
Chapter 5

Online

In many application domains events are not Poisson distributed. For some appli-
cations it even makes sense to (more or less) assume that events are distributed
in the worst possible way, e.g. in networks, packets often arrive in bursts. In
this section we study discrete event systems from a worst-case perspective. In
particular, we analyze the price of not being able to foresee the future. This
is a phenomenon that often occurs in discrete event systems, but also in our
daily life. The analysis tool is often referred to as Online Theory or Online
Algorithms.

5.1 Ski Rental

We start out with a seasonal “toy example,” ski rental. Imagine that you want
to start a new hobby (e.g. skiing, skateboarding, having a boy- or girlfriend),
but you don’t yet know whether you will like it. The equipment is expensive,
therefore you decide to rst rent it a few times, before you buy (or get married!).
When dealing with this problem, we (informally speaking) assume that Mur-
phy’s law will strike: as soon as you buy, you will lose interest in the subject.
Arguments like “I rented skis 17 times, and like it so much that I will go skiing
for at least 1717 more times” do not count in Murphy’s world. Instead, once
you buy skis you can be sure to meet new friends, and they think that skiing is
for losers, and snowboarding or whatever is the new hip thing.

We rst radically simplify the problem (to make it mathematically more elegant
and tractable):

Denition 5.1 (Ski Rental). The ski rental problem consists of two values:

• Input: a real number u, representing the time a skier will end up skiing
(u ≥ 0), chosen by an adversary.

• Algorithm: a real number z, at which the algorithm will stop renting skis,
and instead buys skis for price 1.

33

34 CHAPTER 5. ONLINE

Remarks:

• The algorithm does not know the discrete event, i.e., the input u.

• The algorithm is represented by a single value. This is rather unusual.

• The cost of the algorithm with value z on input u is costz(u):

costz(u) =



u if u ≤ z
z + 1 if u > z

• The goal is to develop an algorithm z that is good for any input u. For
determining how “good” an algorithm is, we compare the cost of the
algorithm with the cost of an optimal clairvoyant (“oine”) algorithm,
i.e., an algorithm that knows the future (which in our case corresponds
to knowing input u). The cost of the optimal oine algorithm is given
by

costopt(u) =



u if u ≤ 1
1 if u > 1

}

= min(u, 1).

Denition 5.2 (Competitive Analysis). An online algorithm A is r-competitive
if for all nite input sequences I

costA(I) ≤ r · costopt(I) + k,

where costA and costopt are the cost functions of the algorithm A and the optimal
oine algorithm, respectively, and k is a constant independent of the input.

Remarks:

• The smaller we can make r, the better.

• Our parameter r may be a constant, but it can also depend on the
input, e.g., r ∈ O(log n) or r ∈ O(n) where n is the size of the input.

Denition 5.3 (Competitive Ratio). If k = 0 in Denition 5.2, then the online
algorithm is called strictly r-competitive. In this case, the worst-case ratio
between the cost of the online and the cost of the optimal oine algorithm, called
competitive ratio, is often considered directly. Formally, the competitive ratio
is dened as

r = sup
I∈I

costA(I)

costopt(I)

where I is the set of all nite input sequences I.

Remarks:

• We take the supremum and not simply the maximum since there are
cases where the ratio between the cost of the online and the cost of the
optimal oine algorithm is smaller than some specic value for any
nite input sequence, but gets arbitrarily close to this value (e.g., you
may get closer and closer to this value by making the input sequence
longer and longer).

5.2. RANDOMIZED SKI RENTAL 35

• If an online algorithm has a competitive ratio of r, then it is strictly
r-competitive (but not necessarily the other way around!).

Theorem 5.4. Ski rental is strictly 2-competitive. The best algorithm is z = 1.

Proof. Let us investigate z = 1 in the ski rental algorithm. Then,

costz(u)

costopt(u)
=

Cases u ≤ z = 1 u > z = 1

u ≤ 1 u
u

impossible

u > 1 impossible 1+1

1

Thus, the worst case is u > z = 1, and the competitive ratio is 2. Is this
optimal?

• Let’s try z > 1: In this case the adversary might/will choose u = z + ϵ.
Then, the cost ratio is

costz(u)

costopt(u)
=

z + 1

1
> 2.

• If z < 1 then the adversary will also choose u = z + ϵ, for some small
enough ϵ. Then

costz(u)

costopt(u)
=

z + 1

u
=

z

u
+

1

u
> 2.

Remarks:

• Everything solved?!? It seems that the algorithm has a big handicap.
We assume that the adversary knows every bit about the algorithm
(similar to models used in cryptography). The adversary can always
present an input which is (arbitrarily close to) worst-case for the al-
gorithm. Maybe the algorithm may decide randomly, rendering the
adversary’s life more dicult.

5.2 Randomized Ski Rental

Let’s look at an algorithm A that chooses randomly between two values, z1 and
z2 (with z1 < z2), with probabilities p1 and p2 = 1− p1, respectively.

Algorithm 5.5 Two Value Ski Rental

1: throw coin that shows heads with probability p1
2: if coin shows heads then
3: buy skis at time z1
4: else

5: buy skis at time z2
6: end if

36 CHAPTER 5. ONLINE

Remarks:

• The cost of Algorithm 5.5 is given by

costA(u) =







u if u ≤ z1
p1 · (z1 + 1) + p2 · u if z1 < u ≤ z2
p1 · (z1 + 1) + p2 · (z2 + 1) if z2 < u

• The adversary, being very evil, will still choose the worst possible
input. Note that only u1 = z1 + ϵ and u2 = z2 + ϵ are sensible, as any
other input value is inferior to either u1 or u2.

Example 5.6. Consider the algorithm given by the values

z1 = 1/2, z2 = 1.

What is the best choice for p1, i.e., the choice that minimizes the competitive
ratio?

For ϵ → 0, we have costA = p1(z1 + 1) + p2z1 if the adversary chooses the
input u1 = z1 + ϵ, and costA = p1(z1 + 1) + p2(z2 + 1) if the adversary chooses
the input u2 = z2 + ϵ.

