
Chapter 4

Queueing

In most systems, events do not happen like clockwork. In Continuous Time
Markov Chains (CTMCs) events (transitions) happen at arbitrary times, for
example, whenever a new customer enters the store. In this chapter we concen-
trate on CTMCs.

4.1 Continuous Time Markov Chains

Defnition 4.1 (Continuous Time Markov Chain, CTMC). Let S be a nite
or countably innite set of states. A Continuous Time Markov Chain
(CTMC) is a continuous time stochastic process {Xt : t ∈ R≥0} with Xt ∈ S
for all t that satises the continuous Markov property.

Defnition 4.2 (Continuous Markov Property). A stochastic process {Xt : t ∈
R≥0} has the continuous Markov property if for all times t > t′ > 0,
the probability distribution for Xt depends only on Xt′ but not on any Xt′′ for
t′′ < t′. More formally, for any two i, j ∈ S and any “history” of past states, a
function s : [0, t′) → S, we have

Pr[Xt = i | Xt′ = j and Xt′′ = s(t′′) for all t′′ ∈ [0, t′)] = Pr[Xt = i | Xt′ = j].

Remarks:

• This is analogous to Denition 3.3, but as we don’t have a suitable
notion of an unique ”previous time” (in the sense of a time step from
t − 1 to t in the discrete case) we have to phrase it over all possi-
ble previous times. Correspondingly, the sequence sk of the previous
states from 3.3 is replaced by the function s.

• We will only consider time-homogeneous CTMCs for which the tran-
sition probability Pr[Xt2 = j|Xt1 = i] from state i to j in the time
period [t1, t2) depends only on the dierence ∆t = t2 − t1 and not on
the times t1, t2 themselves.

• The sojourn times for time-homogeneous CTMCs are exponentially
distributed, cf. Denition 4.5.
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Defnition 4.3 (Sojourn Time). The sojourn time Ti of state i is the time
the process stays in state i.

Lemma 4.4. The sojourn times Ti of a time-homogeneous CTMC are memo-
ryless random variables. Formally:

Pr[Ti > s+ t | Ti > s] = Pr[Ti > t].

Proof. We have

Pr[Ti > s+ t | Ti > s] = Pr[Xτ = i for all τ ≤ s+ t | X ′
τ = i for all τ ′ ≤ s]

= Pr[Xτ = i for all s ≤ τ ≤ s+ t | Xs = i]

= Pr[Xτ = i for all 0 ≤ τ ≤ t | X0 = i]

= Pr[Ti > t]

where we use the continuous Markov property in the second equality and the
time-homogeneous property in the third one.

Defnition 4.5 (Exponential Distribution). A random variable Y with the cu-
mulative distribution function (CDF)

FY (t) = Pr[Y ≤ t] :=



1− e−λt for t ≥ 0, and

0 otherwise

is exponentially distributed with parameter λ, or Y ∼ exp(λ) for short. The
corresponding probability density function (PDF) is

fY (t) =
d

dt
FY (t) = λe−λt .

Lemma 4.6. If a random variable X has the memoryless property, then we
have X ∼ exp(λ) for some λ > 0. In other words, the exponential distribution
is the only memoryless continuous distribution.

Proof. The memoryless property for a continuous random variable X implies
that Pr[X > s + t | X > s] = Pr[X > t]. Let FX be the CDF of X, and let
GX = 1− FX . We now have:

Pr[X > t] = Pr[X > s+ t | X > s] =
Pr[X > s+ t]

Pr[X > s]

which implies that

GX(s)GX(t) = Pr[X > s] Pr[X > t] = Pr[X > s+ t] = GX(s+ t)

and due to the monotonicity of GX and GX(t) ≤ 1 we have that GX is of the
form e−λx for some λ > 0, so FX(t) = 1− e−λt as desired.
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Remarks:

• If Y ∼ exp(λ), then E[Y ] = 1/λ and Var[Y ] = 1/λ2.

