Computer Systems/
Distributed Systems

Exercise Session 8
HS 2022

o Ad

m
i : . =
T, il | ef
T W ! N
| B il i R D
_ S
pd

\ &
N 3
Ty £y .
; 2
mEE 4 T -
,‘."'"‘:' — [l : » whnnt" ’ — - -
- B = .-!H \ ;;‘ . o s + ?
2s) T ety o B st H e, : -
S N = B | ol M | ' ®
—" e“ e =T : i lwm: 30000 C
e { Al b o op A 1111 3 cazs]
T . A - :&
2, Nl | s TN __._/.

¥ S o o 2
—FPGA_PCle_x16 S lif :i_.: 1 .I‘D —
coa s U EDC, BNMC, FPGA
g Cad JTAG 2o ’ Ta.".‘ ; . B f r];;-..a_a_‘_ 1‘1,1_5, 1’::,'1_‘. 1111’:;2‘[] l
3 1 L A,

i - 3 SR .'.'_.‘:.".:.':::..-;:.:'.:.'..'..":.:-_...

et e 1@—\‘ EOC:‘S gi E eg,ﬁb T Ui LD ° L
-] S B A & 55 B 5 I [t [s o |

1 -,.';r_, e | Amnat :

=
‘_ ujlllltu« “"""’i‘ﬁ,,‘?}
! 3 ",:J.:&:::Q ¥ — .ﬁ,‘pt. AY

Consistency, Availability, e
and Partition Tolerance ostbaed (o

Computing '

w Lann

Consistency:
All nodes agree on the current state of the system
Availability:
The system s operationaland instantly processingincoming requests

Partition tolerance:
Still works correctly if a network partition happens

Good news:
achievingany two is very easy

Bad news:
achievingthree is impossible (CAP theorem)

=> Eventual Consistency:

Guarantees that the stateis eventually agreed upon, but the nodes may disagree
temporarily

Bitcoin e

Distributed ﬁﬂ
- Decentralized network consisting of nodes Computing %%

.- Users generate private/public key pair
- Address is generated from public key
« Itis difficult to get users “real” identity from publickey

Outputs 5

signature
a

6
signature a

4

signature
b 1
signature
a

2

signature
b

Y Transaction

Bitcoin Transactions r—

Distributed pgnit® g s
Computing ¥ %%

. Conditions:

« Sum of inputs must always be at least the sum of outputs
» Unused partis used as transaction fee, gets paid to miner of block
« An input must always be some whole output, no splitting allowed!

« Money that a user “has” is defined as sum of unspent outputs

Bitcoin Transactions

_>O
(A, 100)

Y V

— 00—
(B, 100)

(A, 10)

(B, 90)

_"

(C, 105)

(A 5)

Set of unspent transaction outputs

(UTXOs):

- This setis the shared state of Bitcoin

- The red outputs

Distributed e
Computing W%

Transaction Broadcast e

4
1. Issue transaction 3. Send transaction to other nodes in network D'?"b”tid é‘: o8
aomputin
2. Add transaction to local history puang

4. Check whether transaction is valid
E * input of transaction must be in local UTXO
> * musthave valid signature

* sum of inputs >= sum of outputs

@ 6. Add transaction to local history

5. Remove any input of transaction from local UTXO

7. Propagate transaction further

NS

Doublespend Attack e e

g
Distributed éf- .
Computing Ws =%,

".'I-' |

e

« Multipletransactions attempt to spend the same output

- Ex:Inatransaction, an attacker pretends to transfer an output to a victim, only
to doublespend the same amountin another transaction back to itself.

K
(C,10)

_’O
(B, 100) (B, 100) Broadcast

[

]

[

Proof-of-Work ey
Distributed é’}:_
Computing Ws =%,
Right now we have infinitely growing memory pool and we can’t be

sure that other nodes have the same pool

Solution: Propagate memory pool through network and make sure
everybody else will have same state

Problem: How to avoid that everybody wants to propagate its own
memory pool?

Solution: Proof-of-Work
Proof that you put a certain amount of work into propagating your memory pool

Proof-of-Work e

Distributed ~ ffens* s,
- Mining Blocks requires to proof that a certain amount of Computing {__
computational resources has been utilized
F;(c,x) = {true, false}
d: difficulty (is adapted all 24h)
c: challenge (the transactions and the hash of the previous block)
X: nonce (has to be found)

For fixed parameters d and c, finding x such that the function

Bitcoin

chooses the
difficulty such
2224 that a block is

G/ ' created all ~10
& min

Fale,x) — SHA256(SHA256(c|x)) <

Block

Syst!m-scmm
etc.

Distributed é
Computing
Data structure holding transactions reference to previous blocks and a nonce
Header also contains more fields, such as a timestamp, the difficulty, network version

Miner creates blocks with transactions from its memory pool
Hash(previous)

L]
"i-q*‘

Hash(previous)

Tl

Hash(previous)
T2

T1

T2

T1
Tn

T2

Tn

Tn

Hash(this)

Finding this
Nonce is
expensive

Hash(this)

Hash(this)

Mining ey

Distributed ~ ['s#3"»
Computing s,

- Why should someone mine blocks?