Using the values from above and the fact that p2 = 1− p1, we obtain

costA = p1 +
1

2

and

costA = 2−
1

2
· p1,

respectively.
Hence, for the input u1 = z1 + ϵ, we have (for ϵ → 0)

costA
costopt

= 2p1 + 1,

and for the input u2 = z2 + ϵ, we have

costA
costopt

= 2−
1

2
· p1.

As the adversary will pick the larger of the two ratios by choosing the re-
spective input, the optimal choice for p1 (for the online algorithm) minimizes
the maximum of the two ratios. Since one of the two ratios, seen as a function
of the parameter p1, is monotonically increasing while the other one is mono-
tonically decreasing, the minimum is assumed when both ratios have the same
value. Setting

2p1 + 1 = 2−
1

2
· p1

yields

p1 =
2

5
,

which implies a competitive ratio of

costA
costopt

=
9

5
.

5.2. RANDOMIZED SKI RENTAL 37

Remarks:

• In other words, for this particular randomized algorithm, the expected
competitive ratio is only 1.8, below the best possible deterministic
algorithm. Mind, however, that this new bound is in expectation
only!

• Maybe one can do even better by allowing the algorithm to choose
more than two values? Maybe even innitely many values?!? A sce-
nario is shown in Figure 5.7.

Algorithm: z

A
d
v
er

sa
ry

/I
n
p
u
t:

 u

Player will always buy early

Good for Adv:

Comp. ratio is

(z+1) / u

Comp. ratio is (z+1) / 1

Good for Algo

Comp. ratio is

u / u

Uninteresting for Adv:

1

0 1

Figure 5.7: Choosing more than two values

• Then, one might think, the expected competitive ratio is

E[r] =
1

2
+

∫ 1

0

∫ u

0

z + 1

u
dzdu = . . . = 1.75.

• Was that a valid argument?

• No. We assumed that the adversary chooses u with uniform distri-
bution. This is not okay. In this specic example, an adversary can
cause much more harm by choosing values close to 1. In addition, it
was not correct to sum up the ratios of the costs, instead we should
compute the ratio of the expected costs.

38 CHAPTER 5. ONLINE

• Instead, we should rather solve

E[r] =

 1

0

 u

0
(z + 1)p(z)d(u)dzdu+

 1

0

 1

u
up(z)d(u)dzdu

 1

0
ud(u)du

,

where p(z) is the probability distribution of the algorithm, and d(u) is
the probability distribution of the adversary, with



p(z) =


d(u) = 1.
The adversary chooses its distribution d(u) such that it maximizes
the expected competitive ratio E[r], and the algorithm chooses its
distribution p(z) such that it minimizes E[r]. Note that the adversary
chooses its distribution after the algorithm chooses its distribution.

• This is a very hard task. However, does it really make sense for the
adversary to choose the input according to a probability distribution,
as it did in the previous example? As it turns out, the adversary can-
not do better than choosing one (worst) input value deterministically,
i.e., it does not gain anything from using randomization.

• Recall that the adversary chooses the input after the online algorithm
chooses its probability distribution p(z). Hence, in order for our al-
gorithm to be strictly r-competitive, it is necessary that the cost of
the online algorithm is at most r times the cost of the optimal oine
algorithm, for any input u. However, achieving the latter is also suf-
cient in order to be r-competitive! In other words, all we have to
do for a competitive ratio of r is to choose the algorithm’s probability
function p(z) such that costA(u) ≤ r · costopt(u) for all u. With this
approach, we can actually show the following theorem.

Theorem 5.8. The online algorithm given by the probability distribution p(z) =
ez

e−1
is strictly e

e−1
-competitive in expectation.

Proof. For a better understanding of the particular choice of our algorithm, let’s
have a look at the steps leading to this choice. Recall that the algorithm’s cost
is

costz(u) =



u if u ≤ z
z + 1 if u > z

Again, it seems natural to restrict the algorithm to values between 0 and 1.
Also the adversary can restrict itself to values between 0 and 1, because, if a
value higher than 1 is presented, the adversary and the algorithm infer exactly
the same cost as if the value 1 was presented. Therefore,

∫ u

0

(z + 1)p(z)dz +

∫ 1

u

u · p(z)dz ≤ r · u, with

∫ 1

0

p(z)dz = 1.

Having a hunch that the best probability function will probably be an equality,
we immediately try

∫ u

0

(z + 1)p(z)dz + u

∫ 1

u

p(z)dz = r · u, with

∫ 1

0

p(z)dz = 1.

We rst dierentiate with respect to u, getting

(u+ 1)p(u) +

∫ 1

u

p(z)dz + u · (−p(u)) = p(u) +

∫ 1

u

p(z)dz = r.

5.3. LOWER BOUNDS 39

We again dierentiate with respect to u, and get

δp(u)

δu
− p(u) = 0 ⇔

δp(u)

δu
= p(u).

That’s one of the few dierential equations everybody knows:

p(u) = α · eu.

In order to reveal α we use
 1

0
p(z)dz = 1:

1 =

∫ 1

0

αezdz = α(e1 − e0) ⇒ α =
1

e− 1
.

In other words, p(u) = eu

e−1
. We insert p(u) into the rst dierentiation:

r = p(u) +

∫ 1

u

p(z)dz =
eu

e− 1
+

e1 − eu

e− 1
=

e

e− 1
.

Note that also for inputs u > 1 the inequality costA(u) ≤ r · costopt(u) = r · 1
holds.

Remarks:

• The big question remains: Can we get any better?!?

5.3 Lower Bounds

Time to think about lower bounds. Lower bounds for randomized algorithms
often use the Von Neumann/Yao Principle, which we state and use without
proof:

Theorem 5.9 (Von Neumann/Yao Principle). Choose a distribution over prob-
lem instances, e.g. d(u) for ski rental. If for this distribution all deterministic
algorithms cost at least r, then r is a lower bound for the best possible randomized
algorithm.

