

FPGA_DDR4_2

FPGA_DOR1_1

EPRA NNP4 3

FRGA DOR4

Computer Systems / Distributed Systems

Exercise Session 10 HS 2022

m FPGA FA 2 88 88 682 PGA PCIe_x16 BMC

Game Theory

Prisoner's Dilemma - matrix representation of games

	u	Playe	Player u			
v		Cooperate	Defect			
Player v	Cooperate	1 1	$\begin{array}{c} 0\\ 3\end{array}$			
	Defect	0 3	2 2			

Game Theory - Terminology

Strategy	move	Distributed Computin
Strategy profile	set of strategies for all players specifying all actions in a game	
Social optimum (SO)		
Dominant strategy (DS)		
Dominant strategy profile		
Nash equilibrium (NE)		
ETH zürich		

Example: Prisoners Dilemma

	u	<i>u</i> Player <i>u</i>					
v		Cooperate	Defect				
Player v	Cooperate	1 1	0				
	Defect	3 0	2 2				

Strategy: Player v will play "Cooperate"

Strategy profile: Player v will play "Cooperate" and player u will play "Defect"

Dominant Strategy:

Social optimum:

Nash equilibrium:

Game Theory - Terminology

Strategy	move	Distributed Computii
Strategy profile	set of strategies for all players specifying all actions in a game	
Social optimum (SO)	Strategy profile with the best su of outcomes over players	m
Dominant strategy (DS)	The move that's never worse th another strategy for a player	an
Dominant strategy profile	Every player plays a dominant strategy	
Nash equilibrium (NE)		

Example: Prisoners Dilemma

	u	Playe	r <i>u</i>
v		Cooperate	Defect
Player v	Cooperate	1 1	0
	Defect	3 0	2 2

Strategy: Player v will play "Cooperate"

Strategy profile: Player v will play "Cooperate" and player u will play "Defect"

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium:

Game Theory - Terminology

d

Strategy	move	Distribute Compu
Strategy profile	set of strategies for all players specifying all actions in a game	
Social optimum (SO)	Strategy profile with the best su of outcomes over players	m
Dominant strategy (DS)	The move that's never worse th another strategy for a player	an
Dominant strategy profile	Every player plays a dominant strategy	
Nash equilibrium (NE)	Strategy profile such that noboc can improve by unilaterally changing their move	ly

Example: Prisoners Dilemma

	u	Player u				
v		Cooperate	Defect			
Player v	Cooperate	1 1	$0 \\ 3$			
	Defect	3 0	2 2			

Strategy: Player v will play "Cooperate"

Strategy profile: Player v will play "Cooperate" and player u will play "Defect"

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium: Defect-Defect (cost: 4)

Consider a network. Nodes can either cache a file or fetch it through the network from another node. At least one node should store the file.

As a game:

- **Strategy:** cache or not cache
- **Cost:** 1 if cache, otherwise (shortest path to cache) * demand (Note: path lengths are symmetric (if undirected) but demands might vary)

Selfish Caching - Algorithm

Algorithm 25.7 Nash Equilibrium for Selfish Caching1: $S = \{\}$ 2: repeat3: Let v be a node with maximum demand d_v in set V4: $S = S \cup \{v\}, V = V \setminus \{v\}$ 5: Remove every node u from V with $c_{u \leftarrow v} \leq 1$ 6: until V = $\{\}$

 $c_{u \leftarrow v}$ = cost for u of fetching from v, i.e. u-v-path length * demand of u

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic **NE** (start algo at v): ?

Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic **NE** (start algo at v): **v** caches \Rightarrow Cost = 1/2 + 1 + 3/4 = 9/4

Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic **NE** (start algo at v): **v** caches \Rightarrow Cost = 1/2 + 1 + 3/4 = 9/4

Pessimistic NE (start algo at u or w): u & w cache \Rightarrow Cost = 1 + 1/2 + 1 = 10/4

Social Optimum: ?

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic **NE** (start algo at v): **v caches** \Rightarrow Cost = 1/2 + 1 + 3/4 = **9/4**

Pessimistic NE (start algo at u or w): u & w cache \Rightarrow Cost = 1 + 1/2 + 1 = 10/4

Social Optimum: v caches (same as Optimistic NE) ⇒ Cost = 9/4

Idea: With some rules, we could always enforce the social optimum. But what is the cost of having no rules (anarchy)?

- **Optimistic approach:** players will converge to "best" nash equilibrium.
 - Then, price of anarchy: $OPoA = \frac{\text{cost}(NE_+)}{\text{cost}(SO)}$
- **Pessimistic approach:** players will converge to "worst" nash equilibrium
 - Then, price of anarchy: $PoA = \frac{\text{cost}(NE_{-})}{\text{cost}(SO)}$

With demands all 1

Optimistic NE: 9/4 Pessimistic NE: 10/4 Social Optimum: 9/4

PoA: ?

OPoA: ?