• The exponential distribution is the continuous analogue to the discrete-
time geometric distribution, i.e., the probability of an event is the same
in every discrete time step, where the duration of the discrete steps
goes towards 0.

• Consider the continuous time stochastic process {Xt : t ∈ R≥0} count-
ing the number of events up to time t, where the time between two con-
secutive events is exponentially distributed with parameter λ. Then
Xt is a Poisson process with rate λ. According to the Poisson distri-
bution we can expect λ events per time unit.

• Let us consider an example of a CTMC.

1 0

λ

µ

Figure 4.7: A CTMC modeling an unreliable system. In state 1 the system is
working, in state 0 the system is faulty. The failure rate, i.e., the time until the
system fails, is exponentially distributed with parameter λ. After a failure, the
repair takes some time, exponentially distributed with parameter µ.

Remarks:

• This example is a special case, as each state only has a single possible
next state. What happens if a state has multiple possible following
states? The following lemmas connect two dierent possible ways to
model this case.

Lemma 4.8. Let Y1, . . . , Yk be k independent exponential random variables with
corresponding parameters λ1, . . . ,λk. The random variable Y = min{Y1, . . . , Yk}
is exponentially distributed with parameter λ1 + · · ·+ λk.

Proof. We establish the claim for k = 2. The general case can be derived by
applying the same reasoning. By denition it holds for Y, Y1, and Y2 that

Pr[Y > t] = Pr[min{Y1, Y2} > t] = Pr[Y1 > t, Y2 > t] .

Since the random variables Y1 and Y2 are independent, this is the same as

Pr[Y > t] = Pr[Y1 > t] · Pr[Y2 > t]

= e−λ1t · e−λ2t = e−(λ1+λ2)t .

It follows that the random variable Y = min{Y1, Y2} is exponentially distributed
with parameter λ1 + λ2.
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Lemma 4.9. Let Y1, . . . , Yk be k independent exponential random variables with
corresponding parameters λ1, . . . ,λk. The probability Pr[Y1 = min{Y1, . . . , Yk}]
is λ1

λ1+···+λk
.

Proof. Let Z be the random variable Z = min{Y2, . . . , Yk}. Lemma 4.8 states
that Z is exponentially distributed with parameter µ = λ2+ · · ·+λk. Applying
the law of total probability we obtain that the probability for Y1 to take on the
smallest value is

Pr[Y1 < Z] =

 ∞

0

Pr[Y1 < Z|Y1 = t] · fY1
(t) dt

=

 ∞

0

Pr[t < Z|Y1 = t] · fY1
(t) dt .

Since Z is independent of Y1, we can simplify to

Pr[Y1 < Z] =

 ∞

0

(1− Pr[t ≤ Z]) · fY1
(t) dt .

Recall that the probability density function of Y1 is fY1
(t) = λ1e

−λ1t, and that
the cumulative distribution function for Z is FZ(t) = 1 − e−µt. Plugging both
in, we obtain

Pr[Y1 < Z] = λ1

 ∞

0

e−µt · e−λ1t dt = λ1

 ∞

0

e−(λ1+µ)t dt

= λ1 ·
−e−(λ1+µ)t

λ1 + µ






∞

0

= λ1 ·



0−
−e0

λ1 + µ



=
λ1

λ1 + µ
=

λ1

λ1 + · · ·+ λk

,

as desired.

u0

u1

u2

u3

u4

λ0

p0,1

p0,2

p0,3

p0,4

u0

u1

u2

u3

u4

λ0,1

λ0,2

λ0,3

λ0,4

Figure 4.10: Two equivalent views: On the left, the state u0 has a sojourn time Y
exponentially distributed with parameter λ0. After time Y has passed, the next
state is chosen according to the probability distribution (p0,1, p0,2, p0,3, p0,4). On
the right, the sojourn time in state 0 is min{Y1, Y2, Y3, Y4}, where Yi ∼ exp(λ0,i)
with parameter λ0,i = p0,i · λ0. The next state is determined by the random
variable that realizes the minimum.
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Remarks:

• Lemmas 4.8 and 4.9 together state that the two views in Figure 4.10
are equivalent.