Remarks:

• For ski rental we are in the lucky situation that we can easily parame-
terize all possible deterministic algorithms, simply by z ≥ 0. Now we
have to choose a distribution of inputs, with d(u) ≥ 0 and



d(u) = 1.

Example 5.10. Consider the distribution d(u) = 1/2 for 0 ≤ u ≤ 1 and
d(“∞”) = 1/2. Now, let’s have a look at two simple online algorithms:

• z = 0 (immediate buy): incurs a constant cost 1 for all possible input
distributions: Therefore costz=0(d(u)) = 1.

• z = 1 (worst-case deterministic algorithm): incurs the same cost as the
optimal oine algorithm for small u but cost 2 for u = ∞ which happens
with probability 1/2; when summing up we see that costz=1(d(u)) = 5/4.

40 CHAPTER 5. ONLINE

In general, the cost of the optimal oine algorithm is

costopt(d(u)) =
1

2

∫ 1

0

udu+
1

2
· 1 =

3

4
.

For general z ≤ 1 the cost of the online algorithm is

costz(d(u)) =
1

2

(
∫ z

0

udu+

∫ 1

z

(z + 1)du

)

+
1

2
(z + 1)

=
1

2

(

z2

2
+ (z + 1)(1− z) + (z + 1)

)

= 1 +
z

2
−

z2

4
≥ 1.

For general z > 1 the cost of the online algorithm is

costz(d(u)) =
1

2

∫ 1

0

udu+
1

2
(z + 1) =

1

4
+

z + 1

2
> 5/4.

Using costopt(d(u)) = 3/4, we conclude that the competitive ratio r is at least
4/3 ≈ 1.33.

Remarks:

• Note that for distribution d(u) indeed z = 0 is the best algorithm.

• The lower bound of 1.33 and the upper bound of 1.58 do not match.

• As argued above, the immediate buy algorithm is worst with very
small u. In order to make our lower bound stronger it could therefore
be benecial to tune the input distribution such that it contains more
small u values.

• Guessing the right input distribution is not trivial. However, similarly
to the upper bound, it can be derived using dierential equations.
The worst input distribution is d(u) = 1/eu, for 0 < u < 1, and
d(“∞”) = 1/e.

• Next, let us study some online problems in the Internet. We will
discover surprising connections to ski rental.

5.4 The TCP Acknowledgement Problem

TPC is a layer 4 networking protocol of the Internet. It features, among other
things:

• An error handling mechanism which tackles transmission errors and dis-
ordering of packets, using sequence numbers and acknowlegdements.

• A “friendly” exponential slow start mechanism such that new connections
do not overload the network.

• Flow Control: A sliding window sender/receiver buer that simplies han-
dling and prevents the receiver buer from overload.

5.4. THE TCP ACKNOWLEDGEMENT PROBLEM 41

• Congestion Control: A backo mechanism that should prevent network
overloading.

We study a single sender/receiver pair, where the sender sends packets and the
receiver acknowledges them (without sending packets itself). There are several
TCP implementations available, with various acknowledgement-procedures. In
order to save resources, no implementation sends acknowledgements right away.
One version of Solaris, for example, always waits 50ms before acknowledging in
order to support multiple acknowledgements in a single message. In one version
of BSD, TCP-Ack has a 200ms heartbeat, and acknowledges all packets received
so far. All implementations send cumulative acknowledgements (“I received all
packets up to packet x”). This mechanism is the subject of this section.

At the receiver side, the situation looks like in Figure 5.11.

Received packets

time

Packs
Acks

Figure 5.11: TCP ACK problem

Denition 5.12 (TCP Acknowledgement Problem). The receiver’s goal is a
scheme which minimizes the number of acknowledgements plus the sum of the
latencies for each packet, where the latency of a packet is the time dierence
from arrival to acknowledgement. More formally, we have

• n packet arrivals, at times: a1, a2, . . . , an

• k acknowledgements, at times: t1, t2, . . . , tk

• And we want to minimize:

min k+

n
∑

i=1

latency(i), with latency(i) = tj−ai, where j such that tj−1 < ai ≤ tj .

42 CHAPTER 5. ONLINE

Remarks:

• Note that in Figure 5.11 the total latency is exactly the area between
the two curves.

• Clearly, we are comparing apples with oranges when comparing the
number of acknowledgements with the sum of latencies. However,
when scaling time accordingly, this should not be a big problem.

• There are quite a few technical exceptions. In many implementations,
signaling packets (e.g. SYN, FIN) are usually acknowledged faster;
also the TCP standard wants implementations to acknowledge packets
within 500ms. Since the receiver is usually also sender, it might also
delay its own sending packets.

• In our studies we do not learn the future from the past. A machine
learning approach could give a totally dierent perspective.

• How might a good algorithm for the TCP Acknowledgement Problem
look like?

Algorithm 5.13 z = 1 Algorithm

1: Whenever a rectangle with area z = 1 does t between the two curves in
Figure 5.14, send an acknowledgement, acknowledging all previous packets.

Received packets

time

Packs

z = 1

z = 1

z
=

 1

Alg

Figure 5.14: The z = 1 algorithm

Lemma 5.15. The optimal algorithm sends an ACK between any pair of con-
secutive ACKs by Algorithm 5.13.

Proof. For the sake of contradiction, assume that, among all algorithms who
achieve the minimum possible cost, there is no algorithm which sends an ACK
between two ACKs of Algorithm 5.13. We propose to send an additional ACK at
the beginning (left side) of each z = 1 rectangle. Since this ACK saves latency 1,

5.4. THE TCP ACKNOWLEDGEMENT PROBLEM 43

it compensates the cost of the extra ACK. That is, there is an optimal algorithm
who chooses this extra ACK.

Theorem 5.16. Algorithm 5.13 is 2-competitive

Proof. We have costopt = kopt + latencyopt and costz=1 = kz=1 + latencyz=1.
Since the optimal algorithm sends at least one ACK between any two consecutive
ACKs of Algorithm 5.13, we know kz=1 ≤ kopt.

