- P i Slides last u
ETH:zlirich R vstivuted o Shdes st

Systems@ ETH zircn Com pu ti n g N

" ."II-.'ﬂ:...l':‘;i':.:.=.:1m'_'l SR -

ot e Sk] e
P
A B
et i
o B « Bl

e W e Tl
7, Bhag I

Tl

Computer Systems /
Distributed Systems

IO wis

=2 N LA _}mu i
Exercise Session 10 - -'-I..' LI L i L_@
HS 2022 EJ: 2 A N e b e e

.......

igeaand - i -

Systems @ ETH zun

i
Distributed f.-.r_'-_

Computing W %%,

Game Theory

ETHzirich

Prisoner’s Dilemma - matrix representation of games

ETHzirich

u Player u
v Cooperate | Defect
1 0
Player v Cooperate 1 9
: - 2
Detect 0 5

Systems @ ETH zun

it
Distributed tf:v
U . 3

Computing ¥s %

-
. ®

Carn)

Game Theory - Terminology Systems © ETHaws

4
Distributed f-{--_‘ .

Strategy move Computing '.': ‘-L.‘.- "

Strategy profile set of strategies for all players
specifying all actions in a game

Social optimum (SO)

Dominant strategy (DS)

Dominant strategy profile

Nash equilibrium (NE)

ETHzirich

Example: Prisoners Dilemma Systems e ETHoss

13
L
S ge®
) %% *

Distributed f
Computing Ws %50

u Player u
v Cooperate | Defect
1 0
Player v Cooperate 1 3
: 3 2
Defect 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”
Dominant Strategy:

Social optimum:

Nash equilibrium:
zurich

Game Theory - Terminology

Strategy

Systems @ ETH zun

P
Distributed f".-» "

Strategy profile

set of strategies for all players
specifying all actions in a game

Social optimum (SO)

Strategy profile with the best sum
of outcomes over players

Dominant strategy (DS)

The move that’s never worse than
another strategy for a player

Dominant strategy profile

Every player plays a dominant
strategy

Nash equilibrium (NE)

ETHzirich

. e

move Computing W %500

Example: Prisoners Dilemma

u Player u
v Cooperate | Defect
1 0
Player v Conperate 1 3
Defect 3 2
efec 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Systems @ ETH zun

7
Distributed g'.--.‘-_
Computing We %%

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium:
zurich

Game Theory - Terminology Systemse ETH.us

7
Distributed ; L o

Strategy move Computing W5 %5
Strategy profile set of strategies for all players
specifying all actions in a game
Social optimum (SO) Strategy profile with the best sum
of outcomes over players
Dominant strategy (DS) The move that’s never worse than
another strategy for a player
Dominant strategy profile Every player plays a dominant
strategy
Nash equilibrium (NE) Strategy profile such that nobody

can improve by unilaterally
changing their move

ETHzirich

. e

Example: Prisoners Dilemma

u Player u
v Cooperate | Defect
1 0
Player v Conperate 1 3
Defect 3 2
efec 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Systems @ ETH zun

7
Distributed f L o
. -

Computing WS %%,

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium: Defect-Defect (cost: 4)
zurich

Se|f|Sh CaChing Systems @ ETH zun

s
Distributed f. L o

Computing ¥ % %

Consider a network. Nodes can either cache a file or fetch it through the network
from another node. At least one node should store the file.

As a game:
* Strategy: cache or not cache

* Cost: 1if cache, otherwise (shortest path to cache) * demand
(Note: path lengths are symmetric (if undirected) but demands might vary)

ETHzirich

Selfish Caching - Algorithm Sstems ETHie

J
%
Distributed g:--.’ .
. piiges 8
Computing W% 5

Algorithm 25.7 Nash Equilibrium for Selfish Caching
s B =11 //set of nodes that cache the file
: repeat
Let v be a node with maximum demand d, in set V

1
2
3:
4: S=8SU{v},V=V\{v}
D
6

Remove every node u from V with ¢,,. ,, <1 «—— remove all candidates that
Y R = are better off by fetching

: until V = {}

c,., = cost for u of fetching from v, i.e. u-v-path length * demand of u

u

ETHzirich

Selfish Caching - Example Systemse ETH s

@ 1/2 @ 3/4 @

With demands all 1

i
fgr®
. s *

Distributed f
Computing W %%,

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): ?
Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

ETHzirich

Selfish Caching - Example Systemse ETH s

@ 1/2 @ 3/4 @

With demands all 1

Distributed (
Computing Ws %50

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost = 1/2 + 1 + 3/4 = 9/4
Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

ETHzirich

Selfish Caching - Example Systemse ETH s

@ 1/2 @ 3/4 @

With demands all 1

Distributed (
Computing Ws %50

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost=1/2 + 1 + 3/4 = 9/4

Pessimistic NE (start algo at u or w): u & w cache = Cost=1+1/2+ 1 =10/4

Social Optimum: ?