• As indicated in Figure 4.10, we denote by λi the parameter for the
exponential distribution describing the sojourn time in state i. The
probability that state j is entered after leaving i is pi,j , i.e., pi,i = 0 and


j∈S pi,j = 1. The transition rate from state i to j is λi,j = λi · pi,j .
Thus, for any i ∈ S it holds that



j∈S λi,j = λi.

• At any given moment, what is the probability that the example system
from Figure 4.7 is faulty? We denote by qi(t) the probability to be in
state i at time t. Furthermore, we write q(t) for the vector with entries
q1(t), q2(t), . . . , i.e., q(t) is the probability distribution of states at time
t. Let’s assume that at time 0 the system is working, i.e., q(0) = (0, 1).

• It turns out that the change in q can be expressed using dierential
equations.

Theorem 4.11. For all i ∈ S, the change in the state probability qi is

d

dt
qi(t)

  

Change

=


j:j ̸=i

qj(t) · λj,i

  

Into i

− qi(t) · λi

  

Out of i

.

Remarks:

• Theorem 4.11 follows from the memoryless property and relies on the
CTMC being time homogeneous.

• Solving such dierential equations for exact values of t can be a labo-
rious task. We can look at the stationary distribution instead. The
mathematical notion that captures a Markov chain’s long term behav-
ior is the stationary distribution. Informally, a stationary distribution
should satisfy that d

dtqi(t) = 0 “after enough time has passed”.

Defnition 4.12 (Stationary Distribution). For t → ∞, π is a stationary
distribution if for all i ∈ S,

0 =


j:j ̸=i

πj · λj,i − πi · λi .

Remarks:

• Thus, one can solve above system of linear equations in order to com-
pute the stationary distribution. Since we are interested in a probabil-
ity distribution, the solution must additionally satisfy the conditions
πi ≥ 0 and



i πi = 1.

Defnition 4.13 (Irreducible). A CTMC is irreducible if for all states i and
j it holds that j is reachable from i. That is, if there exists some t ≥ 0 such that
Pr[Xt = j |X0 = i] > 0.
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Theorem 4.14. For nite irreducible CTMCs the limits

πi := lim
t→∞

qi(t)

exist for all i ∈ S. Moreover, the entries in π are independent of q(0).

Remarks:

• CTMCs for which the stationary distribution exists are called ergodic.
For nite chains this is the same as being irreducible. We will later
see examples of irreducible innite chains that are not ergodic.

• In our examples from Figure 4.7 we obtain the following two equations:

0 = µ · π0 − λ · π1 , and

0 = λ · π1 − µ · π0 .

Since it must also hold that π1 + π0 = 1, we conclude that in the long
run, the probability of being in the working respectively faulty state
are

π1 =
µ

λ+ µ
and π0 =

λ

λ+ µ
.

4.2 Kendall’s Notation for Queues

Queueing theory can be a diversion to think about while queueing at the cash
register, but it is also used in modeling telecommunication networks, trac,
factories, or internet servers, as illustrated in Figure 4.16.

Defnition 4.15 (Jobs, Servers). A queueing system consists of a queue with
one or more servers which process jobs. The queue acts as a buer for jobs
that arrived but cannot be processed yet, because the server is busy processing
another job.

µλ

Arrival
Rate

Queue Server

Figure 4.16: A queueing system with one server. Jobs arrive at the queue from
a Poisson process with rate λ, i.e., the inter-arrival time between two jobs is
exponentially distributed with parameter λ. If the system is empty, the job is
processed immediately, otherwise the job waits in the queue. The time it takes
to process a single job is exponentially distributed with parameter µ, and after
one job has been served, if there is a job waiting, the server starts to process
the next job.
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Remarks:

• A job may be a shopper, a phone call, a web request, etc. A server
may model a checkout clerk, a factory, or a telephone network.