Received packets

time

Packs

opt

z = 1

Figure 5.17: Algorithm 5.13 vs. the optimal algorithm

Also, by denition (see Figure 5.17),

latencyz=1 = latencyopt + latency(z = 1 without opt)− latency(opt without z = 1)

≤ latencyopt + latency(z = 1 without opt).

Using latency(z = 1 without opt) < kopt · 1 (if any of these rectangles were of
size 1 or larger, Algorithm 5.13 would have ACKed earlier) we get:

costz=1 = kz=1 + latencyz=1

≤ kopt + latencyopt + latency(z = 1 without opt)

< kopt + latencyopt + kopt · 1

= 2 · kopt + latencyopt ≤ 2 · costopt

Remarks:

• It is no coincidence that we called Algorithm 5.13 the z = 1 algorithm.
Similarly to ski rental, it is possible to choose any z. In fact, if you
really think about it, the TCP ACK problem is in fact very much like
ski rental! Indeed, if you wait for a rectangle of size z with probability
p(z) = ez

e−1
, you end up with a randomized TCP ACK solution which

is e
e−1

competitive in expectation.

44 CHAPTER 5. ONLINE

• Many other problems are also just like ski rental! That’s why we stud-
ied it in the rst place. E.g. the Halbtax-Problem (originally known
as the Bahncard problem). Buying a Halbtax-Card which reduces
each trip by β is e

e−1+β
competitive.

5.5 Competitive Lists with Move-to-Front

Consider a list L containing n items, for example the collection of your favorite
records. Whenever an item x in L is requested, the list is scanned from the
beginning until x is found. The cost of accessing x is k if x is the kth item in
L. In order to better respond to subsequent requests, the position of any two
adjacent items in L may be swapped. Such a swap costs 1. Requests to items
in L arrive in an online fashion. Here is a simple Move-to-Front algorithm.

Algorithm 5.18 Move-to-Front (M2F)

1: if item x is requested then

2: Access x and move x to the front.
3: end if

Remarks:

• We would like to compare the M2F algorithm with the optimal oine
algorithm OPT that knows the entire sequence of requests in advance.
Note that the per operation cost of M2F can be arbitrarily worse than
OPT. For example, OPT may already move x to the front of L, before
requested as OPT knows the request in advance. As such, OPT can
serve request x with cost 1, whereas the cost for M2F to serve x may
be much higher.

• However, OPT must pay a price for moving x to the front of L at an
earlier time. So even though the cost of that one request x may be in
favor of OPT, the total cost of OPT and M2F may still be comparable.

• Amortized Analysis is a method to analyze the total cost of a sequence
of operations, e.g., using the potential method. A potential function
Φ is dened to reect dierences in the state of dierent systems.
Instead of just measuring the cost of each operation, we also measure
the change in the potential function after each operation. Intuitively,
the potential function models the potential cost savings for future
operations.

Denition 5.19 (Amortized Cost). The amortized cost amortized(op) of an
operation op is dened as

amortized(op) := cost(op) +∆Φ(op),

where cost(op) is the actual cost of op, and ∆Φ(op) is the change of potential Φ
caused by op.

5.5. COMPETITIVE LISTS WITH MOVE-TO-FRONT 45

Remarks:

• Ideally, Φ is dened so that the amortized cost is small, and always
the same. Thus, the change in potential should be negative for high
cost operations and positive for low cost operations.

Lemma 5.20. Let Φinitial and Φfinal are the potential values before the rst
and after the last operation in a sequence S of operations. If Φfinal ≥ 0, then

∑

op∈S

cost(op) ≤
∑

op∈S

amortized(op) + Φinitial.

Proof. Using Denition 5.19, the total amortized cost for the operations in S is

∑

op∈S

amortized(op) =
∑

op∈S

cost(op) +
∑

op∈S

∆Φ(op)

=
∑

op∈S

cost(op) + Φfinal − Φinitial.

As Φfinal ≥ 0, the claim follows .

Theorem 5.21. M2F algorithm is strictly 4-competitive.

Proof. Denote by OPT an optimal algorithm. We keep track of two lists LM2F

and LOPT , i.e., the list L as it is maintained by M2F and OPT, correspondingly.
Initially LM2F = LOPT = L. For the two lists LM2F and LOPT , an inversion
is a pair of items (x, y) which appear in dierent order in LM2F and LOPT .

Figure 5.22: The inversion (x, y) between LM2F and LOPT .

We use the following denition of potential function Φ in our analysis.

Φ := 2 · (number of inversions between LM2F and LOPT)

Initially the potential Φ = 0 since the lists are equal. In every step, Φ is non-
negative since the number of inversions is non-negative. Thus the total cost of
M2F is upper bounded by the total amortized cost of M2F. It therefore suces
to show that M2F’s amortized cost is at most 4 times the cost of OPT.

Fix a sequence of requests and a request r in that sequence, and denote by
x the item requested by r. Denote by k and j the position of x in LM2F and
LOPT before handling r, respectively.

46 CHAPTER 5. ONLINE

Figure 5.23: Item x in LM2F and LOPT before handling request r.

The cost cost(r) for M2F is k for the initial scan, in addition M2F uses k−1
swaps to move x to the front of L, i.e., cost(r) = 2k− 1. The cost amortized(r)
consists of cost(r) and the change in the potential function ∆Φ(r). The change
of potential after request r has been processed can be determined in two steps:
rst, the change ∆ΦM2F after M2F ’s list maintenance and second, the change
∆ΦOPT after OPT ’s list maintenance.

Let us rst estimate ∆ΦM2F . Since M2F does not change the relative order
of non-requested items, all aected inversions must involve item x. Furthermore
x is only swapped with items y that precede x in LM2F . Let y be an item
preceding x in LM2F before M2F’s list maintenance. We say that item y is
bad if y precedes x also in LOPT , otherwise y is good. If y is bad, then a new
inversion is created, otherwise an inversion is destroyed. There are at most j−1
bad items, and therefore at least (k− 1)− (j − 1) good items. Recalling that Φ
counts each inversion twice, we conclude that

∆ΦM2F ≤ 2 ·




j − 1


−


(k − 1)− (j − 1)




= 4j − 2k − 2.

