O
[REAETRS o TR “
- e | |

oIt pesatas il = - =
FPGA._DOR4_4 FRBA_FY n R 5 el -9, -
1 A e LA]

B i, R
: | RPN Y| . 1Y e | 111} . jg !
2 ey =) :

%
§

Computer Systems /
Distributed Systems

Exercise Session 9
HS 2022

-
-
2
um t >
m
o

MTas
S Ea' TR
i | }~§§sﬁ?j-<

|2525%
s‘.\-;"‘
I8 53°
: S 0
DRA NNB4 A ' —_FPGA_PCle_x16 Al —_—

ST 5 CPU_ EOC_ BNC. FPGA
CDd JTAG ;‘ - 'a'“> ‘..'_' g f [;111'u 3325, Txal, aazabEm 1

a:?

1

L

........

-
A | _.\..u-_ SFever .__uu dddd dsaa aqu?:.’

@7 i ii‘ Hj‘mg .,;.; 5 O -

-------- e f'r‘
e -wvl

4
D
D
O
>
»d

!
L

Illllll~ g : mx o=

-‘.,q,mmx:w L L | ;;‘. N

B L-""‘

4
ZUI"I C h E; Distributed ,4/' =’:-"-".
E l I ‘ Systems@ ETH zuicn

y
Computing | S

Distributed Storage

ETHzirich B osmes (s,

Computing W%

Consistent Hashing

How to store many items on many nodes in a “consistent” manner?
Use hash functions to transform item and node IDs into values in [0,1)

For each hash function, item is stored on machine with the closest hash.

ETHzirich B3R ommwet fus,

Computing

Consistent Hashing

Some properties of consistent hashing:

® FEach node stores the same number of items in expectation
® Number of hash functions determines degree of duplication

® Any single node’s memory consumption is bounded (by Chernoff bound)

e Supports nodes leaving/joining

g
4

W’Zul‘l C h E; Distributed ,{':5‘:‘-" Ao
Systems@ ETH zucn

Computing Wi i

Hypercubic Networks

e How should our distributed storage system look like?
e How should the nodes be connected?

e How do we find a particular item?

/ e
/ .
ETHzurich ﬁj owaed

Computing

Hypercubic Networks

In a classic distributed system one node can have a view of the entire system
because nodes rarely leave/join

However, we are considering very large networks with high churn in which it
becomes impossible for nodes to have an accurate and updated picture of
large parts of the network topology

Thus, we want a system that only relies on every node knowing its small
neighborhood

What kind of network topology should we use?

A
o

W’Zul‘l C h E; Distributed ,{':5‘:‘-" Ao
Systems@ ETH zucn

Computing Wi i

Hypercubic Networks

Consistent hashing reminder: Where to store items

Hypercubic networks: Arrange nodes such that they form a virtual network,
also called an overlay network

In general, the overlay network gives us the possibility to “navigate” our
distributed storage system, i.e., do routing. This is necessary since each node
only has a local view, but we still want to find any item, even if it is not in the
neighborhood of the node we are currently querying

ETHzirich BA osmes fo
Systems@ ETH zuicr

Computing @“

Hypercubic Networks

A good overlay topology should fulfill the following properties (more or less):

II)

° : No single point of failure, all nodes are “equa
e NodeIDs in [0,1) for consistent hashing
e Nodes have small degree, i.e., only relatively few neighbours

e Small diameter and easy routing: Any node should be reachable within
reasonable time

Vb
ETHzirich Ba owvmes for.,
Systems@ ETH zucn

Computing Wi i

Hypercubic Networks

Different overlay topologies make different trade-offs, for example:

Butterflies: Constant small node degree

Hypercube: More fault tolerant routing; i.e. more short routes between
nodes (k! routes of length k)

000 001 010 011 100 101 110 111 110 111
0

100 101
1
, /010 /011
3 *— ¢) —e 000 001

m 4 U r [C h n:; Distributed

Systemse ETHzuio Com pu tin g

Hypercubic Networks

You will draw some simple hypercubic graphs in the quiz

2-d hypercube 3-d hypercube 4-d hypercube
s
o o o
T T T T T T T T T T T
2 1 4 1 2 2 1 4 1 2 2 1 0 1 2
(1) (1) x1)

x2)
0

y o
) . Distributed l/":"v“
ETHzirich B3 oo fois
DHT & Churn

DHT: Distributed Hash Table

e Combines consistent hashing with overlay networks
e Supports searching, insertion and (maybe) deletion

e For example: Use hypercube with hyper nodes. “Core” nodes store data,
“periphery” nodes can move around.