Defnition 4.17 (Kendall’s Notation). Let a and s be symbols describing the
arrival and service rates, and let m,n, j ∈ N. The Kendall notation for a
queueing system Q is a/s/m/n/j. The symbols a and s can be D, M , or G,
where
D means that the rate distribution is degenerate, i.e., of xed length,
M means that the arrival/service process is memoryless, and
G means that the corresponding rate stems from a generic distribution.

The parameter
m is the number of servers,
n is the number of places in the system (in the queue and at servers), and
j determines the external population of jobs that may enter the system.

The latter two parameters are omitted if the respective number is unbounded.

Remarks:

• Extensions to Kendall’s notation include other kinds of distributions
for arrival and service times. We will only consider memoryless pro-
cesses, i.e., the arrival and service times are exponentially distributed.

• One reason is of course that the memoryless property allows for sim-
pler math. But more importantly, memoryless processes turn out to
be a good approximation for many real world systems, and thus mem-
oryless queueing theory is a good tool to model such cases.

• When using this tool, one should be aware that for instance bursty
behavior, where batches of jobs sometimes arrive in quick succession
(think of a new trend appearing on Twitter) is not captured well by
memoryless distributions.

• The parameter n in Kendall’s notation limits how many jobs may be
present in the system, and how many jobs are rejected by the queueing
system. The parameter j aects the arrival rate—if a large fraction
of the population is already in the queue, then jobs are less likely to
arrive, and vice versa.

• Another parameter may be added to indicate the queueing discipline,
i.e., in which order jobs are served. For our discussion this distinction
is not necessary, and you may assume a First In First Out (FIFO)
order. Other queueing disciplines are, e.g., Last In First Out (LIFO),
random order, or queues where jobs have dierent priorities.

4.3 The M/M/1 Queue

Theorem 4.19. An M/M/1 queueing system has a stationary distribution if
and only if ρ = λ/µ < 1. In that case the stationary distribution is πk =
ρk(1− ρ).
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Figure 4.18: A CTMC modeling an M/M/1 system. In state 0 the system
is empty. When the chain is in state i ≥ 1, then there are i − 1 jobs in the
queue, and one job is being served with rate µ. New jobs arrive with rate λ.
Since the exponential distribution is memoryless, switching from state i to i+1
does not change the probability distribution for the service time of the currently
processed job.

Proof. In the stationary distribution, the change in probability mass at every
node must be zero. We obtain the equations

0 = µ · π1 − λπ0

for state 0, and

0 = λ · πk−1 + µ · πk+1 − (λ+ µ)πk

for all k ≥ 1. Rearranging yields

µ · πk+1 − λ · πk = µ · πk − λ · πk−1 = · · · = µ · π1 − λ · π0 = 0

⇒ µ · πk − λ · πk−1 = 0 ⇒ πk = ρ · πk−1 ⇒ πk = ρk · π0

In the case where ρ ≥ 1 the only solution is π = (0, 0, . . .). This means that
the queueing system does not converge, and that the length of the queue grows
indenitely. If on the other hand ρ < 1, then:

1 =

∞

k=0

πk = π0 ·

∞

k=0

ρk = π0 ·
1

1− ρ
⇒ π0 = 1− ρ .

Remarks:

• An M/M/1 queueing system is stable if ρ = λ
µ
< 1.

• Our model of the M/M/1 queueing system is an innite irreducible
CTMC, and the chain is ergodic if and only if ρ < 1.

• The probability that the single server in the queueing system is pro-
cessing a job is 1 − π0 = ρ. This is why the fraction ρ is called
utilization.

Defnition 4.20 (Utilization). The utilization of an M/M/m queueing system
is the fraction ρ = λ

mµ
.
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Remarks:

• In our proof of Theorem 4.19 we considered the ow of probability
mass to and from a single state. It sometimes simplies calculations
to consider the ow of probability mass between sets of states instead.
For example, in the M/M/1 case, rst calculate the ow between state
0 and all other states, then calculate the ow from the states {0, 1}
to all other states, and so on.