With demands all 1

Optimistic NE: 9/4 Pessimistic NE: 10/4 Social Optimum: 9/4

PoA: (10/4) / (9/4) = **10/9** > 1

OPoA: (9/4) / (9/4) = **1**

Braess Paradox

d = #drivers on link

NE for 1000 drivers:

split evenly across $s \rightarrow u \rightarrow t$ and $s \rightarrow v \rightarrow t$ $\Rightarrow cost = 1.5$

(a) The road network without the shortcut

Braess Paradox

adding link {u,v} makes the NE worse

consider even split, but then $s \rightarrow v \rightarrow u \rightarrow t$ costs just 1, so drivers will start switching until all choose that path \Rightarrow cost = 2

(b) The road network with the shortcut

Mixed Nash Equilibrium

Computi

Distributed **Definition 25.16** (Mixed Nash Equilibrium). A Mixed Nash Equilibrium (MNE) is a strategy profile in which at least one player is playing a randomized strategy (choose strategy profiles according to probabilities), and no player can improve their expected payoff by unilaterally changing their (randomized) strategy.

Theorem 25.17. Every game has a mixed Nash Equilibrium.

	u		Player u		
v		Rock	Paper	Scissors	
	Deelr	0	1	-1	
	ROCK	0	-1	1	
Dlavor a	Dopor	-1	0	1	
Player v	Faper	1	0	-1	
	Saissora	1	-1	0	
	50155015	-1	1	0	

Table 23.15: Rock-Paper-Scissors as a matrix.

MNE for rock paper scissors: Both players choose a strategy with $\frac{1}{3}$ probability (due to symmetry)

Quiz (Assignment 11)

1.1 Selling a Franc

Form groups of two to three people. Every member of the group is a bidder in an auction for one (imaginary) franc. The franc is allocated to the highest bidder (for his/her last bid). Bids must be a multiple of CHF 0.05. This auction has a crux. Every bidder has to pay the amount of money he/she bid (last bid) – it does not matter if he/she gets the franc. Play the game!

- **a)** Where did it all go wrong?
- **b)** What could the bidders have done differently?

Quorum Systems

Quorum Systems

High-level functionality:

- 1. Client selects a free quorum
- 2. Locks all nodes of the quorum
- 3. Client releases all locks

Singleton and Majority Quorum Systems

Singleton quorum system

Majority quorum system (all sets of n / 2 + 1 nodes)

Load and Work

An access strategy Z defines the probability $P_Z(Q)$ of accessing a quorum $Q \in S$ such that:

$$\sum_{Q \in S} P_Z(Q) = 1$$

Load and Work

- Load of access strategy Z on a node v_i
- Load induced by Z on quorum system S
- Load of quorum system S

- Work of quorum Q
- Work induced by Z on quorum system S
- Work of quorum system S

$$L_{Z}(v_{i}) = \sum_{Q \in S; v_{i} \in Q} P_{Z}(Q)$$
$$L_{Z}(S) = \max_{v_{i} \in S} L_{Z}(v_{i})$$
$$L(S) = \min_{Z} L_{Z}(S)$$
$$W(Q) = |Q|$$
$$W_{Z}(S) = \sum_{Q \in S} P_{Z}(Q) \cdot W(Q)$$
$$W(S) = \min_{Z} W_{Z}(S)$$

Load and Work

Singleton quorum system

Majority quorum system (all sets of n / 2 + 1 nodes)

	Singleton	Majority
How many servers need to be contacted? (Work)	1	> n/2
What's the load of the busiest server? (Load)	100%	≈ 50%
How many server failures can be tolerated? (Resilience)	0	< n/2

Basic Grid Quorum System

- Nodes arranged in a square matrix
- Each quorum i contains the union of row i and column i

					Г	
					Г	

B-Grid Quorum System

- Nodes arranged in rectangular grid with h r rows
- Group of r rows is a band
- Group of r elements in the same column and band is a mini-column
- **Quorums** consists of one mini-column in every band and one element from each mini-column of one band

Quiz

- 1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?
- 2. Consider the **nearly all** quorum system, which is made up of n different quorums, each containing n 1 servers. What is the resilience?

- 1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?
- 2. Consider the **nearly all** quorum system, which is made up of n different quorums, each containing n 1 servers. What is the resilience?

1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?

A: no, as any two quorums intersect!

2. Consider the **nearly all** quorum system, which is made up of n different quorums, each containing n - 1 servers. What is the resilience?

1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?

A: no, as any two quorums intersect!

2. Consider the **nearly all** quorum system, which is made up of n different quorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all quorums!

1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?

A: no, as any two quorums intersect!

2. Consider the **nearly all** quorum system, which is made up of n different quorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all quorums!

3. Can you think of a quorum system that contains as many quorums as possible? Note: does not have to be minimal.

A: pick a node and take all quorums containing it. Maximality: between any quorum and its complement at most one can be in the system.

A Quorum System

Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes fulfilling $x \oplus y = z$ constitute a quorum. In the following picture this quorum system is represented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110) form a quorum.

a) Of how many different quorums does this system consist and what are its work and its load?

ETH zürich

Distributed Computing

A Quorum System

Computing Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes fulfilling $x \oplus y = z$ constitute a quorum. In the following picture this quorum system is represented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110) form a quorum.

> 010 100 001 011 110

Resilience: 2

Every node is in 3 quorums => any two nodes can be contained in at most 2*3 guorums

b) Calculate its resilience f. Give an example where this quorum system does not work anymore with f + 1 faulty nodes.

Distributed