on the top of the stack.
 - Pop, removing the top element from the stack (if there is one).
 - Peek, checking the top element without removing it.
- General Principle in Programming: *Any recursive algorithm* can be turned into a non-recursive one using a stack and a while-loop which exits only when stack is empty.
- It seems that with a stack at our fingertips we can even recognize palindromes! Yoo-hoo!
 - Palindromes are generated by the grammar S $\rightarrow \varepsilon$ | aSa | bSb.
 - Let's simplify for the moment and look at S \rightarrow # | aSa | bSb.

From CFG's to Stack Machines

- The CFG S \rightarrow # | aSa | bSb describes palindromes containing exactly 1 #.
- Question: Using a stack, how can we recognize such strings?

PDA's à la Sipser

- To aid analysis, theoretical stack machines restrict the allowable operations. Each text-book author has his/her own version.
- Sipser's machines are especially simple:
 - Push/Pop rolled into a single operation: replace top stack symbol.
 - In particular, replacing top by ε is a pop.
- No intrinsic way to test for empty stack.
 - Instead often push a special symbol ("\$") as the very first operation!
- Epsilon's used to increase functionality
 - result in default nondeterministic machines.

Sipser's PDA Version

 $X, Y \rightarrow Z$

If at state *p* and next input is *x* and top stack is *y*, then go to state *q* and replace *y* by *z* on stack.

- $x = \varepsilon$: ignore input, don't read
- $y = \varepsilon$: ignore top of stack and push z
- $z = \varepsilon$: pop y

In addition, push "\$" initially to detect the empty stack.

PDA: Formal Definition

- Definition: A pushdown automaton (PDA) is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$:
 - Q, Σ , and q_0 , and F are defined as for an FA.
 - Γ is the stack alphabet.
 - δ is as follows:
 Given a state p, an input symbol x and a stack symbol y,
 δ(p,x,y) returns all (q,z) where q is a target state and
 z a stack replacement for y.

$$\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$$

PDA Exercises

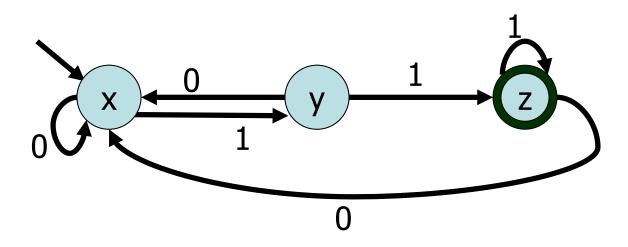
• Draw the PDA $\{a^ib^jc^k \mid i,j,k \ge 0 \text{ and } i=j \text{ or } i=k\}$

• Draw the PDA for $L = \{x \in \{a, e\}^* \mid n_a(x) = 2n_e(x)\}$

Model Robustness

- The class of regular languages was quite robust
 - Allows multiple ways for defining languages (automaton vs. regexp)
 - Slight perturbations of model do not change result (non-determinism)
- The class of context free languages is also robust: you can use either PDA's or CFG's to describe the languages in the class.
- However, it is less robust than regular languages when it comes to slight perturbations of the model:
 - Smaller classes
 - Right-linear grammars
 - Deterministic PDA's
 - Larger classes
 - Context Sensitive Grammars

Right Linear Grammars vs. Regular Languages



- The DFA above can be simulated by the grammar
 - $-x \rightarrow 0x \mid 1y$
 - $y \rightarrow 0x \mid 1z$
 - $-z \rightarrow 0x \mid 1z \mid \varepsilon$
- Definition: A right-linear grammar is a CFG such that every production is of the form A → uB, or A → u where u is a terminal string, and A,B are variables.

Right Linear Grammars vs. Regular Languages

- Theorem: If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA then there is a right-linear grammar G(M) which generates the same language as M.
- *Proof*:
 - Variables are the states: V = Q
 - Start symbol is start state: $S = q_0$
 - Same alphabet of terminals Σ
 - A transition $q_1 \rightarrow a \rightarrow q_2$ becomes the production $q_1 \rightarrow aq_2$
 - − For each transition, $q_1 \rightarrow aq_2$ where q_2 is an accept state, add $q_1 \rightarrow a$ to the grammar
- Homework: Show that the reverse holds. Right-linear grammar can be converted to a FSA. This implies that RL ≈ Right-linear CFL.

