1 The Resilience of a Quorum System

a) Does a quorum system exist, which can tolerate that all nodes of a specific quorum fail? Give an example or prove its nonexistence.

b) Consider the nearly all quorum system, which is made up of \(n \) different quorums, each containing \(n - 1 \) servers. What is the resilience of this quorum system?

c) Can you think of a quorum system that contains as many quorums as possible? Note: the quorum system does not have to be minimal.

Basic

2 A Quorum System

Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes fulfilling \(x \oplus y = z \) constitute a quorum. In the following picture this quorum system is represented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110) form a quorum.

a) Of how many different quorums does this system consist and what are its work and its load?

b) Calculate its resilience \(f \). Give an example where this quorum system does not work anymore with \(f + 1 \) faulty nodes.
3 Uniform Quorum Systems

Definitions:

\textbf{s-Uniform:} A quorum system \mathcal{S} is \textit{s-uniform} if every quorum in \mathcal{S} has exactly s elements.

\textbf{Balanced access strategy:} An access strategy Z for a quorum system \mathcal{S} is \textit{balanced} if it satisfies $L_Z(v_i) = L$ for all $v_i \in V$ for some value L.

\textbf{Claim:} An s-uniform quorum system \mathcal{S} reaches an optimal load with a balanced access strategy, if such a strategy exists.

\textbf{a)} Describe in your own words why this claim is true.

\textbf{b)} Prove the optimality of a balanced access strategy on an s-uniform quorum system.