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Prisoner’s Dilemma - matrix representation of games

ETHzirich

u Player u
v Cooperate | Defect
1 0
Player v Cooperate 1 9
: - 2
Detect 0 5

Systems @ ETH zun

it
Distributed tf:v
U . 3

Computing ¥s %

-
. ®

Carn)



Game Theory - Terminology Systems © ETHaws
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Strategy move Computing '.': ‘-L.‘.- "

Strategy profile set of strategies for all players
specifying all actions in a game

Social optimum (SO)

Dominant strategy (DS)

Dominant strategy profile

Nash equilibrium (NE)
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u Player u
v Cooperate | Defect
1 0
Player v Cooperate 1 3
: 3 2
Defect 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”
Dominant Strategy:

Social optimum:

Nash equilibrium:
zurich



Game Theory - Terminology

Strategy
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Strategy profile

set of strategies for all players
specifying all actions in a game

Social optimum (SO)

Strategy profile with the best sum
of outcomes over players

Dominant strategy (DS)

The move that’s never worse than
another strategy for a player

Dominant strategy profile

Every player plays a dominant
strategy

Nash equilibrium (NE)
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Example: Prisoners Dilemma

u Player u
v Cooperate | Defect
1 0
Player v Conperate 1 3
Defect 3 2
efec 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Systems @ ETH zun
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Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium:
zurich



Game Theory - Terminology Systemse ETH.us
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Strategy move Computing W5 %5
Strategy profile set of strategies for all players
specifying all actions in a game
Social optimum (SO) Strategy profile with the best sum
of outcomes over players
Dominant strategy (DS) The move that’s never worse than
another strategy for a player
Dominant strategy profile Every player plays a dominant
strategy
Nash equilibrium (NE) Strategy profile such that nobody

can improve by unilaterally
changing their move
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Example: Prisoners Dilemma

u Player u
v Cooperate | Defect
1 0
Player v Conperate 1 3
Defect 3 2
efec 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”
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Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium: Defect-Defect (cost: 4)
zurich
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Consider a network. Nodes can either cache a file or fetch it through the network
from another node. At least one node should store the file.

As a game:
* Strategy: cache or not cache

* Cost: 1if cache, otherwise (shortest path to cache) * demand
(Note: path lengths are symmetric (if undirected) but demands might vary)

ETHzirich



Selfish Caching - Algorithm Sstems ETHie
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Algorithm 25.7 Nash Equilibrium for Selfish Caching
s B =11 //set of nodes that cache the file
: repeat
Let v be a node with maximum demand d, in set V

1
2
3:
4: S=8SU{v},V=V\{v}
D
6

Remove every node u from V with ¢,,. ,, <1 «—— remove all candidates that
Y R = are better off by fetching

: until V = {}

c,., = cost for u of fetching from v, i.e. u-v-path length * demand of u

u
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Selfish Caching - Example Systemse ETH s
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With demands all 1
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There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): ?
Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

ETHzirich



Selfish Caching - Example Systemse ETH s

@ 1/2 @ 3/4 @

With demands all 1

Distributed (
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There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost = 1/2 + 1 + 3/4 = 9/4
Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

ETHzirich



Selfish Caching - Example Systemse ETH s

@ 1/2 @ 3/4 @

With demands all 1
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There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost=1/2 + 1 + 3/4 = 9/4

Pessimistic NE (start algo at u or w): u & w cache = Cost=1+1/2+ 1 =10/4

Social Optimum: ?

ETHzirich



Selfish Caching - Example Systems© ETHuo

@ 1/2 @ 3/4 @

With demands all 1
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There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost = 1/2 + 1 + 3/4 = 9/4
Pessimistic NE (start algo at u or w): u & w cache = Cost=1+1/2+1 =10/4

Social Optimum: v caches (same as Optimistic NE) = Cost = 9/4

ETHzirich
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Idea: With some rules, we could always enforce the social optimum. But what is
the cost of having no rules (anarchy)?

* Optimistic approach: players will converge to “best” nash equilibrium.

| | _ cost(NE;)
Then, price of anarchy: OPoA = cost(SO)
* Pessimistic approach: players will converge to “worst” nash equilibrium
| B cost(NE_)
. . O -
Then, price of anarchy: cost(S0)

ETHzirich



Selfish Caching - Example Systemse ETH s
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With demands all 1

Optimistic NE: 9/4  Pessimistic NE: 10/4  Social Optimum: 9/4
PoA: ?

