
Discrete Event Systems
Petri Nets

Most materials from Lothar Thiele and Romain Jacob

ETH Zurich (D-ITET)

December 21, 2023

Lana Josipović
Digital Systems and Design Automation Group
dynamo.ethz.ch

Last week in
Discrete Event Systems

Token Game of Petri Nets

A marking M activates a transition t ∈ T if each place p
connected through an edge f towards t contains at least one token.

If a transition t is activated by M,
a state transition to M’ fires (happens) eventually.

Only one transition is fired at any time.

When a transition fires

p3 p4

p1 p2

t1

3

▪ it consumes a token from each of its input places,

▪ it adds a token to each of its output places.

Token Game of Petri Nets

A marking M activates a transition t ∈ T if each place p
connected through an edge f towards t contains at least one token.

If a transition t is activated by M,
a state transition to M’ fires (happens) eventually.

Only one transition is fired at any time.

When a transition fires

p3 p4

p1 p2

t1

4

▪ it consumes a token from each of its input places,

▪ it adds a token to each of its output places.

Concurrent Activities

Finite Automata allow the representation of decisions, but no concurrency.

Petri nets support concurrency with intuitive notations:

fork join / synchronization

Concurrency

decision / conflict

Decision

5

6

Definition

Properties

Analysis

▪ Semantics
▪ Token game

▪ Safety
▪ Liveness

▪ Coverability tree
▪ Incidence matrix

This week in
Discrete Event Systems

Discrete Event Models with Time

In many discrete event systems,
time is an important factor.

▪ queuing systems
▪ computer systems
▪ digital circuits

▪ workflow management
▪ business processes

8

Discrete Event Models with Time

In many discrete event systems,
time is an important factor.

Based on a timed discrete event model,
we would like to determine properties:

▪ queuing systems
▪ computer systems
▪ digital circuits

▪ workflow management
▪ business processes

▪ delay
▪ throughput
▪ execution rate

▪ resource load
▪ buffer sizes

9

Discrete Event Models with Time

In many discrete event systems,
time is an important factor.

There are many ways of adding the concept of time to Petri nets and finite automata.
In the following, we present one specific model.

Based on a timed discrete event model,
we would like to determine properties:

▪ queuing systems
▪ computer systems
▪ digital circuits

▪ workflow management
▪ business processes

▪ delay
▪ throughput
▪ execution rate

▪ resource load
▪ buffer sizes

10

Discrete Event Models with Time

What can you do with a timed model?

Verify timed properties ▪ How long does it take
until a certain event happens?

▪ What is the minimum time
between two events?

11

Discrete Event Models with Time

What can you do with a timed model?

Simulate the model ▪ Given a specific input, how does the
system state evolve over time?

▪ Is the resulting trace of execution
what we had in mind?

Verify timed properties ▪ How long does it take
until a certain event happens?

▪ What is the minimum time
between two events?

12

13

Definition Simulation

Time Petri Net

We define a delay function 𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

14

▪ The function is called for every new activation of transition t
and determines the time until the transition fires.

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.

Time Petri Net

We define a delay function 𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

15

▪ The function is called for every new activation of transition t
and determines the time until the transition fires.

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.

Time Petri Net

We define a delay function 𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

16

▪ The function is called for every new activation of transition t
and determines the time until the transition fires.

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.

Time Petri Net

We define a delay function 𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

17

If the transition t loses its activation, then d(t) is called again at
the next activation.

▪ An activation is canceled whenever a token is removed from some input
place of t (and a new activation can start immediately).

▪ The function is called for every new activation of transition t
and determines the time until the transition fires.

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1

p2

d(t1) = 1 s

d(t2) = 2 s

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.

Time Petri Net

We define a delay function 𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

18

If the transition t loses its activation, then d(t) is called again at
the next activation.

▪ An activation is canceled whenever a token is removed from some input
place of t (and a new activation can start immediately).

▪ The function is called for every new activation of transition t
and determines the time until the transition fires.

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1

p2

d(t1) = 1 s

d(t2) = 2 s
t2 is reactivated:
it will never fire!

(same if 2 tokens in p1)

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.

Time Petri Net

We define a delay function 𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

19

If the transition t loses its activation, then d(t) is called again at
the next activation.

