Automata & languages
A primer on the Theory of Computation

Laurent Vanbever
www.vanbever.eu

ETH Zürich (D-ITET)
October 3 2019
Part 3 out of 5
Last week, we started to learn about closure and equivalence of regular languages
Last week, we started to learn about **closure** and equivalence of regular languages.

The class of regular languages is closed under the

- union
- concatenation
- star

regular operations
The class of regular languages is closed under the regular operations:

- union
- concatenation
- star

if L_1 and L_2 are regular, then so are

$L_1 \cup L_2$
$L_1 \cdot L_2$
L_1^*
Last week, we started to learn about closure and equivalence of regular languages.

is equivalent to

\[
\text{DFA} \equiv \text{NFA}
\]

REX
We’ll finish that today then start asking ourselves whether all languages are regular

\[L_1 \quad \{0^n1^n \mid n \geq 0\} \]

\[L_2 \quad \{w \mid w \text{ has an equal number of 0s and 1s}\} \]

\[L_3 \quad \{w \mid w \text{ has an equal number of occurrences of 01 and 10}\} \]

(only one of them actually is)
Advanced Automata
Thu Oct 3

1 Equivalence (the end)
 - DFA
 - NFA
 - Regular Expression

2 Non-regular languages

3 Context-free languages
Automata & languages
A primer on the Theory of Computation

Part 1
regular language

Part 2
context-free language

Part 3

turing

machine
Automata & languages
A primer on the Theory of Computation

Part 2

regular language
context-free language
turing machine
Motivation

• Why is a language such as \(\{0^n1^n \mid n \geq 0\} \) not regular?!?

• It’s really simple! All you need to keep track is the number of 0’s...

• In this chapter we first study context-free grammars
 – More powerful than regular languages
 – Recursive structure
 – Developed for human languages
 – Important for engineers (parsers, protocols, etc.)
Example

- Palindromes, for example, are not regular.
- But there is a pattern.
Example

- Palindromes, for example, are not regular.
- But there is a pattern.

- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
 - Base case: ε, 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are $0x0$ and $1x1$.
Example

- Palindromes, for example, are not regular.
- But there is a pattern.

Q: If you have one palindrome, how can you generate another?
A: Generate palindromes recursively as follows:
 - Base case: ε, 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are 0x0 and 1x1.

- Notation: $x \rightarrow \varepsilon \mid 0 \mid 1 \mid 0x0 \mid 1x1$.
 - Each pipe ("|") is an or, just as in UNIX regexp’s.
 - In fact, all palindromes can be generated from ε using these rules.
Example

- Palindromes, for example, are not regular.
- But there is a pattern.

- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
 - Base case: ε, 0 and 1 are palindromes.
 - Recursion: If x is a palindrome, then so are $0x0$ and $1x1$.

- Notation: $x \rightarrow \varepsilon | 0 | 1 | 0x0 | 1x1$.
 - Each pipe ("|") is an or, just as in UNIX regexp’s.
 - In fact, all palindromes can be generated from ε using these rules.

- Q: How would you generate 11011011?
Context Free Grammars (CFG): Definition

• Definition: A context free grammar consists of \((V, \Sigma, R, S)\) with:
 - \(V\): a finite set of variables (or symbols, or non-terminals)
 - \(\Sigma\): a finite set of terminals (or the alphabet)
 - \(R\): a finite set of rules (or productions) of the form \(v \rightarrow w\) with \(v \in V\), and \(w \in (\Sigma \cup V)^*\) (read: “\(v\) yields \(w\)” or “\(v\) produces \(w\)”)
 - \(S \in V\): the start symbol.
Definition: A context free grammar consists of \((V, \Sigma, R, S)\) with:

- \(V\): a finite set of variables \((or\ symbols, \ or\ non\-terminals)\)
- \(\Sigma\): a finite set of terminals \((or\ the\ alphabet)\)
- \(R\): a finite set of rules \((or\ productions)\)
 - of the form \(v \rightarrow w\) with \(v \in V\), and \(w \in (\Sigma \cup V)^*\)
 - \(read:\ “v\ yields\ w”\ or\ “v\ produces\ w”\)
- \(S \in V\): the start symbol.

Q: What are \((V, \Sigma, R, S)\) for our palindrome example?
Derivations and Language

- Definition: The derivation symbol "⇒" (read “1-step derives” or “1-step produces”) is a relation between strings in \((\Sigma \cup \mathcal{V})^*\).

 We write \(x \Rightarrow y\) if \(x\) and \(y\) can be broken up as \(x = svt\) and \(y = swt\) with \(v \rightarrow w\) being a production in \(R\).
Derivations and Language

• Definition: The derivation symbol “⇒” (read “1-step derives” or “1-step produces”) is a relation between strings in $(\Sigma \cup V)^*$. We write $x \Rightarrow y$ if x and y can be broken up as $x = svt$ and $y = swt$ with $v \Rightarrow w$ being a production in R.

