Automata & languages
A primer on the Theory of Computation

Roland Schmid
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
7 October 2021
Part 3 out of 4
Last week, we started to learn about closure and equivalence of regular languages
Last week, we started to learn about **closure** and equivalence of regular languages.

The class of regular languages is closed under the

- union
- concatenation
- star

regular operations
The class of regular languages is closed under the regular operations if \(L_1 \) and \(L_2 \) are regular, then so are

- union
- concatenation
- star

\(L_1 \cup L_2 \)
\(L_1 \cdot L_2 \)
\(L_1^* \)
Last week, we started to learn about closure and equivalence of regular languages.

\[
\text{DFA} \approx \text{NFA}
\]

is equivalent to

\[
\text{REX}
\]
We’ll finish that today then start asking ourselves whether all languages are regular

\[L_1 \quad \{0^n1^n \mid n \geq 0\} \]

\[L_2 \quad \{w \mid w \text{ has an equal number of 0s and 1s}\} \]

\[L_3 \quad \{w \mid w \text{ has an equal number of occurrences of 01 and 10}\} \]

(only one of them actually is)
Advanced Automata

Thu Oct 7

1. Equivalence (the end)
 - DFA
 - NFA
 - Regular Expression

2. Non-regular languages

3. Context-free languages