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How to perform hardware design?

… circuit design is often considered a “black art”, restricted to only those with years of training in electrical engineering… 
[cacm.acm.org/magazines/2023/1/]

Hardware Acceleration for High Parallelism & Energy Efficiency
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for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += data[i][j];
    mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += (data[i][j] - mean[j]) *    
(data[i][j] - mean[j]);
   x /= float_n;
   x = x*x;
   stdev[j] = x;
}

Make hardware design
 broadly accessible, fast, and reliable

Digital Systems and Design Automation Group (DYNAMO)

programming languages, 
software applications

High-level abstractions

formal methods, machine learning, 
electronic design automation

Hardware compilers

systems, digital design, 
computer architecture

Hardware design
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2. How to automatically extract 
parallelism from software code?

1. How to make hardware design 
accessible to non-experts?

SW

HW

Digital Systems and Design Automation Group (DYNAMO)

4. How to understand & leverage 
hardware implementation details?

3. How to verify circuits 
and circuit transformations?

Balor: a GNN-based hardware quality estimator 
(41% estimation error reduction w.r.t. SoTA)

Efficient design space exploration 
for hardware design

Balor estimator

[ICCAD’24, Winner of AMD’s ML Contest for Chip Design with HLS]

              
         

         

        
    

  
  
 
  

Compiling software programs 
into high-performance circuits

Dynamatic: an open-source high-level synthesis 
compiler (14.9X speedup over standard HLS circuits)

Dynamatic HLS

[FPGA’18 Best Paper Candidate, FPGA’20 Best Paper Award]

 

 
  

  

 

 

  

ElasticMiter: A formal verification framework for 
circuit simplification (up to 50% area reduction)

Towards provably correct circuit design

Formal proof: 
R is always true

Unverified circuit: 
conservative & costly

Verified circuit: 
correct and cheap

[FPGA’23, ICCAD’23, FPGA’24]

  

  

 

  

  

Reconfigurable systolic arrays Processing in memory

Making diverse 
hardware accelerators 

broadly accessible
ASICsFPGAs

MapBuf: Simultaneous pipelining and technology 
mapping for high-frequency circuits

Architecture-aware hardware optimizations

MapBuf 
optimizer

Naïve pipelining: 
high area & latency

Technology-aware pipelining: 
low area & latency

  

   

   

   

  

  
  
  
  
   
  
  

 

  

   

   

   

  

  

  
  
  
  
  
  
  

 

     
          

       

[ICCAD’23 Best Paper Candidate, DAC’23]
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High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design 
beyond RTL level (VHDL, Verilog)
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High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes

Finite state 
machine

Circuit regulated by a centralized FSM
→ All execution times predetermined and, 

sometimes, conservative (slow circuit) Circuit regulated by distributed handshake logic
→ Flexible execution times (fast circuit)
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes



9

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes
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• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

Component 1 Component 2

data

valid

ready High-level synthesis of 
dynamically scheduled 

(dataflow) circuits

Make scheduling decisions at runtime: as soon as all 
conditions for execution are satisfied, an operation starts

valid

ready
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load 

Buff

Tagged out-of-order 
execution

Removing redundant 
handshake logic 

Speculative execution
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Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components
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Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components
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Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components
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JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components

+ *

STORE
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Branch

Branch

Dataflow Components

Fork

Fork

Merge

Merge

Join

Join
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Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch
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Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

Petri nets for dataflow circuit modeling
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LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork
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<

N
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+
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Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
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}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

Backpressure due to insufficient token 
capacity: no pipelining and low performance
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load 

Buff

Tagged out-of-order 
execution

Removing redundant 
handshake logic 

Speculative execution
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break 
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

Buffers as FIFOs to regulate 
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

Represent program loops as choice-free Petri nets
• Analyze average token flow through the circuit 

(continuous Petri net)
• Determine buffer positions & sizes (token capacity)
• Maximize throughput for a target clock period