• Definition: The derivation symbol “⇒*”, (read “derives” or “produces” or “yields”) is a relation between strings in $(\Sigma \cup V)^*$. We write $x \Rightarrow^* y$ if there is a sequence of 1-step productions from x to y. I.e., there are strings x_i with i ranging from 0 to n such that $x = x_0$, $y = x_n$ and $x_0 \Rightarrow x_1$, $x_1 \Rightarrow x_2$, $x_2 \Rightarrow x_3$, … , $x_{n-1} \Rightarrow x_n$.
Derivations and Language

- **Definition:** The *derivation symbol* “⇒” (read “1-step derives” or “1-step produces”) is a relation between strings in $(\Sigma \cup V)^*$. We write $x \Rightarrow y$ if x and y can be broken up as $x = svt$ and $y = swt$ with $v \rightarrow w$ being a production in R.

- **Definition:** The *derivation symbol* “⇒∗”, (read “derives” or “produces” or “yields”) is a relation between strings in $(\Sigma \cup V)^*$. We write $x \Rightarrow^* y$ if there is a sequence of 1-step productions from x to y. I.e., there are strings x_i with i ranging from 0 to n such that $x = x_0$, $y = x_n$ and $x_0 \Rightarrow x_1$, $x_1 \Rightarrow x_2$, $x_2 \Rightarrow x_3$, ..., $x_{n-1} \Rightarrow x_n$.

- **Definition:** Let G be a context-free grammar. The *context-free language* (CFL) generated by G is the set of all terminal strings which are derivable from the start symbol. Symbolically: $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$
Example: Infix Expressions

- Infix expressions involving \{+ , \times , a , b , c , (,)\}
- \(E \) stands for an expression (most general)
- \(F \) stands for factor (a multiplicative part)
- \(T \) stands for term (a product of factors)
- \(V \) stands for a variable: \(a , b , \) or \(c \)

- Grammar is given by:
 - \(E \to T \mid E + T \)
 - \(T \to F \mid T \times F \)
 - \(F \to V \mid (E) \)
 - \(V \to a \mid b \mid c \)

- Convention: Start variable is the first one in grammar \(E \)
Example: Infix Expressions

- Consider the string \(u \) given by \(a \times b + (c + (a + c)) \)
- This is a valid infix expression. Can be generated from \(E \).

1. A sum of two expressions, so first production must be \(E \Rightarrow E + T \)
2. Sub-expression \(a \times b \) is a product, so a term so generated by sequence \(E + T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow * \ a \times b + T \)
3. Second sub-expression is a factor only because a parenthesized sum. \(a \times b + T \Rightarrow a \times b + F \Rightarrow a \times b + (E) \Rightarrow a \times b + (E + T) \) ...
4.
 \[E \Rightarrow E + T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow F \times F + T \Rightarrow V \times F + T \Rightarrow a \times F + T \Rightarrow a \times V + T \Rightarrow a \times b + T \Rightarrow a \times b + F \Rightarrow a \times b + (E) \Rightarrow a \times b + (E + T) \Rightarrow a \times b + (T + T) \Rightarrow a \times b + (F + T) \Rightarrow a \times b + (V + T) \Rightarrow a \times b + (c + T) \Rightarrow a \times b + (c + F) \Rightarrow a \times b + (c + (E)) \Rightarrow a \times b + (c + (E + T)) \Rightarrow a \times b + (c + (T + T)) \Rightarrow a \times b + (c + (F + T)) \Rightarrow a \times b + (c + (a + T)) \Rightarrow a \times b + (c + (a + F)) \Rightarrow a \times b + (c + (a + V)) \Rightarrow a \times b + (c + (a + c)) \]
Left- and Right-most derivation

- The derivation on the previous slide was a so-called left-most derivation.

- In a right-most derivation, the variable most to the right is replaced.

\[-E \Rightarrow E + T \Rightarrow E + F \Rightarrow E + (E) \Rightarrow E + (E + T) \Rightarrow \text{etc.}\]
Ambiguity

- There can be a lot of ambiguity involved in how a string is derived.