Figure 5.24: Items x, y in LM2F and LOPT before handling request r.

Second, we compute the change ∆ΦOPT . Denote by s the number of swap-
operations performed by OPT while handling request r. Every swap performed
by OPT creates at most one new inversion. Thus, the change ∆ΦOPT is at most
2s.

Furthermore, every such swap increases costOPT (r) of the optimal algorithm
by exactly 1. Recall that the cost for nding item x in LOPT is j, and therefore

5.6. TWO SERVERS ON A LINE 47

costOPT (r) = j + s. Now, we can bound amortized(r) as

amortized(r) = cost(r) +∆ΦM2F +∆ΦOPT

≤ 2k − 1 + 4j − 2k − 2 + 2s

= 4j − 3 + 2s

< 4j + 2s

≤ 4 · (j + s) = 4 · costOPT (r).

5.6 Two Servers on a Line

Lionel and Richie are brothers who work as ice cream vendors at a 1 km long
beach. Whenever a tourist wants to buy some ice cream (a “request” event), one
of the two brothers must serve the customer. Since the beach is nice and at,
Lionel and Richie always know the exact location of a new request. There are
no concurrent requests, i.e., between any two requests there is always enough
time to reach the customer and sell the ice cream.

In Figure 5.6, we see an example from the brothers’ daily life: The ith request
occurs to the right of Richie. In the example, this request is served by Richie,
for which he covers a distance of 0.2 kilometers. The (i + 1)st request occurs
between Lionel and Richie. Who should serve it?

i:

i+1:

Request i+1

Request i

0 1

10

0.2

Lionel Richie

RichieLionel

Figure 5.25: “The beach”

Assume that Lionel starts at position 0 and Richie at position 1. A request
is dened by its position ri in the interval [0, 1]. Lionel and Richie have to serve
a sequence S = r1, r2, . . . of requests.

Let dL and dR be the total distances that Lionel resp. Richie cover on a
given day. In order to be not too tired in the evening, Lionel and Richie want to
keep the total distance they cover together as small as possible, i.e., they want
to minimize dL + dR. What strategy should Lionel and Richie choose?

Algorithm 5.26 Greedy Strategy

1: Each request is served by the brother who is closer to the request

48 CHAPTER 5. ONLINE

Lemma 5.27. The cost of the greedy strategy can be arbitrarily close to n times
the cost of the optimal solution, where the number of requests is 2n.

Proof. Consider the request sequence S = 1

2
− ϵ , 0 , 1

2
− ϵ , 0 , 1

2
− ϵ , . . ., for

an arbitrarily small constant ϵ. Clearly, all requests of S are handled by Lionel
who has to go back and forth between the two points 0 and 1

2
− ϵ. Hence, the

total cost of the simple greedy strategy is costGreedy = n · (1
2
− ϵ).

In contrast, the optimal solution for sequence S is much better. Richie could
move for the rst request to position 1

2
− ϵ, and the two friends could remain

at their position forever thereafter. Hence, the optimal cost costOPT = 1

2
+ ϵ.

Thus, the competitive ratio is

costGreedy

costOPT

=
n · (1

2
− ϵ)

1

2
+ ϵ

≈ n .

Remarks:

• Can we do better? Yes, a lot better in fact: There is a deterministic
2-competitive algorithm.

Algorithm 5.28 2-Competive Algorithm

1: if request is located to the left of Lionel then
2: Lionel serves the request
3: else if request is located to the right of Richie then

4: Richie serves the request
5: else

6: Both Lionel and Richie move towards the request at equal speed until (at
least) one of them serves the request

7: end if

Theorem 5.29. Algorithm 5.28 is 2-competitive.

Proof. For a given request sequence, let OPT and ALG denote the optimal
solution and the solution computed by our algorithm, respectively. Also, let L∗

and R∗ be the current positions of Lionel and Richie in the optimal solution
OPT . Similarly, we denote by L and R the current positions of Lionel and
Richie in ALG.

Note that L ≤ R. We can also assume that L∗ ≤ R∗ holds, because we can
simply “rename” Richie and Lionel when they cross each other in the optimal
solution and have the same performance.

We dene the following potential function:

Φ = 2(|L∗ − L|+ |R∗ −R|) + |L−R|.

We estimate the change ∆Φ after both the OPT and ALG have served the
next request in two steps: rst, the change ∆ΦOPT after OPT has served the
request and second, the change ∆ΦALG after ALG has served the request.

5.6. TWO SERVERS ON A LINE 49

Denote by d∗ the total distance moved by the brothers in OPT to serve the
request. Note that ∆ΦOPT ≤ 2d∗, since the term |L−R| is not changed as only
the OPT brothers move, and |L∗ − L|+ |R∗ −R| can increase by at most d∗.

Denote by d the total distance moved by the brothers in ALG to serve the
request. We want to show ∆ΦALG ≤ −d. We distinguish two cases. i) First,
assume that the request is either to the left of Lionel or to the right of Richie,
i.e., only one of the two moves by a distance of d. In this case, the term |L−R|
increases by d. To analyze the change in term |L∗−L|+|R∗−R|, assume w.l.o.g.
that ALG moves Lionel towards the left to serve the request. As ALG does not
move Richie, the term |R∗ − R| remains same. In the optimal solution, either
Lionel or Richie served the request. If Lionel did, then |L∗ − L| decreases by d
(from d to 0). If Richie did, then |L∗ − L| also decreases by d as L∗ ≤ R∗, and
Lionel moves left such that L = R∗. Thus, we have ∆ΦALG ≤ −2d+ d = −d.

ii) Second, assume that the request is between Lionel and Richie and each
of them move a distance d/2 towards the request from opposite sides. Because
both brothers move towards each other, the term |L − R| must decrease by d.
Now, consider the change in term |L∗ −L|+ |R∗ −R|. In the optimal solution,
either Lionel or Richie served the request. If Lionel did, then term |L∗ − L|
decreases by d/2 and the term |R∗−R| increases by at most d/2 because Richie
walked by at most that distance. If Richie did, then similarly the term |R∗−R|
decreases by d/2 and the term |L∗ − L| increases by at most d/2. Thus, the
term |L∗−L|+ |R∗−R| increases by at most 0. In combination with the above
observation that |L−R| decreases by d, this proves ∆ΦALG ≤ −d.

