
Computer Systems/

Distributed Systems
Exercise Session 8

HS 2023

Slides last updated:

14.11.2023

Program

1. Lecture Recap

a) Introduction: Distributed Systems

b) Fault Tolerance and Paxos

c) Consensus

2. Quiz

3. Assignment Preview

Set-Up

Client 1

Client 2

Server 1

Server 2

Server 3

Node: single actor in a distributed system

Can be both client or server

Challenges

- Messages can get lost

- Nodes may crash

- Messages can have varying delays

Challenges

- Messages can get lost

- Nodes may crash

- Messages can have varying delays

First Goal: State Replication

- All servers execute the same commands in the same order.

Why do we want State Replication?

Server 1

x=5

xx*2

xx+2

Server 2

x=5

xx+2

xx*2

Client 1

x x*2

Client 2

x x+2

Result: x=12

Result: x=14

First Approaches

Server sends acknowledgment message
• Reasonable with one client
• Inconsistent state with multiple clients and servers

First Approaches

Server sends acknowledgment message
• Reasonable with one client
• Inconsistent state with multiple clients and servers

Serializer – all commands go through one node which orders them
• Single point of failure

First Approaches

Server sends acknowledgment message
• Reasonable with one client
• Inconsistent state with multiple clients and servers

Serializer – all commands go through one node which orders them
• Single point of failure

Two-Phase Protocol – ask for locks, execute once acquired all locks
• Breaks down if we even have just one node failure
• How to avoid deadlocks?

Paxos – Main Ideas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration

Paxos – Main Ideas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration

2. Require majority
- Ensures only single command gets accepted

Paxos – Main Ideas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration

2. Require majority
- Ensures only single command gets accepted

3. Servers inform clients about their stored command
- Client can switch to supporting this command

Paxos – Main Ideas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration

2. Require majority
- Ensures only single command gets accepted

3. Servers inform clients about their stored command
- Client can switch to supporting this command

Good video with slightly different terminology:
https://www.youtube.com/watch?v=d7nAGI_NZPk

https://www.youtube.com/watch?v=d7nAGI_NZPk

Clients asks for a
specific ticket t.

Server only issues
ticket t if t is the
highest ticket
requested so far.

If client receives
majority of tickets, it
proposes a command.

When a server receives a
proposal, and the ticket of
the client is still valid, the
server stores the command
and notifies the client.

If a majority of servers
store the command,
the client notifies all
servers to execute the
command.

Clients can restart
Phase 1 at any time.

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).
3. Validity:

The decision value is the input value of at least one node.

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).
3. Validity:

The decision value is the input value of at least one node.

Impossibility
Consensus cannot be solved deterministically in the asynchronous model!

Randomized Consensus

Easy cases:

• All inputs are equal (all 0 or 1)

• Almost all input values equal

Randomized Consensus

Easy cases:

• All inputs are equal (all 0 or 1)

• Almost all input values equal

Otherwise:

• Choose a random value locally → Expected time O(2n) until all agree (once)

Majority has seen a majority →

At least someone has seen majority →
No majority seen →

Ben-Or: Consensus Proof

Validity:

If all nodes start with the same value, then all proposals are for the same value.
Thus, the algorithm terminated within one round, deciding on the common value.

If some nodes start with 0 and some start with 1, then both outcomes are legal.

Ben-Or: Consensus Proof

Agreement: (need to show: if one node decides → all nodes decide on the same value)
In a single round r:
- Nodes only decide after having received a proposal.
- Note, that a proposal required a majority, therefore a proposal in round r can only

occur for one value.
→ In any round r, all nodes decide on at most one identical value.

Ben-Or: Consensus Proof

Agreement: (need to show: if one node decides → all nodes decide on the same value)
In a single round r:
- Nodes only decide after having received a proposal.
- Note, that a proposal required a majority, therefore a proposal in round r can only

occur for one value.
→ In any round r, all nodes decide on at most one identical value.

In the first round after a node decided:
- Deciding node received > n/2 proposals. → All nodes received ≥ 1 proposal.
- Will adapt their own value to proposal, and broadcast value in round r.
- As all nodes broadcast the same value, they will propose same value in round r+1.
- At the latest in round r+2 nodes receive > n/2 proposals.

Ben-Or: Consensus Proof

Termination:

Trivial case: all nodes start with the same value
→ Termination after one round.

In the worst case: no node receives all0identical majorities, and all repeatedly choose a
random value. The probability of all nodes getting the same value is 2-n, thus we expect all
nodes to send the same “my value” after 2n runs.

Randomized Consensus

Easy cases:

• All inputs are equal (all 0 / all 1)

• Almost all input values equal

Otherwise:

• Choose a random value locally → Expected time O(2n) until all agree (once)

• Wouldn’t it be useful if the nodes could all toss the same coin? → Shared Coin

Shared Coin

Shared Coin

• The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

Shared Coin

• The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

• Proofs for validity and agreement still hold (since it is still the same algorithm).

Shared Coin

• The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

• Proofs for validity and agreement still hold (since it is still the same algorithm).

• The proof for termination has to be changed slightly to account for the changed
probability that all coins will give the same result.

Shared Coin

• The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

• Proofs for validity and agreement still hold (since it is still the same algorithm).

• The proof for termination has to be changed slightly to account for the changed
probability that all coins will give the same result.

• Runtime: From exponential down to constant!

Shared Coin

• The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

• Proofs for validity and agreement still hold (since it is still the same algorithm).

• The proof for termination has to be changed slightly to account for the changed
probability that all coins will give the same result.

• Runtime: From exponential down to constant!

• Can only tolerate f < n/3 crash failures, not f < n/2.

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?

2. Does the Paxos algorithm in the script achieve state replication?

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?
No, it only shows agreement on a single command, for several commands we
would need to restart the system.

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?
No, it only shows agreement on a single command, for several commands we
would need to restart the system.

3. How many nodes could crash so the Paxos still works?
Less than n/2

4. Does Paxos solve consensus?

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?
No, it only shows agreement on a single command, for several commands we
would need to restart the system.

3. How many nodes could crash so the Paxos still works?
Less than n/2

4. Does Paxos solve consensus?
No, termination is not guaranteed.

More quiz questions (choose the right answer)

1. State replication is trivial for fewer than 3 nodes? T/F

2. In Paxos, a new ticket can only be issued if all previous tickets have been returned. T/F

3. Which is not a property of consenus? Agreement Termination Tolerance Validity

4. A configuration includes all received messages but not the messages in transit. T/F

5. In a synchronous system, a message has a delay of ___ time units. 1/n/f-n/ potentially

infinite

More quiz questions (choose the right answer)

1. State replication is trivial for fewer than 3 nodes? T/F

2. In Paxos, a new ticket can only be issued if all previous tickets have been returned. T/F

3. Which is not a property of consenus? Agreement Termination Tolerance Validity

4. A configuration includes all received messages but not the messages in transit. T/F

5. In a synchronous system, a message has a delay of ___ time units. 1/n/f-n/ potentially

infinite

Assignment Preview

Assignment Preview

	Slide 1: Computer Systems/ Distributed Systems
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