▪ An activation is canceled whenever a token is removed from some input
place of t (and a new activation can start immediately).

▪ The function is called for every new activation of transition t
and determines the time until the transition fires.

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1

p2

d(t1) = 1 s

d(t2) = 2 s

If two transitions have the same firing time,
one of them is chosen non-deterministically to fire first.

▪ Only one transition fires at a time (same as with regular Petri nets).

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.

Time Petri Net

20

t1t2
t3

t4

d(t3) d(t2)
d(t1)

d(t2)

time

d(t3)

d(t1)t=0

All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

21

t1t2
t3

t4

d(t3) d(t2)

firing time of t4;
t1 and t2 get activated

d(t1)

d(t2)

time

d(t3)

d(t1)t=0

An activation is canceled
whenever a token is removed
from some input place of t.

All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

d(t3) d(t2)

Time Petri Net

firing time of t4;
t1 and t2 get activated

d(t1)

d(t2)

firing time of t1;
t1, t2 and t3 lose activation
t3 activated again

time

d(t3)

22

t1t2
t3

t4

d(t1)t=0

An activation is canceled
whenever a token is removed
from some input place of t.

All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

d(t1)

time

d(t2)

d(t3)

23

t1t2
t3

t4
All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

firing times
of t4

d(t1)

time

d(t2)

d(t3)

24

t1t2
t3

t4
All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

firing times
of t4

d(t1)

time

d(t2)

d(t3)

25

t1t2
t3

t4

firing time of t3;

t1, t2 remain
activated

All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

firing times
of t4

firing time of t3;
t1, t3 lose activation;
t1, t3 activated again

d(t1)

time

d(t2)

d(t3)

26

t1t2
t3

t4

firing time of t2;

t1, t2 remain
activated

All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

firing times
of t4

firing time of t3;
t1, t3 lose activation;
t1, t3 activated again

firing time of t2;
t1, t2 lose activation;
t1, t2 activated again

d(t1)

time

d(t2)

d(t3)

27

t1t2
t3

t4

firing time of t1;

t1, t2 remain
activated

All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

firing times
of t4

firing time of t3;
t1, t3 lose activation;
t1, t3 activated again

firing time of t2;
t1, t2 lose activation;
t1, t2 activated again

d(t1)

firing time of t1;
t1, t2, t3 lose activation;
t3 activated again

time

d(t2)

d(t3)

28

t1t2
t3

t4

t1, t2 remain
activated

All input places of t contain a token: t is
activated. Token removed from some
input place of t: cancel activation.

Time Petri Net

▪ The time when a transition t fires is called the firing time.

▪ A time Petri net can be regarded as a generator for firing times of its transitions.

▪ How do we get the firing times? By simulation!

d(t1) = 1

d(t2) = 2

d(t3) = 3

{1, 6, 9, 12,…}

{5, 8, 11, 13,…}

{3, 6, 9, 12,…}

firing time sequences for
transitions t1, t2 and t3initialization time 0

t1

t2

t3

29

Time Petri Net

▪ The time when a transition t fires is called the firing time.

▪ A time Petri net can be regarded as a generator for firing times of its transitions.

▪ How do we get the firing times? By simulation!

d(t1) = 1

d(t2) = 2

d(t3) = 3

{1, 6, 9, 12,…}

{5, 8, 11, 13,…}

{3, 6, 9, 12,…}

firing time sequences for
transitions t1, t2 and t3initialization time 0

t1

t2

t3

30

0 1 2 3 4 5 …

t1 t3 t2

Event sequence
(firing of transitions)

31

Definition Simulation

Simulation Principle

The simulation is based on the following basic principles.

32

1. The simulator maintains a set L of currently activated transitions
and their firing times. We call L the event list from now on.

2. A transition with the earliest firing time is selected and fired.
The state of the Petri net as well as the current simulation time
is updated accordingly.

3. All transitions that lost their activation during the state transition
are removed from the event list L.

4. Afterwards, all transitions that are newly activated are added
to the event list L together with their firing times.

5. Then we continue with 2. unless the event list L is empty.

This simulation principle holds
in one form or another

for any simulator of timed
discrete event models.