Using the potential function, we can now prove the competitive ratio. We
have ∆Φ = ∆ΦOPT +∆ΦALG ≤ 2d∗−d as shown above, and hence the following
for a request r.

amortized(r) = d+∆Φ ≤ 2d∗ = 2 · costOPT (r) (5.1)

Denote by Φinitial and Φfinal the initial respectively nal potentials. Note
that Φ is non-negative and so Φfinal ≥ 0. Thus,

costALG =
∑

r∈S

amortized(r) + Φinitial (with Lemma 5.20) (5.2)

≤
∑

r∈S

2 · costOPT (r) + 1 (using 5.1) (5.3)

= 2 · costOPT + 1,

where costALG and costOPT is the total cost of ALG and OPT for serving all
the requests.

Remarks:

• The problem of our two ice cream selling brothers is a special case of a
more general problem, the so-called k-server problem, in which there
are k agents (or servers) instead of our two brothers, and the requests
occur in arbitrary metric spaces, instead of on a line.

50 CHAPTER 5. ONLINE

5.7 The TCP Congestion Control Problem

As a next example we study the sender side of TCP. We ask: How many seg-
ments (or packets, or bytes) per second can a sender inject into the network
without overloading it? The problem is that a sender does not know the cur-
rent bandwidth between itself and the receiver. And, more importantly, this
bandwidth might change over time with other connections starting up, or clos-
ing down.

Here’s our model:

• We divide the time into periods (or slots).

• In each period t there is an unknown threshold ut, where ut is the number
of packets (or segments, or bytes) that could successfully be transmitted
from sender to receiver, without overloading the network.

• In period t, the sender chooses to transmit xt packets.

• If xt ≤ ut we are ne. However, sending at too conservative or small
rates xt ≪ ut is a waste of the available bandwidth. One possible way to
capture this aspect would be to use an opportunity cost function of the
form costt = ut − xt.

• If xt > ut, we are not ne. We are overloading the channel. There
are several cost models possible. In a severe cost model, nothing gets
transmitted (costt = ut), in a less severe cost model, some fraction of the
packets might get dropped (e.g. costt = α(xt − ut)).

5.8 The Static Model

We start out with the simplest possible model, where the bandwidth is constant
over time, that is, ut = u. The problem is then to nd the correct bandwidth
u (with something like binary search); once the sender found the correct band-
width, there will be no more cost. We assume rst that u is an integer, and
that 1 ≤ u ≤ n, that is, there is an upper bound n for the bandwidth.

Possible algorithms:

• Plain old binary search needs log n search steps. For a worst-case choice
of u the algorithm will often inject too many packets, and (in a severe cost
model) have cost u = Θ(n) in most steps, thus the total cost is Θ(n log n).

• A standard TCP congestion control mechanism is usually following the
AIMD (Additive Increase Multiplicative Decrease) paradigm: Once TCP
sends so many packets that the network becomes overloaded, routers will
start dropping packets. The sender can witness this (with missing ACKs),
and consequently decreases its transmission rate (for example in a multi-
plicative way, e.g., by a factor 2). Then the sender starts increasing its
transmission rate again, but slowly, to approach the “right” bandwidth
again (for example by 1, in an additive way). In our model, if the real
bandwidth is u = n − 1, such an algorithm will clearly be very much o
the right bandwidth u most of the time. Since approaching u takes Θ(n)

5.9. THE DYNAMIC MODEL 51

steps, and in the severe cost model most steps cost u − xt = Θ(n), the
cost of the AIMD algorithm is Θ(n2).

• The obvious question: Can we do better?!?

Algorithm 5.30 Shrink Algorithm: The algorithm operates on a pinning in-
terval [i, j], originally [i, j] = [1, n]. It has two phases.

Phase 1 : Find the right power-of-two-upper bound, that is, nd j such that
2k < j ≤ 2k+1 by testing 2k + 1. If 2k + 1 ≤ u goto Phase 2, else set
[i, j] = [1, 2k] and stay in Phase 1.

Phase 2 : We are given [i, j] with 2t−1 + 1 ≤ i < j ≤ 2t. Now we test

i+max

(

1,
2t

22m+1

)

with m being the largest integer such that j − i < 2
t

22
m . Then adapt [i, j]

accordingly.

Remarks:

• It can be shown that the cost of the Shrink algorithm is O(n log log n).

• For large n, it is remarkable that the vast majority of increase steps are
increments by just 1. And almost all decrease steps are substantial.
In other words, the algorithm is an AIMD algorithm.

• If n is not known, we can nd an upper bound of u quickly by a
repeated squaring technique rst, that is, test 2, then 22 = 4, then
42 = 16, then 162 = 256, It can be shown that the total cost is
O(u log log u).

• There is a lower bound ofO(u log log u/ log log log u). Hence the Shrink
algorithm is asymptotically almost optimal.

• However, this was only an warm-up example. What we are really
interested in are dynamic models.

5.9 The Dynamic Model

In this section, the threshold may vary from step to step, i.e., the adversary
chooses a sequence {ut}. Thereby, the adversary knows the algorithm’s sequence
{xt} of probes/tests in advance. Clearly, we are again in the realm of online
algorithms and competitive analysis.

We have postulated that costAlg(I) ≤ r · costopt(I). Observe that an optimal
oine algorithm knowing the input (as in ski rental or TCP ACK) can always

52 CHAPTER 5. ONLINE

play xt = ut, which implies that costopt = 0. No online algorithm can be
competitive!

