
1

Petri Nets and Model Checking in Circuit Design

Lana Josipović

December 2024

22

How to perform hardware design?

… circuit design is often considered a “black art”, restricted to only those with years of training in electrical engineering…
[cacm.acm.org/magazines/2023/1/]

Hardware Acceleration for High Parallelism & Energy Efficiency

3

for (j = 0; j < 10; j++) {
 float x = 0.0;
 for (i = 0; i < 10; i++)
 x += data[i][j];
 mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {
 float x = 0.0;
 for (i = 0; i < 10; i++)
 x += (data[i][j] - mean[j]) *
(data[i][j] - mean[j]);
 x /= float_n;
 x = x*x;
 stdev[j] = x;
}

Make hardware design
 broadly accessible, fast, and reliable

Digital Systems and Design Automation Group (DYNAMO)

programming languages,
software applications

High-level abstractions

formal methods, machine learning,
electronic design automation

Hardware compilers

systems, digital design,
computer architecture

Hardware design

4

2. How to automatically extract
parallelism from software code?

1. How to make hardware design
accessible to non-experts?

SW

HW

Digital Systems and Design Automation Group (DYNAMO)

4. How to understand & leverage
hardware implementation details?

3. How to verify circuits
and circuit transformations?

Balor: a GNN-based hardware quality estimator
(41% estimation error reduction w.r.t. SoTA)

Efficient design space exploration
for hardware design

Balor estimator

[ICCAD’24, Winner of AMD’s ML Contest for Chip Design with HLS]

Compiling software programs
into high-performance circuits

Dynamatic: an open-source high-level synthesis
compiler (14.9X speedup over standard HLS circuits)

Dynamatic HLS

[FPGA’18 Best Paper Candidate, FPGA’20 Best Paper Award]

ElasticMiter: A formal verification framework for
circuit simplification (up to 50% area reduction)

Towards provably correct circuit design

Formal proof:
R is always true

Unverified circuit:
conservative & costly

Verified circuit:
correct and cheap

[FPGA’23, ICCAD’23, FPGA’24]

Reconfigurable systolic arrays Processing in memory

Making diverse
hardware accelerators

broadly accessible
ASICsFPGAs

MapBuf: Simultaneous pipelining and technology
mapping for high-frequency circuits

Architecture-aware hardware optimizations

MapBuf
optimizer

Naïve pipelining:
high area & latency

Technology-aware pipelining:
low area & latency

[ICCAD’23 Best Paper Candidate, DAC’23]

5

High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design
beyond RTL level (VHDL, Verilog)

6

High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code

7

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

Finite state
machine

Circuit regulated by a centralized FSM
→ All execution times predetermined and,

sometimes, conservative (slow circuit) Circuit regulated by distributed handshake logic
→ Flexible execution times (fast circuit)

8

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

9

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

10

• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

Component 1 Component 2

data

valid

ready High-level synthesis of
dynamically scheduled

(dataflow) circuits

Make scheduling decisions at runtime: as soon as all
conditions for execution are satisfied, an operation starts

valid

ready

11

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load

Buff

Tagged out-of-order
execution

Removing redundant
handshake logic

Speculative execution

12

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

13

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

14

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

15

JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components

+ *

STORE

16

Branch

Branch

Dataflow Components

Fork

Fork

Merge

Merge

Join

Join

17

Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

18

Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

Petri nets for dataflow circuit modeling

19

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

20

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

21

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

22

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

23

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

24

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

25

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

Backpressure due to insufficient token
capacity: no pipelining and low performance

26

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load

Buff

Tagged out-of-order
execution

Removing redundant
handshake logic

Speculative execution

27

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

28

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

Buffers as FIFOs to regulate
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

29

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

30

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

31

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

Represent program loops as choice-free Petri nets
• Analyze average token flow through the circuit

(continuous Petri net)
• Determine buffer positions & sizes (token capacity)
• Maximize throughput for a target clock period

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

32

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load

Buff

Tagged out-of-order
execution

Removing redundant
handshake logic

Speculative execution

33

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

M1

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

34

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Sharing not possible without

damaging throughput

M1 M2

Units fully utilized

(high throughput, II = 1)

Use throughput information
to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use choice-free Petri net model
to decide what to share

35

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Sharing possible without

damaging throughput

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use throughput information
to decide what to share

Use choice-free Petri net model
to decide what to share

36

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load

Buff

Tagged out-of-order
execution

Removing redundant
handshake logic

Speculative execution

37

Dynamatic: An Open-Source HLS Compiler

• From C/C++ to synthesizable dataflow circuit description

But… dataflow computation is resource-expensive!