OPOA: ?
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Selfish Caching - Example Systemse ETH s

@ 1/2 @ 3/4 @

With demands all 1

2
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Optimistic NE: 9/4  Pessimistic NE: 10/4  Social Optimum: 9/4
PoA: (10/4) / (9/4) =10/9 > 1

OPoA: (9/4) / (9/4) = 1
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d = #drivers on link

NE for 1000 drivers:
split evenly across
s—u—t and s—»v—t
= cost=1.5

d/1000

(a) The road network without the shortcut
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Braess Paradox Systems @ ETHzmo
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adding link {u,v}
makes the NE worse

consider even split, but
then s—v—u—t costs
just 1, so drivers will
start switching until all

choose that path =
cost =2 (b) The road network with the shortcut

d/1000
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Mixed Nash Equilibrium Systems © ETH:nia

Definition 25.16 (Mixed Nash Equilibrium). A Mixed Nash Equilibrium (MNFE) D"‘cg:::f;?ng &?{‘-
1s a strategy profile in which at least one player is playing a randomized strategy P
(choose strategy profiles according to probabilities), and no player can improve

their expected payoff by unilaterally changing their (randomized) strategy.

Theorem 25.17. FEvery game has a mixed Nash Equilibrium.

U Player u
v Rock Paper Scissors

S 0 1 -1 MNE for rock paper scissors:

' 0 -1 1 Both players choose a strategy
-1 0 1 with %5 probability (due to
Player v Paper 1 0 1 symmseft)ry) y(
Sei 1 -1 0
ClSsors E 1 0

Table 23.15: Rock-Paper-Scissors as a matrix.
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1.1 Selling a Franc

Form groups of two to three people. Every member of the group is a bidder in an auction for
one (imaginary) franc. The franc is allocated to the highest bidder (for his/her last bid). Bids
must be a multiple of CHF 0.05. This auction has a crux. Every bidder has to pay the amount
of money he/she bid (last bid) — it does not matter if he/she gets the franc. Play the game!

a) Where did it all go wrong?
b) What could the bidders have done differently?

ETHzirich
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Quorum Systems
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Quorum Systems

High-level functionality:
1. Client selects a free quorum
2. Locks all nodes of the quorum

3. Client releases all locks

ETHzirich
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Singleton and Majority Quorum Systems

Singleton quorum system Majority quorum system
(all sets of n/ 2 + 1 nodes)
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Load and Work

An access strategy Z defines the probability P,(Q) of accessing a quorum Q €S

such that:

ZQEB PZ(Q) =1

ETHzirich
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Load and Work

« Load of access strategy Z on a node v, Qe5iveQ

e Load induced by Z on quorum system S

e Load of quorum system S L(S) = min,L,(S)

e Work of quorum Q
e Work induced by Z on quorum system S ges

e Work of quorum system S

ETHzirich



/i"‘_‘t
ETHziirich [Ea ot (o,

Computing '

Load and Work

Singleton quorum system
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Majority quorum system
(all sets of n/ 2 + 1 nodes)

Singleton Majority
How many servers need to be contacted? (Work) 1 >n/2
What's the load of the busiest server? (Load) 100% = 50%
How many server failures can be tolerated? (Resilience) 0 <n/2

ETHzirich
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Basic Grid Quorum System StrseETHo

o Nodes arranged in a square matrix
e Each quorum i contains the union of row i and column i

ETHzirich
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B-Grid Quorum System e

Nodes arranged in rectangular grid with her rows

Group of r rows is a band

Group of r elements in the same column and band is a mini-column
Quorums consists of one mini-column in every band and one element
from each mini-column of one band

mini-column

}7%
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Quiz

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

Systems @ ETH ziricn

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all quorums!

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

ETHzirich
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all quorums!

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

A: pick a node and take all quorums containing it. Maximality: between
any quorum and its complement at most one can be in the system.
ETHzurich



A Quorum System
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Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes
fulfilling x & y = z constitute a quorum. In the following picture this quorum system is repre-
sented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110)
form a quorum.

111

e Quorums: 7
e Work: 3
e |oad: 3/7

a) Of how many different quorums does this system consist and what are its work and its
load?

ETHzirich



A Quorum System
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Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes

fulfilling & y = z constitute a quorum. In the following picture this quorum system is repre-

sented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110)
form a quorum.

111

Resilience: 2

Every node is in 3 quorums
=> any two nodes can be
contained in at most 2*3 quorums

@

b) Calculate its resilience f. Give an example where this quorum system does not work
anymore with f 4 1 faulty nodes.

011
110

ETHzirich
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