• How many jobs are in the system in expectation?

Theorem 4.21. In expectation there are N = λ
µ−λ

jobs in an M/M/1 system.

Proof. Denote byN the expected number of jobs in anM/M/1 queueing system.
Using the stationary distribution we compute

N =

∞

k=0

k · πk =

∞

k=0

k(1− ρ)ρk = (1− ρ)ρ

∞

k=0

kρk−1

= (1− ρ)ρ
1

(1− ρ)2
=

ρ

1− ρ
=

λ

µ− λ
,

as claimed.

Remarks:

• Similarly one can compute the variance as ρ/(1− ρ)2.

• What is the average time a job stays in the system?

4.4 Little’s Law

Defnition 4.22 (Jobs in the System, Arrival Rate, Response Time). Consider
any queueing system. Denote by N,λ, and T the random variables describing
the average number of jobs in the system, the average arrival rate, and the
average response time of a job (waiting time + service time), respectively.

Theorem 4.23 (Little’s Law). The three quantities from Denition 4.22 satisfy
N = λ · T .

Proof. For any point in time τ , we denote by N(τ ) the number of jobs in the
system at that time. Let t be some point in time, and for the sake of simplicity,
assume that N(0) = N(t) = 0. Consider a realization of the queueing system,
e.g., the one depicted in Figure 4.24. We write α(t) for the number of jobs
that arrived until time t, and Ti for the response time of the ith job. For any
realization (Figure 4.24) it holds that

α(t)


i=1

Ti =

 t

0

N(τ ) dτ .

Multiplying both sides with 1/t, and the left hand side with 1 = α(t)
α(t) we obtain

by rearranging that

α(t)

t
·

1

α(t)

α(t)


i=1

Ti =
1

t

 t

0

N(τ ) dτ .
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Figure 4.24: A possible realization of the random process describing a queueing
system. The jobs and their response times are depicted as segments with lengths
Ti, and the number of jobs in the system is given by the curve N(τ). In the
proof of Little’s Law the hatched area is measured in two ways. On the one
hand, the hatched area can be obtained by taking the integral of the function
N(τ ). On the other hand, the hatched area is the sum T1 + · · ·+ T6 due to the
denition of N(τ ).

This equation already states λ · T = N , as desired.

Remarks:

• The simplifying assumption made in our proof, i.e., that at times 0
and t the system is empty, is not necessary for Theorem 4.23 to hold.

• Little’s Law in the above form connects the random variables taking
on average properties of a queueing system, and holds regardless of the
probability distributions that describe the arrival and service times.

• It also holds for the expected values of N , λ, and T . In many cases,
for t → ∞, the expected values are equal to the limit of the random
variables with probability 1.

• So far we suggested a FIFO (rst in rst out) queueing discipline. To
prove Little’s Law this assumption was not required, i.e., Theorem 4.23
also holds for systems other than M/M/1 queues.

• Applying Little’s Law we conclude that in the steady state the average
response time is T = N

λ
= 1

µ−λ
, since for M/M/1 queueing systems

we know that N = ρ
1−ρ

.

Defnition 4.25 (Waiting Time, Jobs in the Queue). We denote by W the
average waiting time of a job (time spent in the queue) and by NQ the average
number of jobs waiting in the queue.
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Remarks:

• Similar to the time in the system, for M/M/1 queueing systems the
average waiting time of a job is W = T −

1
µ
= ρ

µ−λ
.

• The average number of jobs in the queue is NQ = λW = ρ2

1−ρ
.

4.5 Birth-Death Processes

Our CTMC for the M/M/1 queueing system is a special case of a so-called
Birth-Death Process.

0 1 2 3 4 . . .

λ0

µ1

λ1

µ2
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µ3

λ3

µ4

λ4

µ5

Figure 4.26: A generic Birth-Death Process.

Remarks:

• As before we can compute the stationary distribution. We obtain

π0 =
1

1 +


k≥1

k−1
i=0

λi

µi+1

, and

πk = π0 ·

k−1

i=0

λi

µi+1
for k ≥ 1 .