.y pistributed flont
ETHziirich & osiuet fase,
DHT & Churn

Core

Robustness against Churn Periphery

e Attacker crashes nodes in worst-case
manner. Can target weak spots to
partition the DHT.

® DHT redistributes nodes to make sure
each hypernode has = the same
number of nodes — No weak spots.

2
ETHziirich B osoues (i
Systems@ ETH zuicr

Computing %% 20
Quiz

Draw the following hypercubic graphs:

o M(3,1)
e M(3,2)
e SE(2)

o M(2,4)

m 4 U r [C h nj Distributed

Systems@ ETH zuicr

Quiz Solutions

M(3,1)
0O —1— 2
M(3,2)
00 — 10— 20
0’1 — 1’1 — 2’1
0’2 — 1’2— 2’2

Computing

00

10

SE(2)
01)

 '11

1000

0000

M(2,4)
1100 110
,_ 1010 /£
1101 1111
s 1011
1001
0101 0111
#0007 0011
' 5J0110

0100 L=

0010

ox L. ﬁﬂﬂ;;
ETHziirich BE& osiued foi-.

Systemse ETHzuio Com pu tin g

Assignment Outlook

Basic

2.2 Iterative vs. Recursive Lookup

There are two fundamental ways to perform a lookup in an overlay network: recursive and
iterative lookup.

Assume node ng is attempting to look up an object in a DHT. In the recursive lookup ng
selects a node n; which is closest according to the DHT metric and sends a request to it. Upon
receiving the request n; selects its closest known neighbor ny and forwards the request to it and
so on. The request either ends up at the node storing the object, returning the object along
the same path, or it ends at a node that does not store the object and does not have a closer
neighbor.

In the iterative case ng looks up the closest neighbor ny and sends it the request. Upon
receiving the request n; is either the node storing the object and it returns the object, or it
knows a closer node ny and returns ny to the ng. If ng receives a node ny it will add it to
its neighbor set and sends a new request to ny which is now its closest neighbor. The lookup
terminates either when ng sends a request to the node storing the object, or no closer node can
be found.

a) What are the advantages of recursive lookups over the iterative lookups?

b) Most systems that are in use today use the iterative lookup, and not the recursive lookup,
why?

: 9'qu8
Systems@ ETH zuicr Computlng ‘&‘\‘:‘I‘-."

Assignment Outlook

2.3 Building a set of Hash functions

Consistent hashing relies on having k hashing functions {ho, ..., hx—1} that map object ids to
hashes. There are several constructions for these hash functions, the most common being iterative
hashing and salted hashing. In iterative hashing we use a hash function A and apply it iteratively
so that the hashes of an object id o are defined as

[h(o) if =9
hq‘,(O) — {h(hil(o)) otherwise.

With salted hashing the object id is concatenated with the hash function index 7 resulting in the
following definition

h;(0) = h(oli).

Which hashing function derivation is better and why?

;“ﬁ-

m ZU rl C h Ej Distributed i.:: s

Systems@ ETH zu Computlng @ “I‘- 7]

Assignment Outlook
Advanced

2.4 Multiple Skiplists

In the lecture we have seen the simple skip list in which at each level nodes have probability 1/2
of being promoted to the next level. We have also discussed a variation known as a skip graph.
For yet another option, we once again redefine the promotion so that a node is promoted to a list
s if s is a suffix of the binary representation of the node’s id. At each level [we now have 2 lists
(some empty), each defined by a string of bits s of length [. In particular, the root level [= 0
is constructed with s being the empty string. The second level has one list for each s € {0, 1},
the third level one list for each s € {00,01, 10,11}, and so on. We call the resulting network a
multi-skiplist. For the purposes of this question, assume that all lists are circular.

a) Assuming we have an 8 node network, with ids {000, ...,111}, draw the multi-skiplist
graph.

b) What is the minimum degree of a node in the multi-skiplist if we have d levels?

c) What is the maximum number of hops a lookup has to perform?

LN} 1] {";
E ' H E; Distributed ~ f/7ys2®
" 9! s ¥
ZU rl Ch Systems@ ETH zuicr Computing ‘g‘: ‘, ‘_- :‘

Q & A Session