Right Linear Grammars vs. Regular Languages

- Theorem: If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA then there is a right-linear grammar G(M) which generates the same language as M.
- Proof:
 - Variables are the states: V = Q
 - Start symbol is start state: $S = q_0$
 - Same alphabet of terminals Σ
 - A transition $q_1 \rightarrow a \rightarrow q_2$ becomes the production $q_1 \rightarrow aq_2$
 - − For each transition, $q_1 \rightarrow aq_2$ where q_2 is an accept state, add $q_1 \rightarrow a$ to the grammar
- Homework: Show that the reverse holds. Right-linear grammar can be converted to a FSA. This implies that RL ≈ Right-linear CFL.
- Question: Can every CFG be converted into a right-linear grammar?

Chomsky Normal Form

- Chomsky came up with an especially simple type of context free grammars which is able to capture all context free languages, the Chomsky normal form (CNF).
- Chomsky's grammatical form is particularly useful when one wants to prove certain facts about context free languages. This is because assuming a much more restrictive kind of grammar can often make it easier to prove that the generated language has whatever property you are interested in.
- Noam Chomsky, linguist at MIT, creator of the Chomsky hierarchy, a classification of formal languages. Chomsky is also widely known for his left-wing political views and his criticism of the foreign policy of U.S. government.

Chomsky Normal Form

- Definition: A CFG is said to be in Chomsky Normal Form if every rule in the grammar has one of the following forms:
 - $-S \rightarrow \varepsilon$ (ε for epsilon's sake only) $-A \rightarrow BC$ (dyadic variable productions) $-A \rightarrow a$ (unit terminal productions)

where S is the start variable, A,B,C are variables and a is a terminal.

• Thus epsilons may only appear on the right hand side of the start symbol and other rights are either 2 variables or a single terminal.

$CFG \rightarrow CNF$

- Converting a general grammar into Chomsky Normal Form works in four steps:
- 1. Ensure that the start variable doesn't appear on the right hand side of any rule.
- 2. Remove all epsilon productions, except from start variable.
- 3. Remove unit variable productions of the form $A \rightarrow B$ where A and B are variables.
- 4. Add variables and dyadic variable rules to replace any longer nondyadic or non-variable productions

CFG \rightarrow CNF: Example

 $S \to \varepsilon |a|b|aSa|bSb$

- 1. No start variable on right hand side $S' \rightarrow S$ $S \rightarrow \varepsilon |a|b|aSa|bSb$
- 2. Only start state is allowed to have ε $S' \rightarrow S | \varepsilon$ $S \rightarrow \varepsilon | a | b | a Sa | b Sb | aa | bb$
- 3. Remove unit variable productions of the form $A \rightarrow B$. $S' \rightarrow S|\varepsilon|a|b|aSa|bSb|aa|bb$ $S \rightarrow a|b|aSa|bSb|aa|bb$

CFG \rightarrow CNF: Example continued

 $S' \rightarrow S|\varepsilon|a|b|aSa|bSb|aa|bb$ $S \rightarrow a|b|aSa|bSb|aa|bb$

4. Add variables and dyadic variable rules to replace any longer productions.

$$S' \rightarrow \varepsilon |a|b| aSa|bSb|aa|bb| AB|CD|AA|CC$$

$$S \rightarrow a|b| aSa|bSb|aa|bb| AB|CD|AA|CC$$

$$A \rightarrow a$$

$$B \rightarrow SA$$

$$C \rightarrow b$$

$$D \rightarrow SC$$

$CFG \rightarrow PDA$

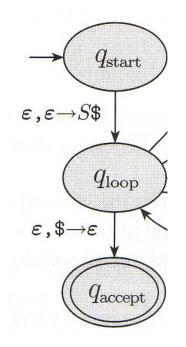
- CFG's can be converted into PDA's.
- In "NFA → REX" it was useful to consider GNFA's as a middle stage.
 Similarly, it's useful to consider Generalized PDA's here.
- A Generalized PDA (GPDA) is like a PDA, except it allows the top stack symbol to be replaced by a whole string, not just a single character or the empty string. It is easy to convert a GPDA's back to PDA's by changing each compound push into a sequence of simple pushes.

