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Token Game of Petri Nets

A marking M activates a transition t ∈ T if each place p 
connected through an edge f towards t contains at least one token.

If a transition t is activated by M, 
a state transition to M’ fires (happens) eventually.

Only one transition is fired at any time.

When a transition fires

p3 p4

p1 p2

t1

3

▪ it consumes a token from each of its input places,

▪ it adds a token to each of its output places.
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Concurrent Activities

Finite Automata allow the representation of decisions, but no concurrency.

Petri nets support concurrency with intuitive notations:

fork join / synchronization

Concurrency

decision / conflict

Decision

5
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Definition

Properties

Analysis

▪ Semantics
▪ Token game

▪ Safety
▪ Liveness

▪ Coverability tree
▪ Incidence matrix



This week in
Discrete Event Systems



Discrete Event Models with Time

In many discrete event systems, 
time is an important factor.

▪ queuing systems
▪ computer systems
▪ digital circuits

▪ workflow management
▪ business processes
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Discrete Event Models with Time

In many discrete event systems, 
time is an important factor.

There are many ways of adding the concept of time to Petri nets and finite automata. 
In the following, we present one specific model.
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Discrete Event Models with Time

What can you do with a timed model?

Verify timed properties ▪ How long does it take 
until a certain event happens? 

▪ What is the minimum time 
between two events?
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Discrete Event Models with Time

What can you do with a timed model?

Simulate the model ▪ Given a specific input, how does the 
system state evolve over time? 

▪ Is the resulting trace of execution
what we had in mind?

Verify timed properties ▪ How long does it take 
until a certain event happens? 

▪ What is the minimum time 
between two events?
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Definition Simulation



Time Petri Net

We define a delay function    𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

14

▪ The function is called for every new activation of transition t 
and determines the time until the transition fires. 

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.
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Time Petri Net

We define a delay function    𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.
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If the transition t loses its activation, then d(t) is called again at 
the next activation.

▪ An activation is canceled whenever a token is removed from some input 
place of t (and a new activation can start immediately).

▪ The function is called for every new activation of transition t 
and determines the time until the transition fires. 

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1

p2

d(t1) = 1 s

d(t2) = 2 s

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.



Time Petri Net

We define a delay function    𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.

18

If the transition t loses its activation, then d(t) is called again at 
the next activation.

▪ An activation is canceled whenever a token is removed from some input 
place of t (and a new activation can start immediately).

▪ The function is called for every new activation of transition t 
and determines the time until the transition fires. 

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1

p2

d(t1) = 1 s

d(t2) = 2 s
t2 is reactivated: 
it will never fire!

(same if 2 tokens in p1)

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.



Time Petri Net

We define a delay function    𝑑: 𝑇 → 𝑅
that determines the delay between the activation of a transition t and its firing.
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If the transition t loses its activation, then d(t) is called again at 
the next activation.

▪ An activation is canceled whenever a token is removed from some input 
place of t (and a new activation can start immediately).

▪ The function is called for every new activation of transition t 
and determines the time until the transition fires. 

▪ Repeated calls may lead to the same value constant delay
or to different ones every time. values of some random variable

p1

p2

d(t1) = 1 s

d(t2) = 2 s

If two transitions have the same firing time, 
one of them is chosen non-deterministically to fire first.

▪ Only one transition fires at a time (same as with regular Petri nets).

p1 p2

t

d(t) = 1 s

…

Transition t is activated if all its input places have a token.



Time Petri Net
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t1t2
t3

t4

d(t3) d(t2)
d(t1)

d(t2)

time

d(t3)

d(t1)t=0

All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net
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t1t2
t3

t4

d(t3) d(t2)

firing time of t4;
t1 and t2 get activated

d(t1)

d(t2)

time

d(t3)

d(t1)t=0

An activation is canceled 
whenever a token is removed 
from some input place of t.

All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



d(t3) d(t2)

Time Petri Net

firing time of t4;
t1 and t2 get activated

d(t1)

d(t2)

firing time of t1;
t1, t2 and t3 lose activation
t3 activated again

time

d(t3)
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t1t2
t3

t4

d(t1)t=0

An activation is canceled 
whenever a token is removed 
from some input place of t.

