
Computer Systems/

Distributed Systems
Exercise Session 8
HS 2022

Slides last

updated:
01.12.2022

• Consistency:
• All nodes agree on the current state of the system

• Availability:
• The system is operational and instantly processing incoming requests

• Partition tolerance:
• Still works correctly if a network partition happens

• Good news:
• achieving any two is very easy

• Bad news:
• achieving three is impossible (CAP theorem)

• => Eventual Consistency:
• Guarantees that the state is eventually agreed upon, but the nodes may disagree

temporarily

Consistency, Availability,
and Partition Tolerance

• Decentralized network consisting of nodes

• Users generate private/public key pair
• Address is generated from public key

• It is difficult to get users “real” identity from public key

1

signature

a

Inputs 5

signature
a

3

signature
b

Outputs

6

signature a

4

signature
b

Transaction

Bitcoin

• Conditions:
• Sum of inputs must always be at least the sum of outputs

• Unused part is used as transaction fee, gets paid to miner of block

• An input must always be some whole output, no splitting allowed!

• Money that a user “has” is defined as sum of unspent outputs

Bitcoin Transactions

Bitcoin Transactions

(A, 100)

(B, 100) (A, 10)

(B, 90)

(C, 105)

(A, 5)

Set of unspent transaction outputs

(UTXOs):
- This set is the shared state of Bitcoin

- The red outputs

1. Issue transaction

2. Add transaction to local history

3. Send transaction to other nodes in network

4. Check whether transaction is valid

• input of transaction must be in local UTXO
• must have valid signature

• sum of inputs >= sum of outputs

6. Add transaction to local history

7. Propagate transaction further

5. Remove any input of transaction from local UTXO

Transaction Broadcast

• Multiple transactions attempt to spend the same output

• Ex: In a transaction, an attacker pretends to transfer an output to a victim, only
to doublespend the same amount in another transaction back to itself.

Doublespend Attack

(A, 100)(B, 100)

(B, 100)(B, 100)

Broadcast

Broadcast

(C, 10)

• Right now we have infinitely growing memory pool and we can’t be
sure that other nodes have the same pool

• Solution: Propagate memory pool through network and make sure
everybody else will have same state

• Problem: How to avoid that everybody wants to propagate its own
memory pool?

• Solution: Proof-of-Work
• Proof that you put a certain amount of work into propagating your memory pool

Proof-of-Work

Proof-of-Work

Bitcoin

chooses the
difficulty such

that a block is

created all ~10
min

• Data structure holding transactions reference to previous blocks and a nonce.
• Header also contains more fields, such as a timestamp, the difficulty, network version,

etc.

• Miner creates blocks with transactions from its memory pool

Block

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Finding this

Nonce is
expensive

• Why should someone mine blocks?
• You get a reward for each block you mine

• You get the fee in the transactions

Mining

Bitcoin:
• Reward started at 50B and it is being halved every 210,000 blocks or 4 years in expectation
• This bounds the total number of Bitcoins to 21 million
• What will happen after that?

• Fee is the positive difference of input-output
• Miner include transactions which have a high fee.

• Problem: More miners -> more blocks are mined -> higher difficulty -> more Power needed

How does this prevent
double spending?
• An intruder needs to have more than 50% of computation power to

be faster in mining than all other together

A -> B:

10

A -> A:

10

1) Initial

transaction

3) Doublespend

transaction

2) Typically: transaction is accepted

by Bob after he sees 6-7 blocks.

...

How does this prevent
double spending?
• An intruder needs to have more than 50% of computation power to

be faster in mining than all other together

A -> B:

10

A -> A:

10

1) Initial

transaction

4) The goal of Alice is now to

make the branch where she
spends the money to herself

growing faster.

3) Doublespend

transaction

2) Typically: The transaction is

accepted by Bob after he sees 6-7
blocks.

...

...

Blockchain

• Starts with the genesis block and is the longest path from this genesis block
to a leaf.

• Consistent transaction history on which all nodes eventually agree

A -> B:

10

A -> A:

10
Blockchain

Genesis …

Note: To ensure that you’ll get the money you should wait 5-10 further blocks

• Contract between two or more parties, encoded in such a way that
correct execution is guaranteed by blockchain
• Timelock transaction: Tx will only get added to memory pool after some

time has expired

• Micropayment channel:
• Idea: Two parties want to do multiple small transactions, but want to avoid fees. So

they only submit first and last transaction to blockchain and privately do everything
in between

Smart Contracts

A B

1) Creates shared “account”, does not sign it

2) Creates timelocked transaction that unrolls
shared account, signs it

3) Sends them to B

A can't do anything with

this, since no transaction
has all required signatures

4) Signs both transactions
B can’t do anything with this, since

unroll transaction is not valid without
create transaction5) Signs create transaction

6) Broadcasts them to network

Micropayment Channel
Setup Transaction

Set up shared account and unrolling

Create settlement transaction

While buyer still has money and timelock not expired

Exchange goods and adapt money

Update settlement transactions with new values

S signs transaction and sends it to R

Why does s sign it?

• Like this, R always holds all fully signed transactions and can choose the last one (where he gets the most money)
• S cannot submit any transaction, so S cannot get the goods and later submit a transaction where S did not pay the money for it

R signs last transaction and broadcasts it

before timelock expires

Micropayment Channel

Quiz

Quiz

Quiz

Selfish Mining

Selfish Mining

𝜷
𝜶

𝜶
d_p

d_s

- Selfish miner does not release its
block immediately, but keeps secret
and works on “grandchildren”
(secret)

- Advantage: selfish miner can work
on next-next block, while others
still work on next block.

- Disadvantage : Work on blocks (and
rewards) potentially rendered
useless when public chain gets
longer.

𝜷 is prob. others find block

𝜶 is prob. Selfish miner finds block

Selfish Mining

Selfish minor is two block ahead and new public
block -> release all secret blocks

Ratio of mining power
Share of reachable nodes if selfish
miner publishes

Ethereum smart contracts

• Smart contract creation: A transaction with recipient with address 0 deploys a

new smart contract

• Smart Contract Execution Transaction: A transaction with a smart contract
address in its recipient field and code to execute a function of that contract in its data
field

• Gas: The unit of an atomic computation, i.e ADDing two numbers costs 3 Gas

