Automata & languages

A primer on the Theory of Computation

Laurent Vanbever

nsg.ee.ethz.ch

ETH Zürich (D-ITET)

5 October 2023
Part 3 out of 5
Last week, we started to learn about closure and equivalence of regular languages.
Last week, we started to learn about closure and equivalence of regular languages.

The class of regular languages is closed under the

- union
- concatenation
- star

regular operations
The class of regular languages is closed under the regular operations if \(L_1 \) and \(L_2 \) are regular, then so are:

- union: \(L_1 \cup L_2 \)
- concatenation: \(L_1 \cdot L_2 \)
- star: \(L_1^* \)
Last week, we started to learn about closure and equivalence of regular languages.

\[
\text{DFA} \equiv \text{NFA}
\]

is equivalent to

\[
\text{REX}
\]
We’ll finish that today then start asking ourselves whether all languages are regular.

$L_1 \{0^n1^n \mid n \geq 0\}$

$L_2 \{w \mid w \text{ has an equal number of 0s and 1s}\}$

$L_3 \{w \mid w \text{ has an equal number of occurrences of 01 and 10}\}$

Hint: only one of them actually is
<table>
<thead>
<tr>
<th></th>
<th>Advanced Automata</th>
<th>1</th>
<th>Equivalence (the end)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regular Expression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Non–regular languages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Context–free languages</td>
</tr>
</tbody>
</table>