𝐿 = { ti, 𝜏𝑖 }

Add tuple to L when ti is activated:

𝜏: current simulation time
(activation time of ti)

𝜏𝑖= 𝜏 + d(ti)

Simulation Principle

33

Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

Simulation Principle

34

Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’

Simulation Principle

35

Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

𝑀 ∶= 𝑀 + 𝐴 𝑢’

τ := τ’

▪ state
▪ simulation time

Update

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’

Simulation Principle

36

Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

𝑀 ∶= 𝑀 + 𝐴 𝑢’

τ := τ’

▪ state
▪ simulation time

Update

Remove transitions that lost their
activation during the state transition

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’

Simulation Principle

37

Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

𝑀 ∶= 𝑀 + 𝐴 𝑢’

τ := τ’

▪ state
▪ simulation time

Update

Add transitions that are newly
activated after the state transition and

are not in the list yet

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’

Remove transitions that lost their
activation during the state transition

Simulation Principle

38

Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

𝑀 ∶= 𝑀 + 𝐴 𝑢’

τ := τ’

▪ state
▪ simulation time

Update

Add transitions that are newly
activated after the state transition and

are not in the list yet

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’

Iterate until
L is empty

Remove transitions that lost their
activation during the state transition

Live Petri net: list never
empty (infinite simulation)

Simulation Algorithm (1)
Initialization:

▪ Set the initial simulation time τ := 0

▪ Set the current state to M := M0

▪ For each activated transition t, add the event (t, τ + d(t)) to the event list L

Determine and remove current event:

▪ Determine a firing event (t’, τ’) with the earliest firing time:

▪ Remove event (t’, τ’) from the event list L:

39

Update current simulation time: Set current simulation time τ := τ’

Update token distribution M:

▪ Suppose that the firing transition has index j, i.e. tj = t’. Then, the firing vector is:

▪ Update current state M := M + A u’
j

Remove transitions from L that lost activation:

▪ Determine the set of places S’ from which at least one token was removed during the state
transition caused by t’:

▪ Remove from event list L all transitions in T’ that lost their activation due to this token
removal:

Add all transitions to event list L that are activated but not in L yet:

▪ If some transition t with 𝑀 𝑝 ≥ 𝑊(𝑝, 𝑡) for all 𝑝, 𝑡 ∈ 𝐹 is not in L, then add (𝑡, 𝜏 + 𝑑 𝑡)
to the event list:

40

Simulation Algorithm (2)

Simulation Example

41

d(t1) = 1

d(t2) = 2

d(t3) = 3p1

t2
p2

t3

p3

p4

t1

2

2
2

0 1 2 3 4 5 …

𝐿 = { ti, 𝜏 + d(ti) }

Simulation Example

42

d(t1) = 1

d(t2) = 2

d(t3) = 3p1

t2
p2

t3

p3

p4

t1

2

2
2

𝐿 = { t1, 1 , t3, 3 }

τ = 0:

M = [2 0 1 0]

0 1 2 3 4 5 …

𝐿 = { ti, 𝜏 + d(ti) }

Simulation Example

43

d(t1) = 1

d(t2) = 2

d(t3) = 3p1

t2
p2

t3

p3

p4

t1

2

2
2

𝐿 = { t1, 1 , t3, 3 }

τ = 0:

τ = 1:

𝐿 = { t3, 3 }M = [0 1 2 0]

M = [2 0 1 0]

0 1 2 3 4 5 …

t1

𝐿 = { ti, 𝜏 + d(ti) }

Simulation Example

44

d(t1) = 1

d(t2) = 2

d(t3) = 3
𝐿 = { t1, 1 , t3, 3 }

τ = 0:
p1

t2
p2

t3

p3

p4

t1

2

2
2

τ = 1:

𝐿 = { t3, 3 }

τ = 3:

𝐿 = { t3, 6 , (t2, 5)}M = [1 1 1 2]

M = [2 0 1 0]

M = [0 1 2 0]

0 1 2 3 4 5 …

t1 t3

𝐿 = { ti, 𝜏 + d(ti) }

Simulation Example

45

d(t1) = 1

d(t2) = 2

d(t3) = 3
𝐿 = { t1, 1 , t3, 3 }

τ = 0:
p1

t2
p2

t3

p3

p4

t1

2

2
2

τ = 1:

𝐿 = { t3, 3 }

τ = 3:

𝐿 = { t3, 6 , (t2, 5)}M = [1 1 1 2]

M = [2 0 1 0]

M = [0 1 2 0]

τ = 5:

𝐿 = { t3, 6 , (t1, 6)}M = [2 0 1 0]
If two transitions have the same firing time,
one of them is chosen non-deterministically to fire first.

