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Hardware acceleration for 
high parallelism and energy efficiency
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How to perform hardware design?
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High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design 
beyond RTL level (VHDL, Verilog)
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High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes

Finite state 
machine

Circuit regulated by a centralized FSM
→ All execution times predetermined and, 

sometimes, conservative (slow circuit) Circuit regulated by distributed handshake logic
→ Flexible execution times (fast circuit)
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes
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• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

High-level synthesis of 
dynamically scheduled circuits
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HLS of Dynamically Scheduled Circuits
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HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol 
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits
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• We use the SELF (Synchronous ELastic Flow) protocol 
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

Component 1 Component 2

data

valid

ready
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Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components
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JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components

+ *

STORE



20

Branch

Branch

Dataflow Components

Fork

Fork

Merge

Merge

Join

Join
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Merge

Join

Merge
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Dataflow Components
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Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch
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LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit
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+
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Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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LD x[i]

Merge

Buff
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+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

Backpressure due to insufficient token 
capacity: no pipelining and low performance
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break 
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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FIFO

FIFO
FIFO

Buffers as FIFOs to regulate 
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers

LD x[i]

Merge

Reg

Fork

+
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Start: i=0

Branch
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LD hist[x[i]]
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ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork
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Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

Represent program loops as choice-free Petri nets
• Analyze average token flow through the circuit 

(continuous Petri net)
• Determine buffer positions & sizes (token capacity)
• Maximize throughput for a target clock period

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

M1

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Sharing not possible without 

damaging throughput

M1 M2

Units fully utilized

(high throughput, II = 1)

Use throughput information 
to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use choice-free Petri net model 
to decide what to share
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Sharing possible without 

damaging throughput

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use throughput information 
to decide what to share

Use choice-free Petri net model 
to decide what to share
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath 

(out of order)

Memory
Ordering 

(load-store 
queue)

Instruction 
fetch & decode

(in order)

loop: lw $t2, 0($t4) 

lw $t3, 100($t4) 

mul $t5, $t2, $t3

      addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4 

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering 

(load-store 
queue)

LSQ placement and sizing for high 
throughput and low resources

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Dynamatic: An Open-Source HLS Compiler

• From C/C++ to synthesizable dataflow circuit description

But… dataflow computation is resource-expensive! 

Reduced execution time in irregular benchmarks 
(speedup of up to 14.9X)
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The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

c
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The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Distributed dataflow handshake 
mechanism: resource and 

frequency overhead
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The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Do we need expensive 
dataflow logic everywhere?
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Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is 
never stalled 

Possible 
stall
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Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is 
never stalled 

Possible 
stall

Restrict the generality of dataflow 
logic whenever it is not needed
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Removing Excessive Dynamism

How to guarantee correctness of 
simplifications for any possible 

circuit behavior? 

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is 
never stalled 

Possible 
stall
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How to Guarantee Correctness?

Our goal: a formal verification framework for reducing 
the hardware complexity of dataflow circuits

Functional verification is inefficient and non-exhaustive

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 ↔valid2)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Proving Properties to Eliminate Excessive Dynamism

Up to 50% area reduction without a 
performance penalty

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 ↔valid2)

But it is very slow (~hrs)…

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Ensuring Scalability by Compositional Verification

for (i = 0; i < N; i++)
...

for (i = 0; i < N; i++)
...

 

Loop 1

• Decompose circuit into regions whose properties can be verified independently

• Abstract the complexity of other regions into simpler nodes that have the same
properties as the circuit they encapsulate

Loop 2

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Ensuring Scalability by Compositional Verification

for (i = 0; i < N; i++)
...

for (i = 0; i < N; i++)
...

 

Loop 1

• Decompose circuit into regions whose properties can be verified independently

• Abstract the complexity of other regions into simpler nodes that have the same
properties as the circuit they encapsulate

Loop 2

Loop 1

Loop 2

Abstract loop 2, 
check loop 1

Abstract loop 1, 
check loop 2

Up to 8X reduction in checking time

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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DYNAMO: Digital Systems and Design Automation Group

Enable diverse users to accelerate compute-intensive 
applications on hardware platforms

for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += data[i][j];
    mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += (data[i][j] - mean[j]) *    
(data[i][j] - mean[j]);
   x /= float_n;
   x = x*x;
   stdev[j] = x;
}
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MSc & BSc Projects and Theses

• Use Petri nets to describe circuits and their behaviors
– Component modelling

– Performance and area optimizations

• Use model checking to prove circuit properties and improve their quality
– Checking more complex properties

– Dealing with scalability issues

• And many other topics...

• Check link on last slide for (non-exhaustive) list of projects!

Come work with us! ☺
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MSc Course in Spring 2024: Synthesis of Digital Circuits

• Algorithms, tools, and methods to generate circuits from high-level programs

– How does ‘classic’ HLS work?

• Recent advancements and current challenges of HLS for FPGAs

– What is HLS still missing?

• Course organization

– First part: lectures+exercises

– Second part: practical work + seminar-like discussions

• Link to Course Catalogue info (2024)

Hope to see you there! ☺

https://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitId=176526&semkez=2024S&ansicht=LEHRVERANSTALTUNGEN&lang=en
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dynamo.ethz.ch
ljosipovic@ethz.ch

DYNAMO: Digital Systems and Design Automation Group

Project list 2024
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