CFG \rightarrow GPDA Recipe

- 1. Push the marker symbol \$ and the start symbol \$ on the stack.
- 2. Repeat the following steps forever
 - a. If the top of the stack is the variable symbol *A*, nondeterministically select a rule of *A*, and substitute *A* by the string on the right-hand-side of the rule.
 - b. If the top of the stack is a terminal symbol *a*, then read the next symbol from the input and compare it to *a*. If they match, continue. If they do not match reject this branch of the execution.
 - c. If the top of the stack is the symbol \$, enter the accept state.
 (Note that if the input was not yet empty, the PDA will still reject this branch of the execution.)

$CFG \rightarrow GPDA \rightarrow PDA$: Example

- $S \rightarrow aTb \mid b$
- $T \rightarrow Ta \mid \varepsilon$



CFG \rightarrow PDA: Now you try!

• Convert the grammar $S \rightarrow \varepsilon | a | b | aSa | bSb$

$PDA \rightarrow CFG$

- To convert PDA's to CFG's we'll need to simulate the stack inside the productions.
- Unfortunately, in contrast to our previous transitions, this is not quite as constructive. We will therefore only state the theorem.
- Theorem: For each push-down automation there is a context-free grammar which accepts the same language.
- Corollary: PDA ≈ CFG.

Context Sensitive Grammars

 An even more general form of grammars exists. In general, a non-context free grammar is one in which whole mixed variable/terminal substrings are replaced at a time. For example with Σ = {a,b,c} consider:

> $S \rightarrow \varepsilon \mid ASBC \qquad aB \rightarrow ab$ $A \rightarrow a \qquad bB \rightarrow bb$ $CB \rightarrow BC \qquad bC \rightarrow bc$ $cC \rightarrow cc$

What language is generated by this noncontext-free grammar?

• When length of LHS always ≤ length of RHS (plus some other minor restrictions), these general grammars are called context sensitive.

Are all languages context-free?

- Design a CFG (or PDA) for the following languages:
- $L = \{ w \in \{0,1,2\}^* | \text{ there are } k \text{ 0's, } k \text{ 1's, and } k \text{ 2's for } k \ge 0 \}$
- $L = \{ w \in \{0,1,2\}^* | with |0| = |1| or |0| = |2| or |1| = |2| \}$
- $L = \{ 0^k 1^k 2^k \mid k \ge 0 \}$

Tandem Pumping

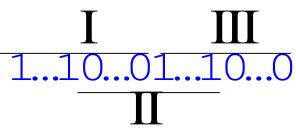
- Analogous to regular languages there is a pumping lemma for context free languages. The idea is that you can pump a context free language at two places (but not more).
- Theorem: Given a context free language *L*, there is a number *p* (tandem-pumping number) such that any string in *L* of length ≥ *p* is tandem-pumpable within a substring of length *p*. In particular, for all w ∈ L with |w| ≥ p we we can write:

$$- w = uvxyz$$

- $|vy| \ge 1$ (pumpable areas are non-empty)
- $|vxy| \le p \qquad (pumping inside length-p portion)$
- $uv^{i}xy^{i}z \in L \text{ for all } i \geq 0 \qquad (tandem-pump v and y)$
- If there is no such p the language is not context-free.

Proving Non-Context Freeness: Example

- $L = \{1^n 0^n 1^n 0^n \mid n \text{ is non-negative }\}$
- Let's try $w = 1^p 0^p 1^p 0^p$. Clearly $w \in L$ and $|w| \ge p$.
- With |vxy| ≤ p, there are only three places where the "sliding window" vxy could be:



• In all three cases, pumping up such a case would only change the number of 0s and 1s in that part and not in the other two parts; this violates the language definition.

Proving Non-Context Freeness: You try!

- L = { x=y+z | x, y, and z are binary bit-strings satisfying the equation }
- The hard part is to come up with a word which cannot be pumped, such as...