M/M/m Queues

What if there is a single queue for multiple servers, e.g., in a service hotline?
In Kendall’s notation such systems are written as M/M/m systems, where m
denotes the number of servers.

0 1 2 3 4 . . .

λ

1µ
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2µ
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3µ

λ

3µ

λ

3µ

Figure 4.27: Birth-Death process modeling an M/M/3 queueing system. If
there are less than 3 jobs, then the number of active servers is the number of
jobs in the system. When 3 or more jobs are in the system all servers are active.
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Remarks:

• In M/M/m queueing systems, the utilization ρ is the average fraction
of active servers.

• If ρ = λ
mµ

< 1, then the stationary distribution is

πk =



π0 ·
(ρm)k

k! for 1 ≤ k ≤ m

π0 ·
ρkmm

m! for k ≥ m.

and

π0 =
1

m−1
k=0

(ρm)k

k! + (ρm)m

m!(1−ρ)

.

• The probability that in the stationary distribution an arriving job has
to wait in the queue is

PQ =

∞

k=m

πk =

∞

k=m

π0ρ
kmm

m!

=
π0(ρm)m

m!

∞

k=m

ρk−m =
π0(ρm)m

m!(1− ρ)
.

Plugging in π0 we obtain the following expression, which is also known
as the Erlang C Formula:

PQ =
(ρm)m/(m!(1− ρ))

m−1
k=0

(ρm)k

k! + (ρm)m

m!(1−ρ)

(for ρ < 1)

• The average number of jobs in the queue NQ can be calculated in a
similar fashion. With PQ the number can be expressed as

NQ = PQ ·
ρ

1− ρ
.

The M/M/m/n Queue

Often, the space in the queue is bounded, i.e., the system is M/M/m/n. Recall
that n is the number of places in the system, so the maximum length of the
queue is n−m.

0 1 2 3 4 5

λ

1µ
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Figure 4.28: Birth-Death process modeling an M/M/5/5 queueing system.
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Remarks:

• The case m = n is often used to model communication networks. Such
a system can accommodate m simultaneous calls, and the duration of
a call is distributed with exp(µ). One can calculate that in this case

πk = π0 ·


λ

µ

k
1

k!
for 1 ≤ k ≤ m

Using that
m

k=0 πk = 1 yields that the probability to be in state 0 is

π0 =
1

m

k=0


λ
µ

k
1
k!

• The blocking probability, i.e., the probability that an arriving job is
rejected, is thus

πm =


λ
µ

m
1
m!

m

k=0


λ
µ

k
1
k!

This so-called Erlang-B formula also holds for M/G/m/m systems
where the service times are 1/µ in expectation, regardless of their
distribution.

The M/M/n/m/m Queue

In telephone networks the population is assumed to be much larger than the
number of places in the system. Thus, it is justied to assume that the arrival
rate is independent of the number of jobs in the system. Cases where this
assumption cannot be made can be modeled as M/M/n/m/j systems.

0 1 2 3 . . . m

m · λ

µ

(m− 1) · λ

µ
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(m− 3) · λ

µ

λ

µ

Figure 4.29: Birth-Death process modeling an M/M/1/m/m queueing system.

Remarks:

• For M/M/1/m/m systems, one can calculate that

πk = π0 ·

k−1

i=0

λ(m− i)

µ
for 1 ≤ k ≤ m

π0 =
1

m

k=0


λ
µ

k

·mk

,

where mk := m(m− 1)(m− 2) · . . . · (m− k + 1).
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• Many other queueing systems are possible. For example, jobs might
have either high or low priority, and low priority jobs will only be
served when no high priority job is waiting, with or without preemp-
tion when a new high priority job is arriving. Also such a priority-
based queueing system can be modeled by CTMCs; in the case of two
priorities the CTMC becomes two-dimensional.

