
1

Petri Nets and Model Checking in Circuit Design

Lana Josipović

December 2023

22

Hardware acceleration for
high parallelism and energy efficiency

33

How to perform hardware design?

4

High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design
beyond RTL level (VHDL, Verilog)

5

High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code

6

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

Finite state
machine

Circuit regulated by a centralized FSM
→ All execution times predetermined and,

sometimes, conservative (slow circuit) Circuit regulated by distributed handshake logic
→ Flexible execution times (fast circuit)

7

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

8

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

9

• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

High-level synthesis of
dynamically scheduled circuits

10

HLS of Dynamically Scheduled Circuits

11

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

12

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

13

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

14

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

15

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

Component 1 Component 2

data

valid

ready

16

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

17

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

18

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

19

JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components

+ *

STORE

20

Branch

Branch

Dataflow Components

Fork

Fork

Merge

Merge

Join

Join

21

Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

22

Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

23

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

24

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

25

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

26

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

27

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

28

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

29

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

Backpressure due to insufficient token
capacity: no pipelining and low performance

30

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

31

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

32

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

Buffers as FIFOs to regulate
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

33

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

34

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

35

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

Represent program loops as choice-free Petri nets
• Analyze average token flow through the circuit

(continuous Petri net)
• Determine buffer positions & sizes (token capacity)
• Maximize throughput for a target clock period

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

36

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

37

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

M1

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

38

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Sharing not possible without

damaging throughput

M1 M2

Units fully utilized

(high throughput, II = 1)

Use throughput information
to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use choice-free Petri net model
to decide what to share

39

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Sharing possible without

damaging throughput

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use throughput information
to decide what to share

Use choice-free Petri net model
to decide what to share

40

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

41

• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

 addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering

(load-store
queue)

LSQ placement and sizing for high
throughput and low resources

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

42

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

43

MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

44

Dynamatic: An Open-Source HLS Compiler

• From C/C++ to synthesizable dataflow circuit description

But… dataflow computation is resource-expensive!

Reduced execution time in irregular benchmarks
(speedup of up to 14.9X)

45

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

c

46

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Distributed dataflow handshake
mechanism: resource and

frequency overhead

47

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Do we need expensive
dataflow logic everywhere?

48

Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

49

Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

Restrict the generality of dataflow
logic whenever it is not needed

50

Removing Excessive Dynamism

How to guarantee correctness of
simplifications for any possible

circuit behavior?

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

51

How to Guarantee Correctness?

Our goal: a formal verification framework for reducing
the hardware complexity of dataflow circuits

Functional verification is inefficient and non-exhaustive

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

52

Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

53

Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 ↔valid2)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

54

Proving Properties to Eliminate Excessive Dynamism

Up to 50% area reduction without a
performance penalty

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 ↔valid2)

But it is very slow (~hrs)…

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

55

Ensuring Scalability by Compositional Verification

for (i = 0; i < N; i++)
...

for (i = 0; i < N; i++)
...

Loop 1

• Decompose circuit into regions whose properties can be verified independently

• Abstract the complexity of other regions into simpler nodes that have the same
properties as the circuit they encapsulate

Loop 2

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

56

Ensuring Scalability by Compositional Verification

for (i = 0; i < N; i++)
...

for (i = 0; i < N; i++)
...

Loop 1

• Decompose circuit into regions whose properties can be verified independently

• Abstract the complexity of other regions into simpler nodes that have the same
properties as the circuit they encapsulate

Loop 2

Loop 1

Loop 2

Abstract loop 2,
check loop 1

Abstract loop 1,
check loop 2

Up to 8X reduction in checking time

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

57

DYNAMO: Digital Systems and Design Automation Group

Enable diverse users to accelerate compute-intensive
applications on hardware platforms

for (j = 0; j < 10; j++) {
 float x = 0.0;
 for (i = 0; i < 10; i++)
 x += data[i][j];
 mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {
 float x = 0.0;
 for (i = 0; i < 10; i++)
 x += (data[i][j] - mean[j]) *
(data[i][j] - mean[j]);
 x /= float_n;
 x = x*x;
 stdev[j] = x;
}

58

MSc & BSc Projects and Theses

• Use Petri nets to describe circuits and their behaviors
– Component modelling

– Performance and area optimizations

• Use model checking to prove circuit properties and improve their quality
– Checking more complex properties

– Dealing with scalability issues

• And many other topics...

• Check link on last slide for (non-exhaustive) list of projects!

Come work with us! ☺

59

MSc Course in Spring 2024: Synthesis of Digital Circuits

• Algorithms, tools, and methods to generate circuits from high-level programs

– How does ‘classic’ HLS work?

• Recent advancements and current challenges of HLS for FPGAs

– What is HLS still missing?

• Course organization

– First part: lectures+exercises

– Second part: practical work + seminar-like discussions

• Link to Course Catalogue info (2024)

Hope to see you there! ☺

https://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitId=176526&semkez=2024S&ansicht=LEHRVERANSTALTUNGEN&lang=en

60

dynamo.ethz.ch
ljosipovic@ethz.ch

DYNAMO: Digital Systems and Design Automation Group

Project list 2024

	Slide 1: Petri Nets and Model Checking in Circuit Design
	Slide 2
	Slide 3
	Slide 4: High-Level Synthesis: From Programs to Circuits
	Slide 5: High-Level Synthesis: From Programs to Circuits
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Dynamatic: An Open-Source HLS Compiler
	Slide 45: The Cost of Dataflow Computation
	Slide 46: The Cost of Dataflow Computation
	Slide 47: The Cost of Dataflow Computation
	Slide 48: Removing Excessive Dynamism
	Slide 49: Removing Excessive Dynamism
	Slide 50: Removing Excessive Dynamism
	Slide 51: How to Guarantee Correctness?
	Slide 52: Proving Properties to Eliminate Excessive Dynamism
	Slide 53: Proving Properties to Eliminate Excessive Dynamism
	Slide 54: Proving Properties to Eliminate Excessive Dynamism
	Slide 55: Ensuring Scalability by Compositional Verification
	Slide 56: Ensuring Scalability by Compositional Verification
	Slide 57: DYNAMO: Digital Systems and Design Automation Group
	Slide 58: MSc & BSc Projects and Theses
	Slide 59
	Slide 60