0 1 2 3 4 5 …

t1 t3 t2

𝐿 = { ti, 𝜏 + d(ti) }

Petri Net Simulators

46

www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

CPN Tools TINA

There are many
simulators available

An overview

Examples

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

Discrete Event Models with Time

In many discrete event systems,
time is an important factor.

There are many ways of adding the concept of time
to Petri nets and finite automata.
In the following, we present one specific model.

Based on a timed discrete event model,
we would like to determine properties:

▪ queuing systems
▪ computer systems
▪ digital circuits

▪ workflow management
▪ business processes

▪ delay
▪ throughput
▪ execution rate

▪ resource load
▪ buffer sizes

47
What are the others?

There are mainly
three ways to count time

48

Time Petri nets

Covered here

Timed Petri nets

Expressivity and analysis feasibility may vary between the models.

Duration of the transition Age of the tokensDelay on the transition firing

www.lsv.fr/~haddad/disc11-part1.pdf

time time time

http://www.lsv.fr/~haddad/disc11-part1.pdf

Your turn to practice!
after the break

49

1. Model arithmetic operations with Petri nets

2. Use a simulator to explore the timed behavior
of a simple Petri net model

3. Use a model-checker to adapt a system design

Quick recap
Discrete Event Systems (Part 3)

▪ How to efficiently explore the
state space of DES models?

▪ How to formulate temporal
properies of interest?

▪ How to formally verify
such properties?

▪ How to efficiently model
concurrency in DES?

Set of states
& BDDs

CTL
fomulas

Reachability &
model-checking

Petri nets
w/ and w/o time

Thank you for following
Discrete Event Systems! ☺

Most materials from Lothar Thiele and Romain Jacob

ETH Zurich (D-ITET)

December 21, 2023

Lana Josipović
Digital Systems and Design Automation Group
dynamo.ethz.ch

	Slide 1: Discrete Event Systems Petri Nets
	Slide 2
	Slide 3: Token Game of Petri Nets
	Slide 4: Token Game of Petri Nets
	Slide 5: Concurrent Activities
	Slide 6
	Slide 7
	Slide 8: Discrete Event Models with Time
	Slide 9: Discrete Event Models with Time
	Slide 10: Discrete Event Models with Time
	Slide 11: Discrete Event Models with Time
	Slide 12: Discrete Event Models with Time
	Slide 13
	Slide 14: Time Petri Net
	Slide 15: Time Petri Net
	Slide 16: Time Petri Net
	Slide 17: Time Petri Net
	Slide 18: Time Petri Net
	Slide 19: Time Petri Net
	Slide 20: Time Petri Net
	Slide 21: Time Petri Net
	Slide 22: Time Petri Net
	Slide 23: Time Petri Net
	Slide 24: Time Petri Net
	Slide 25: Time Petri Net
	Slide 26: Time Petri Net
	Slide 27: Time Petri Net
	Slide 28: Time Petri Net
	Slide 29: Time Petri Net
	Slide 30: Time Petri Net
	Slide 31
	Slide 32: Simulation Principle
	Slide 33: Simulation Principle
	Slide 34: Simulation Principle
	Slide 35: Simulation Principle
	Slide 36: Simulation Principle
	Slide 37: Simulation Principle
	Slide 38: Simulation Principle
	Slide 39: Simulation Algorithm (1)
	Slide 40
	Slide 41: Simulation Example
	Slide 42: Simulation Example
	Slide 43: Simulation Example
	Slide 44: Simulation Example
	Slide 45: Simulation Example
	Slide 46: Petri Net Simulators
	Slide 47: Discrete Event Models with Time
	Slide 48: There are mainly three ways to count time
	Slide 49: Your turn to practice! after the break
	Slide 50: Quick recap Discrete Event Systems (Part 3)
	Slide 51: Thank you for following Discrete Event Systems!