For this reason it seems more fruitful to look at gain (or prot) rather than
cost. We update our denition from ski rental as follows:

Denition 5.31 (Competitive Analysis). An online algorithm A is strictly r-
competitive if for all nite input sequences I

costA(I) ≤ r · costopt(I), or

r · gainA(I) ≥ gainopt(I).

Remarks:

• Note that in both cases r ≥ 1. The closer r is to 1, the better is an
algorithm.

For a severe cost model, a natural denition of gain could look as follows:

gainxt
(ut) =



xt if xt ≤ ut

0 if xt > ut

However, note that our adversary is too strong because (knowing the algorithm)
it can always present an ut < xt (or, if xt = 0, any ut). The total gain of the
algorithm (given as



t gainAlg(t)) is 0. We therefore need to further restrict
the power of the adversary. Several restrictions seem to be reasonable and
interesting:

• Bandwidth in a xed interval: ut ∈ [a, b]

• Multiplicatively (or additively) changing bandwidth: ut/µ ≤ ut+1 ≤ µ ·ut

(or ut − α ≤ ut+1 ≤ ut + α)

• Changes with bursts

In the following, the three restrictions will be studied in turn.

5.10 Bandwidth in a Fixed Interval

We start out by letting the adversary choose ut ∈ [a, b]. The algorithm is aware
of the upper bound b and the lower bound a. We rst restrict ourselves to
deterministic algorithms. In this case, note the following:

• If the deterministic algorithm plays xt > a in round t, then the adversary
plays ut = a.

• Therefore the algorithm must play xt = a in each round in order to have
at least gain = a.

• The adversary knows this, and will therefore play ut = b

• Therefore, gainAlg = a, gainopt = b, competitive ratio r = b/a.

5.10. BANDWIDTH IN A FIXED INTERVAL 53

As usually, we ask whether randomization might help! Let’s try the ski rental
trick immediately! In particular, for all possible inputs u ∈ [a, b] we want the
same competitive ratio:

r · gainAlg(u) = gainopt(u) = u.

From the deterministic case we know that it might make sense to treat the case
x = a individually. (If we do not, then the probability to choose x = a will be
innitesimally small, and the adversary only needs to present u = a+ ϵ all the
time, and our algorithm is in trouble since it never makes any gain.)

We choose x = a with probability pa, and any value in x ∈ (a, b] with probability

density function p(x), with pa +
 b

a
p(x)dx = 1.

Theorem 5.32. There is an algorithm that is r-competitive, with r = 1+ ln b
a
,

“ln” being the natural logarithm.

Proof. Setting up the ski rental trick, we have

r ·

(

pa · a+

∫ u

a

p(x) · xdx

)

= u.

Then we dierentiate with respect to u, and get,

δ

δu
= r · p(u) · u = 1 ⇒ p(u) =

1

ru
.

We plug this back into the dierential equation, and get

r ·

(

pa · a+

∫ u

a

x

rx
dx

)

= rpaa+ (u− a) = u ⇒ a(rpa − 1) = 0 ⇒ pa = 1/r.

To gure out r, we use that all probabilities must sum up to 1:

1 = pa +

∫ b

a

p(x)dx =
1

r
+

1

r

∫ b

a

1

x
dx ⇒ 1 + ln b− ln a = r.

What about the lower bound? We use the Von Neumann / Yao Principle:

Theorem 5.33. There is no randomized algorithm which is better than r-
competitive, with r = 1 + ln b

a
.

Proof. Let a little fairy tell us the right input distribution: We choose b with
probability pb = a/b, and select u ∈ [a, b) with probability density p(u) = a/u2.
The input is OK because

pb +

∫ b

a

a

u2
du =

a

b
+ a

∫ b

a

1

u2
du =

a

b
+ a

(

−1

b
−

−1

a

)

= 1.

The gain of the optimal algorithm on this input is:

gainopt = b·pb+

∫ b

a

u·p(u)du = b
a

b
+

∫ b

a

u·
a

u2
du = a+a

∫ b

a

1

u
du = a(1+ln(b/a)).

54 CHAPTER 5. ONLINE

The gain of a deterministic algorithm choosing x on this input is:

gainx = x · pb +

∫ b

x

x · p(u)du = x
a

b
+ ax

∫ b

x

1

u2
du = ax(

1

b
+ (

−1

b
−

−1

x
)) = a.

Hence,
gainopt

gainx

=
a(1 + ln(b/a))

a
= 1 + ln(b/a).

Remarks:

• Great, upper and lower bound are tight!

• Didn’t we ask for u, x being integers? In this case, r = 1 +Hb −Ha,
where Hn is the harmonic number n dened as Hn =

n
i=1

1/i ≈ lnn.

• Now let’s turn to the more realistic cases where the bandwidth smoothly
changes over time, and does not jump up and down like crazy.

5.11 Multiplicatively Changing Bandwidth

Now the adversary must choose ut such that ut/µ ≤ ut+1 ≤ µ·ut. The algorithm
knows the maximal possible change factor µ per period. We assume that the
algorithm also knows the initial threshold u1. Think of µ as being a value such
that the bandwidth changes a few percents only per period.

If the adversary keeps raising u as fast as possible (ut+1 = µ · ut for several
rounds), then it seems reasonable that the algorithm does the same. In partic-
ular, if the algorithm chooses xt+1 = (1− ϵ)µxt then

lim
t→∞

ut

xt

=
µt

(1− ϵ)t · µt
= ∞.

Therefore, if there was a successful transmission in period t, the algorithm
chooses xt+1 = µxt. On the other hand, if xt was not successful, xt+1 = λxt.
We will set λ = 1/µ3. The idea is that at least every other round is successful.

Lemma 5.34. After a non-successful round there is always a successful round.