4.6 Queueing Networks

Sometimes, systems consist of more than a single queueing system. Consider,
for instance, a support call center where calls are initially handled by rst-
line support. Customers with problems that cannot be solved by the rst-line
support are handed over to technicians with a separate queue. See Figure 4.30
for an illustration.

µ1
λ1 p1,0 Jobs leaving after

First-Line Support

External
Arrivals

First-Line Support

µ2

p1,2

λ2 µ2,0

Arrival rate
at 2nd queue

Technical Support

Figure 4.30: A queueing network modeling a two-tier support hotline. Jobs
arrive from the outside with rate λ1 and enter the queue for rst-line support.
After the rst-line support served the job, with rate µ1, a p1,0 = (1− p1,2) frac-
tion of the jobs are satised and leave the system. The remaining p1,2 fraction
of jobs need in-depth technical assistance, which is provided by a technician in
the technical support queue. Technical support takes time exponentially dis-
tributed with parameter µ2, and afterwards the job leaves the system.

Remarks:

• Before looking at the whole network, let us look at a single queueing
system. If the queueing system is stable, i.e., if ρ < 1, what is the
inter-departure time between consecutive departing jobs?

Theorem 4.31 (Burke’s Theorem). Consider a M/M/1 queue with arrival rate
λ and service rate µ. If the system is stable, then in the steady state the time
between two departures is exponentially distributed with parameter λ.

Proof. Consider any point in time, and let T be the random variable for the time
until the next job leaves the queueing system. Denoting by ρ the probability
that the system is not empty, we can write

Pr[T ≤ t] = ρ · Pr[T ≤ t | system not empty] + (1− ρ) · Pr[T ≤ t | system empty]



4.6. QUEUEING NETWORKS 29

When the queueing system is not empty, we know that T ∼ exp(µ). For the
empty case, recalling that the arrival and service rates are exponentially dis-
tributed, the term can be rewritten as

Pr[T ≤ t] = ρ · Pr[S ≤ t] + (1− ρ) · Pr[A+ S ≤ t] ,

where A ∼ exp(λ) and S ∼ exp(µ) are random variables describing the arrival
and service time of the next arriving job, respectively. By conditioning on S we
obtain

Pr[T ≤ t] = ρ · Pr[S ≤ t] + (1− ρ) ·

 t

0

Pr[A+ S ≤ t | S = τ ] · fS(τ ) dτ

= ρ · Pr[S ≤ t] + (1− ρ) ·

 t

0

Pr[A ≤ t− τ ] · fS(τ ) dτ .

Plugging in the probability density and distribution function and solving the
integral yields

Pr[T ≤ t] = ρ · (1− e−µt) + (1− ρ) · (1− e−µt)− (1− ρ) · µ ·


e−µt − e−λt

λ− µ



.

By rearranging we get that Pr[T ≤ t] = 1 − e−λt, which means that T is
exponentially distributed with parameter λ, as desired.

Remarks:

• Burke’s theorem also holds for the more general M/M/m queues.

• It simplies the analysis of M/M/m queueing systems in the station-
ary case. Perhaps surprisingly, the departure process does not depend
on the time it takes to serve a job, but just on the rate of arrivals.

• The stochastic process counting the number of arrivals or departures
from a memoryless queueing system up to time t is a Poisson process.

• What about networks of queues?

µ
λ0,1 λ1 p1,0 = 0.1

p1,1 = 0.9

Arrivals at the queue

1/λ0,1

Figure 4.32: A queueing network exhibiting bursty behaviour. External jobs
arrive with rate λ0,1, and jobs leaving the queueing system immediately re-
enter with probability p1,1 = 0.9. Thus, in expectation, each job enters the
queue 10 times before leaving the system. The external arrivals at the queue,
indicated as long arrows in the right graph, are a Poisson process. However, the
total arrivals at the queue are not Poisson—after serving an external arrival the
job is likely to loop back to the queue a few times.
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Defnition 4.33 (Queueing Network). A queueing network is a directed graph
in which nodes represent queueing systems and edges direct jobs from one queue-
ing system towards the next one. The network is open if external jobs arrive
and depart the network, and closed if jobs never enter or leave the network.