- Another way to describe a derivation in a unique way is using derivation trees.
Derivation Trees

• In a derivation tree (or parse tree) each node is a symbol. Each parent is a variable whose children spell out the production from left to right. For, example $v \rightarrow abcdefg$:

• The root is the start variable.
• The leaves spell out the derived string from left to right.
Derivation Trees

- On the right, we see a derivation tree for our string $a \times b + (c + (a + c))$

- Derivation trees help understanding semantics! You can tell how expression should be evaluated from the tree.
Ambiguity

\[
\begin{align*}
\text{<sentence>} & \rightarrow \text{<action>} | \text{<action>} \text{ with <subject>} \\
\text{<action>} & \rightarrow \text{<subject>}\text{<activity>} \\
\text{<subject>} & \rightarrow \text{<noun>} | \text{<noun>} \text{ and <subject>} \\
\text{<activity>} & \rightarrow \text{<verb>} | \text{<verb>}\text{<object>} \\
\text{<noun>} & \rightarrow \text{Hannibal} | \text{Clarice} | \text{rice} | \text{onions} \\
\text{<verb>} & \rightarrow \text{ate} | \text{played} \\
\text{<prep>} & \rightarrow \text{with} | \text{and} | \text{or} \\
\text{<object>} & \rightarrow \text{<noun>} | \text{<noun><prep><object>} \\
\end{align*}
\]

- Clarice played with Hannibal
- Clarice ate rice with onions
- Hannibal ate rice with Clarice

Q: Are there any suspect sentences?
Ambiguity

• A: Consider “Hannibal ate rice with Clarice”

• This could either mean
 – Hannibal and Clarice ate rice *together*.
 – Hannibal ate rice and *ate* Clarice.

• This ambiguity arises from the fact that the sentence has two different parse-trees, and therefore two different interpretations:
Hannibal and Clarice Ate
Hannibal the Cannibal
Ambiguity: Definition

- **Definition:**

 A string x is said to be **ambiguous** relative the grammar G if there are two essentially different ways to derive x in G.

 - x admits two (or more) different parse-trees

 - equivalently, x admits different left-most [resp. right-most] derivations.

- A grammar G is said to be **ambiguous** if there is some string x in $L(G)$ which is ambiguous.
Ambiguity: Definition

• Definition:

A string x is said to be ambiguous relative the grammar G if there are two essentially different ways to derive x in G.
 – x admits two (or more) different parse-trees
 – equivalently, x admits different left-most [resp. right-most] derivations.

• A grammar G is said to be ambiguous if there is some string x in $L(G)$ which is ambiguous.

• Question: Is the grammar $S \rightarrow ab \mid ba \mid aSb \mid bSa \mid SS$ ambiguous?
 – What language is generated?
Ambiguity

- Answer: $L(G) = \text{the language with equal no. of } a\text{'s and } b\text{'s}$
- Yes, the language is ambiguous:
The recursive nature of CFG’s means that they are especially amenable to correctness proofs.

For example let’s consider the grammar

\[G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS) \]

We claim that \(L(G) = L = \{ x \in \{a,b\}^* \mid n_a(x) = n_b(x) \} \),
where \(n_a(x) \) is the number of \(a \)'s in \(x \), and \(n_b(x) \) is the number of \(b \)'s.

\[Proof: \] To prove that \(L = L(G) \) is to show both inclusions:

\[i. \quad L \subseteq L(G) \]: Every string in \(L \) can be generated by \(G \).
\[ii. \quad L \supseteq L(G) \]: \(G \) only generate strings of \(L \).
- This part is easy, so we concentrate on part \(i \).
Proving $L \subseteq L(G)$

- $L \subseteq L(G)$: Show that every string x with the same number of a’s as b’s is generated by G. Prove by induction on the length $n = |x|$.
- Base case: The empty string is derived by $S \rightarrow \varepsilon$.
- Inductive hypothesis: Assume $n > 0$. Let u be the smallest non-empty prefix of x which is also in L.
 - Either there is such a prefix with $|u| < |x|$, then $x = uv$ whereas $v \in L$ as well, and we can use $S \rightarrow SS$ and repeat the argument.
 - Or $x = u$. In this case notice that u can’t start and end in the same letter. If it started and ended with a then write $x = ava$. This means that v must have 2 more b’s than a’s. So somewhere in v the b’s of x catch up to the a’s which means that there’s a smaller prefix in L, contradicting the definition of u as the smallest prefix in L. Thus for some string v in L we have $x = avb$ OR $x = bva$. We can use either $S \rightarrow aSb$ OR $S \rightarrow bSa$.
Designing Context-Free Grammars

• As for regular languages this is a creative process.

• However, if the grammar is the union of simpler grammars, you can design the simpler grammars (with starting symbols S_1, S_2, respectively) first, and then add a new starting symbol/production $S \rightarrow S_1 \mid S_2$.

• If the CFG happens to be regular as well, you can first design the FA, introduce a variable/production for each state of the FA, and then add a rule $x \rightarrow ay$ to the CFG if $\delta(x,a) = y$ is in the FA. If a state x is accepting in FA then add $x \rightarrow \varepsilon$ to CFG. The start symbol of the CFG is of course equivalent to the start state in the FA.

• There are quite a few other tricks. Try yourself…