- You get a reward for each block you mine
« You get the fee in the transactions

Bitcoin:

Reward started at 50B and it is being halved every 210,000 blocks or 4 years in expectation
This bounds the total number of Bitcoins to 21 million
What will happen after that?

Fee is the positive difference of input-output
Miner include transactions which have a high fee.

Problem: More miners -> more blocks are mined -> higher difficulty -> more Power needed

How does this prevent
double spending?

Systems e ETH

Distributed
Computing

An intruder needs to have more than 50% of computation power to

be faster in mining than all other together

3) Doublespend
transaction

N A ->B:
10 ses _>

1) Initial 2) Typically: transaction is accepted
transaction by Bob after he sees 6-7 blocks.

i
o ge®
s
CRe T -

How does this prevent e
double spending? osbued 23,

Computing W%,
- Anintruder needs to have more than 50% of computation power to
be faster in mining than all other together . o
) The goal of Alice is now to

3) Doublespend make the branch where she
transaction spends the money to herself
growing faster.

\ 4

> —

N A->B:
10 waw q
1) Initial 2) Typically: The transaction is
transaction accepted by Bob after he sees 6-7

blocks.

Blockchain T

Distributed 5 s
Computing ¥ %5 .

. Startls v¥ith the genesis block and is the longest path from this genesis block
to a leaf.

« Consistent transaction history on which all nodes eventually agree

Genesis > .

Note: To ensure that you'll get the money you should wait 5-10 further blocks

Smart Contracts

Systemse ETH o

#a %
Distributed L

Computing W% ':

- Contract between two or more parties, encoded in such a way that
correct execution is guaranteed by blockchain

- Timelock transaction: Tx will only get added to memory pool after some
time has expired

« Micropaymentchannel:

Idea: Two parties want to do multiple small transactions, but want to avoid fees. So

they only submit first and last transaction to blockchain and privately do everything
in between

L ELL

Micropayment Channel e e
Setup Transaction ottt s,

Computing ¥ %

"-'I-" |

1

L]
L]

Algorithm 16.26 Parties A and B create a 2-of-2 multisig output o

1: B sends a list Ig of inputs with ¢p coins to A

2: A selects its own inputs /4 with ¢4 coins

3: A creates transaction t,{[[4.Ip].[0 = cs +cp — (A, B)]}

4: A creates timelocked transaction ,.{[o]. [c4 = A.cp — B]} and signs it
5: A sends t, and t, to B

5: B signs both ¢, and ¢, and sends them to A

7. A signs 1, and broadcasts it to the Bitcoin network

A B
A can'tdo anything with 1) Creates shared “account”, does not sign it
this, since no transaction 2) Creates timelocked transaction that unrolls
has all required signatures shared account, signs it

3) Sends them to B
B can’t do anything with this, since
unroll transaction is not valid without
5) Signs create transaction create transaction

v ©0) Broadcasts them to network

4) Signs both transactions

Micropayment Channel

Systemse ETH o
. . -l"'-r‘;'
Distributed ‘e .
Algorithm 16.27 Simple Micropayment Channel from S to R with capacity ¢ Computing W& =50

1: ¢cg = t',i('R =0 .
2: S and R use Algorithm {16.26] to set up output o with value ¢ from S Set up shared accountand unrolling
3: Create settlement transaction tg{[o], [cs = S.cr — R]} Create settlement transaction

i: while channel open and cg < ¢ do While buyer still has money and timelock not expired
D]H "\('h;lll‘.[i‘ for gl -mi \‘.il|l \;x[m' o

6: cpr=cr+9 Exchange goods and adapt money
7 cg cg 0
8: Update t; with outputs [cg = R.cs — S| Update settlement transactions with new values
9: S signs and sends f5 to R S signs transaction and sends it to R
10: end while _ _)
250 (R PR S b R e R R signs last transaction and broadcasts it

before timelock expires

Why does s sign it?

» Like this, R always holds all fully signed transactions and can choose the last one (where he gets the most money)
S cannot submit any transaction, so S cannot get the goods and later submit a transaction where S did not pay the money for it

Quiz temseETH=
(-

Distributed fiuns*s,
Computing ¥s %%

1.1 Delayed Bitcoin

In the lecture we have seen that Bitcoin only has eventual consistency guarantees. The state
of nodes may temporarily diverge as they accept different transactions and consistency will be
re-estalished eventually by blocks confirming transactions. [If, however, we consider a delayed
state, i.e., the state as it was a given number A of blocks ago, then we can say that all nodes are
consistent with high probability.

a) Can we say that the A-delayed state is strongly consistent for sufficiently large A?

b) Reward transactions make use of the inereased consistency by allowing reward outputs
to be spent after maturing for 100 blocks. What are the advantages of this maturation
period?