Remarks:

• In a closed network, the number of jobs is constant. In the following,
we consider an open network containing M/M/m queueing systems.
Let us denote the number of queues (nodes) in the network by n.

• We assume that the external arrivals come from a Poisson distribu-
tion with some rate λ0. The nodes in the graph are identied with
positive integers, and an external arrival joins queueing system i with
probability p0,i, i.e., with rate λ0,i = λ0 · p0,i.

• The service rate of queueing system i is µi. After being served at
queueing system i, a job leaves the system with probability pi,0, and
joins queueing system j with probability pi,j .

• Due to Burke’s theorem we know that in the stationary case the de-
partures from a queueing system have the same distribution as the
arrivals. If there are no loops in the network, we can thus compute
the arrival rate λi at queue i by solving the linear equations

λi = λ0,i +

n

j=1

λj · pj,i .

• In a queueing network with loops, Figure 4.32 proves that arrivals will
not be Poisson. So the solving the linear equations will only roughly
approximate the steady state.

• The utilization ρi of a station is λi/(mi · µi), where mi is the number
of servers at the ith queueing system.

Theorem 4.34 (Jackson’s Theorem). Consider an open queueing network with
n nodes where each node vi, i ∈ {1, . . . , n}, represents an M/M/mi queueing
system. If all queues vi are stable, then the steady state of the network is

π(k1, . . . , kn) =

n

i=1

πi(ki) .

Here π(k1, . . . , kn) denotes the stationary distribution for the network, i.e., the
probability that ki jobs are in queueing system i; and πi(ki) is the probability that
ki jobs are in vi when considering vi as a single M/M/mi queue with arrival
rate λi, i.e., the corresponding entry in vi’s stationary distribution.
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Remarks:

• Jackson’s Theorem allows us to compute the stationary distribution
of an open queueing network containing memoryless queues. The dis-
tribution is obtained by computing the product of each queue’s sta-
tionary distribution when considered in isolation (with arrival rate λi

as above).

• Before applying the theorem, one needs to check that each queue is
stable. This is done by computing the values λi and checking that
each ρi = λi/(mi · µi) < 1.

• Little’s Law also applies to networks of queueing systems as a whole.

• For closed networks the stationary distribution can be computed as
follows.

Theorem 4.35 (Gordon-Newell). Consider a closed queueing network with to-
tal population K and n nodes, where each node vi, i ∈ {1, . . . , n}, represents
an M/M/mi/ni queue. If all queues vi are stable, then the steady state of the
network is

π(k1, . . . , kn) =
1

G(K)

n

i=1

ρki

i ,

where G(K) is the normalizing constant

G(K) =


(k1,...,kn)

ki≤ni,


ki=K

n

i=1

ρki

i ,

and the values ρi are obtained from the λi satisfying the equations

λi =

n

j=1

λj · pi,j .

Chapter Notes

The founder of queueing theory is Agner Karup Erlang (1878–1929), who wanted
to understand how the telephone network needs to be dimensioned. He already
described the stationary solutions to M/M/m and M/M/m/n queues, also
referred to as Erlang C and Erlang B models, respectively, and was particularly
interested in the probability that the system loses a call [1]. Since then many
other kinds of queues were studied, and in 1953 Kendall introduced the notation
described in Denition 4.17 to better categorize previous results [4].

For a long time Little’s Law (Theorem 4.23) was believed to be true without
a formal proof. In a book from 1958 Morse challenged his readers to nd a
counterexample [7], but Little found a proof for the statement instead [6]. A
series of papers studied variants and extensions, thus widening the applicability
of the law. Fifty years later Little summarized the progress in [5].

Jackson’s Theorem for open networks (Theorem 4.34) was a rst step in
understanding networks of queues [3]. The stationary distribution for the closed
network case (Theorem 4.35) was described by Gordon and Newell [2].

This chapter was written in collaboration with Jochen Seidel.
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