Proof. Since we know u1, the algorithm can choose x1 = u1, and have a success.
Our invariant is that every non-successful round is followed by a successful
round. Assume, for the sake of contradiction, that round t + 1 is the rst
non-successful round which follows after a non-successful round t, which (by
induction hypothesis) follows a successful round t− 1 (note that xt−1 ≤ ut−1).
Since ut ≥ ut−1/µ for all t we have ut+1 ≥ ut−1/µ

2. On the other hand, we
have xt+1 = λxt = λµxt−1 = xt−1/µ

2. Therefore,

xt+1 = xt−1/µ
2 ≤ ut−1/µ

2 ≤ ut+1,

hence round t+1 is a success. We have a contradiction, which proves that there
can be only one non-successful round in a row.

5.11. MULTIPLICATIVELY CHANGING BANDWIDTH 55

Lemma 5.35. A successful round is µ4-competitive.

Proof. • If a successful round t+1 follows a successful round t, round t+1
is at least as competitive as round t since the algorithm set xt+1 = µxt.

• If a successful round t+1 follows a non-successful round t (ut < xt), then,
since xt+1 = λxt and ut+1 ≤ µut we have

xt+1 = λxt > λut ≥ λut+1/µ = ut+1/µ
4.

Theorem 5.36. The algorithm is (µ4 + µ)-competitive.

Proof. In a non-successful (“fail”) round t, it holds that ut < µxt−1, because
xt−1 ≤ ut−1 (cf. Lemma 5.34), xt = µxt−1 and ut < µxt−1. Thus

gainopt(succ) + gainopt(fail)

gainAlg(succ)
<

µ4 · gainAlg(succ) + µ · gainAlg(succ)

gainAlg(succ)
= µ4+µ.

While this algorithm is good for small µ, the competitive ratio grows quickly
for larger µ. In the following, we show that an algorithm which increases the
bandwidth by a factor µ after successful rounds and halves the rate after non-
successful rounds is 4µ-competitive.

Theorem 5.37. This new algorithm is 4µ-competitive.

Proof. First, we show by induction that in each successful or good round t, ut ≤

2µxt. For t = 1, u1 = x1 and the claim holds. For the induction step, consider
the round t − 1 before the good round t. There are two possibilities: either
round t− 1 was non-successful or bad (xt−1 > ut−1), or good (xt−1 ≤ ut−1). If
round t − 1 was bad, we have xt = xt−1/2 and ut ≤ ut−1µ < xt−1µ = 2µxt,
hence ut/xt < 2µ, and the claim holds. If on the other hand round t − 1 was
good, the algorithm increases the bandwidth at least as much as the adversary.
Together with the induction hypothesis, the claim follows also in this case.

Having studied the gain in good rounds, we now consider bad rounds. We
show that in the bad rounds following a good round t, the adversary may increase
its gain at most by 2µxt. So let t be the good round preceding a sequence of bad
rounds, t.e., xt ≤ ut, xt+1 > ut+1, xt+2 > ut+2, etc. We know that xt+1 = µxt,
so—because it is a bad round—ut+1 must be less than µxt. Further, we have
xt+2 = xt+1/2 = µxt/2 and hence ut+2 < µxt/2, xt+3 = µxt/4 and hence
ut+3 < µxt/8, etc. By a geometric series argument, the gain of the adversary
in the bad rounds is upper bounded by 2µxt.

Therefore,

ρ =
gainopt(succ) + gainopt(fail)

gainAlg(succ)

<
2µ · gainAlg(succ) + 2µ · gainAlg(succ)

gainAlg(succ)

< 4µ.

56 CHAPTER 5. ONLINE

5.12 Changes with Bursts

In the previous section, we assumed that the bandwidth changes by at most a
given constant percentage µ over time. However, one can imagine that in the real
Internet there may be quiet times where the congestion level hardly changes,
and times where there are very abrupt or bursty changes. In main objective
of this section is to present—without any analyses—an adversary model which
incorporates such a notion of bursts. Our model is based on concepts of network
calculus, a tool which is typically used to study queuing systems from a worst-
case perspective.

The bursty adversary ADVnc has two parameters: A rate µ ≥ 1 and max-
imum burst factor B ≥ 1. In every round, the available bandwidth ut may
vary according to these parameters in a multiplicative manner. More precisely,
ADVnc may select the new bandwidth ut+1 from the interval

ADVnc : ut+1 ∈ [
ut

βtµ
, ut · βt · µ],

that is, the available bandwidth may change by a factor of at most βtµ. Thereby,
βt is the burst factor at time t. This burst factor is explained next.

Figure 5.38: Visualization of ADVnc for the case ∀t : ut+1 ≥ ut. The bandwidth
may increase multiplicatively in every round, but it must never exceed the constraints
from previous rounds (dashed lines).

On average, the available bandwidth can change by a factor µ per round.
However, there may be times of only small changes, but then the bandwidth
might change by factors larger than µ in later rounds. This is modeled with the
burst factor βt, which is dened as follows. At the beginning, βt equals B, i.e.,
β1 = B. For t > 1, the burst factor βt is computed depending on βt−1 and the
actual bandwidth change ct−1 that has happened in round t−1. More precisely,

βt = min{B,βt−1

µ

ct−1

}

where ct := ut+1

ut

if ut+1 > ut and ut

ut+1
otherwise. This means that if the

available bandwidth changed by a factor less than µ in round t, i.e., ct < µ,
the burst factor increased by a factor µ

ct
, and hence the bandwidth can change

more in the next round, and vice versa if ct > µ.

5.12. CHANGES WITH BURSTS 57

Therefore, the adversary is allowed to save adversarial power for forthcoming
rounds. However, this amortization is limited as βt can never become larger than
B for all rounds t. Also note that βt ≥ 1 always holds, because ct ≤ µβt by the
denition of ADVnc.

Figure 5.38 visualizes ADVnc for the case ∀t : ut+1 ≥ ut, i.e., for in-
creasing bandwidth only: The bandwidth may rise by a factor of µB in ev-
ery round, unless it conicts with a constraint from a previous round, i.e.,
∀t : ut ≤ mini∈{1,...,t−1}{ut ·B · µt−i}.

In order to analyze such bursty adversaries, similar techniques as those pre-
sented in Section 5.11 can be applied; we do not perform these computations
here.