. . Distributed
1.1 Delayed Bitcoin Computing

a) It is true that naturally occurring forks of length | decrease exponentially with I, however
this covers naturally occuring blockehain forks only. As there is no information how much
caleulation power exists in total, it is always possible a large blockchain fork exists. This may
be the result of a network partition or an attacker secretly running a large mining operation.

This is a general problem with all “open-membership” consensus systems, where the number
of existing consensus nodes is unknown and new nodes may join at any time. As it is always
possible a much larger unknown part of the network exists, it is impossible to have strong
consistency.

In the Biteoin world an attack where an attacker is seeretly mining a sccond blockehain to
later revert many blocks is called a 51% attack, because it was thought necessary to have a
majority of the mining power to do so. However later research showed that by using other
weaknesses in Biteoin it is possible to do such attacks already with about a third of the
mining power.

Distributed
Computing

b) The delay in this case prevents coins from completely vanishing in the case of a fork. Newly
mined coins only exist in the fork containing the block that ereated them. In case of a
blockchain fork the coins would disappear and transactions spending them would become
invalid as well. It would therefore be possible to taint any number of transactions that are
valid in one fork and not valid in another. Waiting for maturation ensures that it is very
improbable that the coins will later disappear accidentially.

Note that this is however only a protection against someone accidentially sending you money
that disappears with a discontinued fork. The same thing can still happen, if someone with
evil intent double spends the same coins on the other side of the fork. You will not be
able to replay a transaction of a discontinued fork on the new active chain if the old owner
spent them in a different transaction in the meantime. To prevent theft by such an attacker
vou need to wait enough time to regard the chance of forks continuing to exist to be small
cnough. A common value used is about one hour after a transaction entered a block (~6
blocks).

Qu iz Systemclﬂ!m:

st (] l-'.'
2.2 Double Spending D:g::ﬁfﬂg éﬁ;i

Figure 1 represents the topology of a small Bitcoin network. Further assume that the two
transactions T and T of a doublespend are released simultaneously at the two nodes in the

network and that forwarding is synchronous, i.e., after { rounds a transaction was forwarded ¢
hops.

a) Once the transactions have fully propagated, which nodes know about which transactions?

b) Assuming that all nodes have the same computational power, i.e., same chances of finding
a block, what is the probability that T will be confirmed?

¢) Assuming the rightmost node, which sees T" first, has 20% of the computational power and

all nodes have equal parts of the remaining 80%, what is the probability that 7" will be
confirmed?

Figure 1: Random Bitcoin network

Qu iz Systemclﬂ!m:

: Distributed ~ ['ysi* s,
2.2 Double Spending Computing é.i_ 2
Figure 1 represents the topology of a small Bitcoin network. Further assume that the two
transactions T and T of a doublespend are released simultaneously at the two nodes in the
network and that forwarding is synchronous, i.e., after { rounds a transaction was forwarded ¢
hops.

a) Once the transactions have fully propagated, which nodes know about which transactions?

b) Assuming that all nodes have the same computational power, i.e., same chances of finding 7

a block, what is the probability that T will be confirmed? 12

¢) Assuming the rightmost node, which sees T" first, has 20% of the computational power and
all nodes have equal parts of the remaining 80%, what is the probability that 7" will be
confirmed?

20+4* % = 49%

Figure 1: Random Bitcoin network

Selfish Mining e

Distributed é‘_-}._
Computing ¥s %%

Algorithm 24.2 Selfish Mining

1: Idea: Mine secretly, without immediately publishing newly found blocks
2: Let d, be the depth of the public blockchain

3: Let ds be the depth of the secretly mined blockchain

4: if a new block b, is published, i.e., d,, has increased by 1 then
5. if d, > d, then

6: Start mining on that newly published block b,

7. elseif d, = d, then

8: Publish secretly mined block by

9: Mine on be and publish newly found block immediately
10: elseif d, =d, — 1 then

11: Publish all secretly mined blocks

12: end if

13: end if

Selfish Mining EE

B is prob. others find block Distributed é':'.‘:"
Computing W% .

a is prob. Selfish miner finds block

o - Selfish miner does not release its
5 l\‘ block immediately, but keeps secret
and works on “grandchildren”
(secret)

- Advantage: selfish miner can work

v d_p on next-next block, while others
still work on next block.

d_s - Disadvantage : Work on blocks (and
rewards) potentially rendered
useless when public chain gets
longer.

Selfish Mining

Systemse ETH o

.
Distributed éﬁ, .
Computing T

s X
I5] 5}

Selfish minor is two block ahead and new public
block -> release all secret blocks

a(l— a)?(4a + W1 —2a)) — a3.

/ 1 —a(l+(2>~a)a)

Share of reachable nodes if selfish
miner publishes

Ratio of mining power

Ethereum smart contracts rm———

4
A
e

Distributed L
Computing ¥ %%

- Smart contract creation: A transaction with recipient with address 0 deploys a
new smart contract

- Smart Contract Execution Transaction: A transaction with a smart contract
address in its recipient field and code to execute a function of that contract in its data
field

« (3as: The unit of an atomic computation, i.e ADDing two numbers costs 3 Gas