ETHzirich

Selfish Caching - Example Systems© ETHuo

@ 1/2 @ 3/4 @

With demands all 1

i
S ge®
) %% *

Distributed f
Computing Ws %50

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost = 1/2 + 1 + 3/4 = 9/4
Pessimistic NE (start algo at u or w): u & w cache = Cost=1+1/2+1 =10/4

Social Optimum: v caches (same as Optimistic NE) = Cost = 9/4

ETHzirich

Price of Anarchy Systemse ETH.s

s
Distributed f. L o

Computing ¥ % %

Idea: With some rules, we could always enforce the social optimum. But what is
the cost of having no rules (anarchy)?

* Optimistic approach: players will converge to “best” nash equilibrium.

| | _ cost(NE;)
Then, price of anarchy: OPoA = cost(SO)
* Pessimistic approach: players will converge to “worst” nash equilibrium
| B cost(NE_)
. . O -
Then, price of anarchy: cost(S0)

ETHzirich

Selfish Caching - Example Systemse ETH s

Distributed !{:-:‘-_
1/2 /\ 3/4 Q
u (V) w
(=

Computing Ws %50
With demands all 1

Optimistic NE: 9/4 Pessimistic NE: 10/4 Social Optimum: 9/4
PoA: ?

OPOA: ?

ETHzirich

Selfish Caching - Example Systemse ETH s

@ 1/2 @ 3/4 @

With demands all 1

2
Distributed !.:':r_' .
Computing W %%,

Optimistic NE: 9/4 Pessimistic NE: 10/4 Social Optimum: 9/4
PoA: (10/4) / (9/4) =10/9 > 1

OPoA: (9/4) / (9/4) = 1

ETHzirich

B raess Pa rad OX Systems @ ETH zunch

4
Distributed p/:-;“ .

Computing Ws %50

d = #drivers on link

NE for 1000 drivers:
split evenly across
s—u—t and s—»v—t
= cost=1.5

d/1000

(a) The road network without the shortcut

ETHzirich

Braess Paradox Systems @ ETHzmo

Distributed !ﬁ;-:'-_
Computing W %%,

adding link {u,v}
makes the NE worse

consider even split, but
then s—v—u—t costs
just 1, so drivers will
start switching until all

choose that path =
cost =2 (b) The road network with the shortcut

d/1000

ETHzirich

Mixed Nash Equilibrium Systems © ETH:nia

Definition 25.16 (Mixed Nash Equilibrium). A Mixed Nash Equilibrium (MNFE) D"‘cg:::f;?ng &?{‘-
1s a strategy profile in which at least one player is playing a randomized strategy P
(choose strategy profiles according to probabilities), and no player can improve

their expected payoff by unilaterally changing their (randomized) strategy.

Theorem 25.17. FEvery game has a mixed Nash Equilibrium.

U Player u
v Rock Paper Scissors

S 0 1 -1 MNE for rock paper scissors:

' 0 -1 1 Both players choose a strategy
-1 0 1 with %5 probability (due to
Player v Paper 1 0 1 symmseft)ry) y(
Sei 1 -1 0
ClSsors E 1 0

Table 23.15: Rock-Paper-Scissors as a matrix.

QUiZ (ASSignment 11) Systems @ ETH zun

4
Distributed é:--,‘ .
Computing Ws %50

1.1 Selling a Franc

Form groups of two to three people. Every member of the group is a bidder in an auction for
one (imaginary) franc. The franc is allocated to the highest bidder (for his/her last bid). Bids
must be a multiple of CHF 0.05. This auction has a crux. Every bidder has to pay the amount
of money he/she bid (last bid) — it does not matter if he/she gets the franc. Play the game!

a) Where did it all go wrong?
b) What could the bidders have done differently?