All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net

d(t1)

time

d(t2)

d(t3)
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t1t2
t3

t4
All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net

firing times
of t4

d(t1)

time

d(t2)

d(t3)
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t1t2
t3

t4
All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net

firing times
of t4

d(t1)

time

d(t2)

d(t3)
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t1t2
t3

t4

firing time of t3;

t1, t2 remain 
activated

All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net

firing times
of t4

firing time of t3;
t1, t3  lose activation;
t1, t3 activated again

d(t1)

time

d(t2)

d(t3)
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t1t2
t3

t4

firing time of t2;

t1, t2 remain 
activated

All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net

firing times
of t4

firing time of t3;
t1, t3  lose activation;
t1, t3 activated again

firing time of t2;
t1, t2 lose activation;
t1, t2 activated again

d(t1)

time

d(t2)

d(t3)
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t1t2
t3

t4

firing time of t1;

t1, t2 remain 
activated

All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net

firing times
of t4

firing time of t3;
t1, t3  lose activation;
t1, t3 activated again

firing time of t2;
t1, t2 lose activation;
t1, t2 activated again

d(t1)

firing time of t1;
t1, t2, t3 lose activation;
t3 activated again

time

d(t2)

d(t3)
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t1t2
t3

t4

t1, t2 remain 
activated

All input places of t contain a token: t is 
activated. Token removed from some 
input place of t: cancel activation.



Time Petri Net

▪ The time when a transition t fires is called the firing time. 

▪ A time Petri net can be regarded as a generator for firing times of its transitions.

▪ How do we get the firing times? By simulation!

d(t1) = 1

d(t2) = 2

d(t3) = 3

{1, 6, 9, 12,…}

{5, 8, 11, 13,…}

{3, 6, 9, 12,…}

firing time sequences for
transitions t1, t2 and t3initialization time 0

t1

t2

t3
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t1

t2

t3
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0 1 2 3 4 5 …

t1 t3 t2

Event sequence 
(firing of transitions)
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Definition Simulation



Simulation Principle

The simulation is based on the following basic principles.
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1. The simulator maintains a set L of currently activated transitions 
and their firing times. We call L the event list from now on.

2. A transition with the earliest firing time is selected and fired. 
The state of the Petri net as well as the current simulation time 
is updated accordingly.

3. All transitions that lost their activation during the state transition 
are removed from the event list L.

4. Afterwards, all transitions that are newly activated are added
to the event list L together with their firing times. 

5. Then we continue with 2. unless the event list L is empty.

This simulation principle holds 
in one form or another 

for any simulator of timed 
discrete event models.

𝐿 = { ti, 𝜏𝑖 }

Add tuple to L when ti is activated:

𝜏: current simulation time
(activation time of ti)

𝜏𝑖= 𝜏 + d(ti) 



Simulation Principle
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Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏



Simulation Principle
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Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’



Simulation Principle
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Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

𝑀 ∶= 𝑀 + 𝐴 𝑢’

τ := τ’

▪ state
▪ simulation time

Update

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’



Simulation Principle
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Initialization
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▪ Simulation time 𝜏
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Simulation Principle
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Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

𝑀 ∶= 𝑀 + 𝐴 𝑢’

τ := τ’

▪ state
▪ simulation time

Update

Add transitions that are newly 
activated after the state transition and 

are not in the list yet

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’

Remove transitions that lost their 
activation during the state transition



Simulation Principle
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Current state

Event list L

Initialization

▪ Event list L
▪ State 𝑀
▪ Simulation time 𝜏

𝑀 ∶= 𝑀 + 𝐴 𝑢’

τ := τ’

▪ state
▪ simulation time

Update

Add transitions that are newly 
activated after the state transition and 

are not in the list yet

Fire 𝑡’

remove transition 𝑡’ with
the earliest firing time 𝜏’

Iterate until 
L is empty

Remove transitions that lost their 
activation during the state transition

Live Petri net: list never 
empty (infinite simulation)



Simulation Algorithm (1)
Initialization:

▪ Set the initial simulation time τ := 0

▪ Set the current state to M := M0

▪ For each activated transition t, add the event (t, τ + d(t)) to the event list L

Determine and remove current event:

▪ Determine a firing event (t’, τ’) with the earliest firing time: 

▪ Remove event (t’, τ’) from the event list L:

39

Update current simulation time: Set current simulation time τ := τ’

Update token distribution M:

▪ Suppose that the firing transition has index j, i.e. tj = t’. Then, the firing vector is:

▪ Update current state M := M + A u’
j



Remove transitions from L that lost activation:

▪ Determine the set of places S’ from which at least one token was removed during the state 
transition caused by t’:

▪ Remove from event list L all transitions in T’ that lost their activation due to this token 
removal:

Add all transitions to event list L that are activated but not in L yet:

▪ If some transition t with 𝑀 𝑝 ≥ 𝑊(𝑝, 𝑡) for all 𝑝, 𝑡 ∈ 𝐹 is not in L, then add (𝑡, 𝜏 + 𝑑 𝑡 )
to the event list:   

40

Simulation Algorithm (2)



Simulation Example
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d(t1) = 1

d(t2) = 2

d(t3) = 3p1

t2
p2

t3

p3

p4

t1

2

2
2

0 1 2 3 4 5 …

𝐿 = { ti, 𝜏 + d(ti) }



Simulation Example
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d(t1) = 1

d(t2) = 2

d(t3) = 3p1

t2
p2

t3

p3

p4

t1

2

2
2

𝐿 = { t1, 1 , t3, 3 }

τ = 0:

M = [2 0 1 0]

0 1 2 3 4 5 …

𝐿 = { ti, 𝜏 + d(ti) }



Simulation Example
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d(t1) = 1

d(t2) = 2

d(t3) = 3p1

t2
p2

t3

p3

p4

t1

2

2
2

𝐿 = { t1, 1 , t3, 3 }

τ = 0:

τ = 1:

𝐿 = { t3, 3 }M = [0 1 2 0]

M = [2 0 1 0]

0 1 2 3 4 5 …

t1

𝐿 = { ti, 𝜏 + d(ti) }



Simulation Example
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d(t1) = 1

d(t2) = 2

d(t3) = 3
𝐿 = { t1, 1 , t3, 3 }

τ = 0:
p1

t2
p2

t3

p3

p4

t1

2

2
2

τ = 1:

𝐿 = { t3, 3 }

τ = 3:

𝐿 = { t3, 6 , (t2, 5)}M = [1 1 1 2]

M = [2 0 1 0]

M = [0 1 2 0]

0 1 2 3 4 5 …

t1 t3

𝐿 = { ti, 𝜏 + d(ti) }



Simulation Example
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d(t1) = 1

d(t2) = 2

d(t3) = 3
𝐿 = { t1, 1 , t3, 3 }

τ = 0:
p1

t2
p2

t3

p3

p4

t1

2

2
2

τ = 1:

𝐿 = { t3, 3 }

τ = 3:

𝐿 = { t3, 6 , (t2, 5)}M = [1 1 1 2]

M = [2 0 1 0]

M = [0 1 2 0]

τ = 5:

𝐿 = { t3, 6 , (t1, 6)}M = [2 0 1 0]
If two transitions have the same firing time, 
one of them is chosen non-deterministically to fire first.

0 1 2 3 4 5 …

t1 t3 t2

𝐿 = { ti, 𝜏 + d(ti) }



Petri Net Simulators
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www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

CPN Tools TINA

There are many 
simulators available

An overview

Examples

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html


Discrete Event Models with Time

In many discrete event systems, 
time is an important factor.

There are many ways of adding the concept of time 
to Petri nets and finite automata. 
In the following, we present one specific model.

Based on a timed discrete event model,
we would like to determine properties:

▪ queuing systems
▪ computer systems
▪ digital circuits

▪ workflow management
▪ business processes

▪ delay
▪ throughput
▪ execution rate

▪ resource load 
▪ buffer sizes

47
What are the others?



There are mainly 
three ways to count time

48

Time Petri nets

Covered here

Timed Petri nets

Expressivity and analysis feasibility may vary between the models. 

Duration of the transition Age of the tokensDelay on the transition firing

www.lsv.fr/~haddad/disc11-part1.pdf

time time time

http://www.lsv.fr/~haddad/disc11-part1.pdf


Your turn to practice!
after the break

49

1. Model arithmetic operations with Petri nets

2. Use a simulator to explore the timed behavior
of a simple Petri net model

3. Use a model-checker to adapt a system design



Quick recap 
Discrete Event Systems (Part 3)

▪ How to efficiently explore the 
state space of DES models?

▪ How to formulate temporal
properies of interest? 

▪ How to formally verify 
such properties? 

▪ How to efficiently model 
concurrency in DES? 

Set of states
& BDDs

CTL
fomulas 

Reachability & 
model-checking 

Petri nets
w/ and w/o time
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