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load 

Buff

Tagged out-of-order 
execution

Removing redundant 
handshake logic 

Speculative execution
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

M1

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Sharing not possible without 

damaging throughput

M1 M2

Units fully utilized

(high throughput, II = 1)

Use throughput information 
to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use choice-free Petri net model 
to decide what to share



35

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Sharing possible without 

damaging throughput

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use throughput information 
to decide what to share

Use choice-free Petri net model 
to decide what to share
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load 

Buff

Tagged out-of-order 
execution

Removing redundant 
handshake logic 

Speculative execution
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Dynamatic: An Open-Source HLS Compiler

• From C/C++ to synthesizable dataflow circuit description

But… dataflow computation is resource-expensive! 

Reduced execution time in irregular benchmarks 
(speedup of up to 14.9X)
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load 

Buff

Tagged out-of-order 
execution

Removing redundant 
handshake logic 

Speculative execution
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The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

c
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The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Distributed dataflow handshake 
mechanism: resource and 

frequency overhead
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The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Do we need expensive 
dataflow logic everywhere?
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Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is 
never stalled 

Possible 
stall
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Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is 
never stalled 

Possible 
stall

Restrict the generality of dataflow 
logic whenever it is not needed
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Removing Excessive Dynamism

How to guarantee correctness of 
simplifications for any possible 

circuit behavior? 

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is 
never stalled 

Possible 
stall
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How to Guarantee Correctness?

Our goal: a formal verification framework for reducing 
the hardware complexity of dataflow circuits

Functional verification is inefficient and non-exhaustive

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 valid2)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Proving Properties to Eliminate Excessive Dynamism

Up to 50% area reduction without a 
performance penalty

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 valid2)

But it is very slow (~hrs)…

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Reducing the Cost of Dataflow Circuits

How to eliminate 
excessive dynamism? 

Formal verification for redundant 
handshake logic removal 

→ 50% resource reduction

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
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Reducing the Cost of Dataflow Circuits

How to eliminate 
excessive dynamism? 

Formal verification for redundant 
handshake logic removal 

→ 50% resource reduction

How to make dynamism 
removal more scalable?

Inductive invariants for fast 
& scalable verification 

→ from days to minutes

Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD’23.



51

Reducing the Cost of Dataflow Circuits

Same resources as static HLS, all performance benefits 
of dynamic scheduling maintained

How to eliminate 
excessive dynamism? 

Formal verification for redundant 
handshake logic removal 

→ 50% resource reduction

How to make dynamism 
removal more scalable?

Inductive invariants for fast 
& scalable verification 

→ from days to minutes

How to make dynamism removal 
more effective?

Latency and occupancy balancing 
for suppressing spurious dynamism 

→ same resources as static HLS

3
3

Xu and Josipović. Suppressing Spurious Dynamism of Dataflow Circuits via Latency and Occupancy Balancing. FPGA’24.
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MSc & BSc Projects and Theses

• Use Petri nets to describe circuits and their behaviors
– Component modelling

– Performance and area optimizations

• Use model checking to prove circuit properties and improve their quality
– Checking more complex properties

– Dealing with scalability issues

• And many other topics... 

• Check link on last slide for (non-exhaustive) list of projects!

Come work with us! ☺
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MSc Course in Spring 2025: Synthesis of Digital Circuits

• Algorithms, tools, and methods to generate circuits from high-level programs

– How does ‘classic’ HLS work?

• Recent advancements and current challenges of HLS for FPGAs

– What is HLS still missing?

• Course organization

– First part: lectures+exercises

– Second part: practical work + seminar-like discussions

• Link to Course Catalogue info (2025)

Hope to see you there! ☺

https://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitId=187112&semkez=2025S&ansicht=LEHRVERANSTALTUNGEN&lang=en
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dynamo.ethz.ch
ljosipovic@ethz.ch

DYNAMO: Digital Systems and Design Automation Group

Project list 2025

Thanks! ☺ 
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