ETHzirich

Systems @ ETH zun
Y
e %
I‘ L

Distributed (
Computing Ws %50

Quorum Systems

ETHzirich

,/f?’i"
ETHziirich B osrived o

Computmg

Quorum Systems

High-level functionality:
1. Client selects a free quorum
2. Locks all nodes of the quorum

3. Client releases all locks

ETHzirich

Systems @ ETH ziricn

p
ETH:zlrich :;: owed (ke

Computing ¢"“'

Systems @ ETH ziricn

Singleton and Majority Quorum Systems

Singleton quorum system Majority quorum system
(all sets of n/ 2 + 1 nodes)

ETHzirich

y O

‘=-“
ETHzirich B& osued (o,

Computmg

Systems @ ETH ziricn

Load and Work

An access strategy Z defines the probability P,(Q) of accessing a quorum Q €S

such that:

ZQEB PZ(Q) =1

ETHzirich

E'H Z U r I C h n—; Distributed t’g“‘ .
Systems@ ETH zircn

Computing \‘“

Systems @ ETH ziricn

Load and Work

« Load of access strategy Z on a node v, Qe5iveQ

e Load induced by Z on quorum system S

e Load of quorum system S L(S) = min,L,(S)

e Work of quorum Q
e Work induced by Z on quorum system S ges

e Work of quorum system S

ETHzirich

/i"‘_‘t
ETHziirich [Ea ot (o,

Computing '

Load and Work

Singleton quorum system

Systems @ ETH ziricn

Majority quorum system
(all sets of n/ 2 + 1 nodes)

Singleton Majority
How many servers need to be contacted? (Work) 1 >n/2
What's the load of the busiest server? (Load) 100% = 50%
How many server failures can be tolerated? (Resilience) 0 <n/2

ETHzirich

et y:
ETH:zurich E; Distributed figa*a.

3 $'qus
Systems@ ETH zircn Com pu tlng “!“ “\f BT

Basic Grid Quorum System StrseETHo

o Nodes arranged in a square matrix
e Each quorum i contains the union of row i and column i

ETHzirich

. pe
m ZU ," I C h n,; Distributed ﬁ::’i:'-“-

Systems@ ETH zircn Computing “?‘: .‘ o1

B-Grid Quorum System e

Nodes arranged in rectangular grid with her rows

Group of r rows is a band

Group of r elements in the same column and band is a mini-column
Quorums consists of one mini-column in every band and one element
from each mini-column of one band

mini-column

}7%

ETHzirich

. o o
ETHzirich B osiued (o,

Systems@ ETH zircn Computing “?‘ ‘.‘ \ BT
Quiz

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

Systems @ ETH ziricn

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich

—

ETHziirich [Ba osmwer foi
.
Systems@ ETH zircn X

Computing W% u
Systems @ ETH ziricn

Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich

—

ETHziirich [Ba osmwer foi
.
Systems@ ETH zircn X

Computing W% u

Systems @ ETH ziricn

Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich

—

ETHziirich [Ba osmwer foi
.
Systems@ ETH zircn X

Computing W% u

Systems @ ETH ziricn

Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all quorums!

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich

m ZU rl C h ni;m Distributed ‘:‘ ;.- ."

Computing
Systems @ ETH ziricn

Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all quorums!

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

A: pick a node and take all quorums containing it. Maximality: between
any quorum and its complement at most one can be in the system.
ETHzurich

A Quorum System

Systems @ ETH zun

Distributed g:;',‘- .

Computing Ws %%,
Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes
fulfilling x & y = z constitute a quorum. In the following picture this quorum system is repre-
sented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110)
form a quorum.

111

e Quorums: 7
e Work: 3
e |oad: 3/7

a) Of how many different quorums does this system consist and what are its work and its
load?

ETHzirich

A Quorum System

Systems @ ETH zun

et

e
Distributed fﬁ -:'
i : . : Computing W %%,
Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes

fulfilling & y = z constitute a quorum. In the following picture this quorum system is repre-

sented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110)
form a quorum.

111

Resilience: 2

Every node is in 3 quorums
=> any two nodes can be
contained in at most 2*3 quorums

@

b) Calculate its resilience f. Give an example where this quorum system does not work
anymore with f 4 1 faulty nodes.

011
110

ETHzirich

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