Reduced execution time in irregular benchmarks
(speedup of up to 14.9X)

38

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

2

3Merge

Branch

*

+

Load

Buff

Tagged out-of-order
execution

Removing redundant
handshake logic

Speculative execution

39

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

c

40

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Distributed dataflow handshake
mechanism: resource and

frequency overhead

41

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Do we need expensive
dataflow logic everywhere?

42

Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

43

Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

Restrict the generality of dataflow
logic whenever it is not needed

44

Removing Excessive Dynamism

How to guarantee correctness of
simplifications for any possible

circuit behavior?

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

45

How to Guarantee Correctness?

Our goal: a formal verification framework for reducing
the hardware complexity of dataflow circuits

Functional verification is inefficient and non-exhaustive

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

46

Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

47

Proving Properties to Eliminate Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 valid2)

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

48

Proving Properties to Eliminate Excessive Dynamism

Up to 50% area reduction without a
performance penalty

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 valid2)

But it is very slow (~hrs)…

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

49

Reducing the Cost of Dataflow Circuits

How to eliminate
excessive dynamism?

Formal verification for redundant
handshake logic removal

→ 50% resource reduction

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

50

Reducing the Cost of Dataflow Circuits

How to eliminate
excessive dynamism?

Formal verification for redundant
handshake logic removal

→ 50% resource reduction

How to make dynamism
removal more scalable?

Inductive invariants for fast
& scalable verification

→ from days to minutes

Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD’23.

51

Reducing the Cost of Dataflow Circuits

Same resources as static HLS, all performance benefits
of dynamic scheduling maintained

How to eliminate
excessive dynamism?

Formal verification for redundant
handshake logic removal

→ 50% resource reduction

How to make dynamism
removal more scalable?

Inductive invariants for fast
& scalable verification

→ from days to minutes

How to make dynamism removal
more effective?

Latency and occupancy balancing
for suppressing spurious dynamism

→ same resources as static HLS

3
3

Xu and Josipović. Suppressing Spurious Dynamism of Dataflow Circuits via Latency and Occupancy Balancing. FPGA’24.

52

MSc & BSc Projects and Theses

• Use Petri nets to describe circuits and their behaviors
– Component modelling

– Performance and area optimizations

• Use model checking to prove circuit properties and improve their quality
– Checking more complex properties

– Dealing with scalability issues

• And many other topics...

• Check link on last slide for (non-exhaustive) list of projects!

Come work with us! ☺

53

MSc Course in Spring 2025: Synthesis of Digital Circuits

• Algorithms, tools, and methods to generate circuits from high-level programs

– How does ‘classic’ HLS work?

• Recent advancements and current challenges of HLS for FPGAs

– What is HLS still missing?

• Course organization

– First part: lectures+exercises

– Second part: practical work + seminar-like discussions

• Link to Course Catalogue info (2025)

Hope to see you there! ☺

https://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitId=187112&semkez=2025S&ansicht=LEHRVERANSTALTUNGEN&lang=en

54

dynamo.ethz.ch
ljosipovic@ethz.ch

DYNAMO: Digital Systems and Design Automation Group

Project list 2025

Thanks! ☺

	Slide 1: Petri Nets and Model Checking in Circuit Design
	Slide 2
	Slide 3: Digital Systems and Design Automation Group (DYNAMO)
	Slide 4: Digital Systems and Design Automation Group (DYNAMO)
	Slide 5: High-Level Synthesis: From Programs to Circuits
	Slide 6: High-Level Synthesis: From Programs to Circuits
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Dynamatic: An Open-Source HLS Compiler
	Slide 38
	Slide 39: The Cost of Dataflow Computation
	Slide 40: The Cost of Dataflow Computation
	Slide 41: The Cost of Dataflow Computation
	Slide 42: Removing Excessive Dynamism
	Slide 43: Removing Excessive Dynamism
	Slide 44: Removing Excessive Dynamism
	Slide 45: How to Guarantee Correctness?
	Slide 46: Proving Properties to Eliminate Excessive Dynamism
	Slide 47: Proving Properties to Eliminate Excessive Dynamism
	Slide 48: Proving Properties to Eliminate Excessive Dynamism
	Slide 49: Reducing the Cost of Dataflow Circuits
	Slide 50: Reducing the Cost of Dataflow Circuits
	Slide 51: Reducing the Cost of Dataflow Circuits
	Slide 52: MSc & BSc Projects and Theses
	Slide 53
	Slide 54

