
Distributed
 Computing

Prof. T. Roscoe, Prof. R. Wattenhofer

Computer Systems
— Solution to Assignment 7 —

1 Paxos

1.1 An Asynchronous Riddle

a) The crucial idea is to select one prisoner as a leader. The leader will turn the switch off,
whenever he enters the room and the switch is on. All other prisoner will turn the switch
on exactly once. So a prisoner who enters the room looks at the switch. If the switch is off
and the prisoner has never turned it on before, he will turn the switch on. If the switch is
already on or the prisoner already did turn the switch on during an earlier visit, he leaves
the switch as it was. The leader counts how many times he turns the switch off. If the leader
counted 99 times he can declare ”We all visited the switch room at least once”, because he
knows that each of the other 99 prisoners has turned the switch on and he himself has been
in the room as well.

b) If the initial position of the switch is unknown, the above protocol cannot be used, since the
leader may miscount by one. However, this can easily be fixed. If each prisoner turns the
switch on exactly twice, the leader can be sure that everyone visited the room after counting
up to 2 · 99 = 198 turns.

1.2 Paxos Timeline

a) The timeline consists of five concurrent nodes, and the time progresses from top to bottom.
In Figure 1 you can see how both clients propose their values at first, but only the value
of client A gets accepted. Notice that A has a 1–second–timeout and B has a 2–second–
timeout, and both clients increase their internal ticket counter t by 2 every time they ask
for a ticket. The protocol shows the following:

• T0 + 0.0: A sends a ask(1). As N1 and N2 have never stored a value, they reply with
ok(0, ⊥).

• T0 + 0.5: B sends a ask(2). As N2 and N3 have never stored a value, they reply with
ok(0, ⊥).

• T0 + 1.0: A sends a propose(1,a). This is acknowledged by N1 with success because
its Tmax = 1. N2 does not reply as its value Tmax = 2.

• T0 + 2.0: A sends a ask(3). As N2 has never stored a value it replies with ok(0, ⊥).
N1 returns the latest stored value: ok(1,a).

• T0 +2.5: B sends a propose(2,b). This is acknowledged by N3 with success. N2 does
not reply as its value Tmax = 3.

• T0 + 3.0: A sends a propose(3,a). This is acknowledged by N1 and N2 with success.

• T0+4.0: A sends a execute(a), since A now knows that a majority of the servers stores
a. A returns and terminates.

• T0 + 4.5: B sends a ask(4). N3 sends back its latest accepted value ok(2,b). N2 also
sends back its latest accepted value ok(3,a).

• T0 + 6.5: B sends a propose(4,a) (B took the newest value (with the highest ticket
number)). Both clients N2 and N3 reply with an success. All servers have accepted
the same value.

• T0 + 8.5: B sends a execute(a), since B knows that a majority of the servers store
a now. B returns and terminates. Now both clients and all servers store the same
command.

A BN1 N2 N3

ask(4)

ok(3, a)

(1, a)

(3, a) (3, a)

(2, b)

ok(2, b)

T0

T0+1

T0+2

T0+3

T0+4

T0+2.5

T0+6.5

T0+4.5

T0+8.5

T0+0.5

ask(3)

ask(2)

ok(0, ⊥)

ok(0, ⊥)

propose(1, a)

success

ask(1)

ok(0, ⊥)

ok(1, a)

propose(3, a)

success

execute(a)

propose(2, b)

success

propose(4,a)

success

execute(a)

1

2

3

1

2

reject: 1 < 2

3

reject: 2 < 3

change
command
to a

4 4

Figure 1: The timeline of the two clients running the given paxos-proposer-program with different
timeout values. The values Tmax and the tuples (Tstore, C) per server are denoted next to each
server’s line whenever they change.

2

b) A possible worst-case scenario is when all clients start their attempt to execute a command
(approximately) at the same time, use the same timeout and (approximately) the same initial
ticket number.

In that case it can happen that two clients always invalidate each others tickets, and no
client ever succeeds with finding a majority for its proposal messages.

Remark: Of course there can be a lucky schedule, where one client succeeds: For example,
if all of its messages ask(t) are slow, and then all of its propose(t,c) are very fast and
immediately get accepted. However, the probability that such an event occurs is rather
small, and decreases with the number of servers involved.

1.3 Improving Paxos

a) Different initial ticket numbers might not be beneficial at all. Let H be the client with the
highest initial ticket number. Assume that H asks for a ticket h, and then crashes. In that
case, all other clients receive nack(h) and will try ticket h+ 1 in the next round. Hence the
ticket numbers of all clients will immediately be very close to each other again.

Remark: Different initial ticket numbers can lead to problems even if no machine crashes:
For example, it is likely that the client with the highest initial ticket number will always
execute its command, and others will experience starvation. In such a system, all users
which are using a client with a low initial ticket number will rarely see any progress, and
therefore the system as a whole becomes rather useless.

b) We can use an exponential backoff approach, as it is used for example in 802.11 wireless
networks.

We add a variable b (not to be confused with the command that B is supposed to send
in exercise 2a) to our code, and possibly a limit bmax. Every time an attempt to execute
fails, the client doubles the value of b, until b = bmax. At the start of every new execution,
the client waits for w seconds, where w is chosen uniformly at random from [0, b]. After w
seconds, it sends the next ask message and continues as before.

The modified algorithm is shown below. Changes are on Lines 1-4, 8 and 18. Note that
Lines 2-4 are required for the start when b = 0. (Without those lines, b = 2b would not
increase the backoff time.)

Analysis

Assume that the first call of suggestValue is with a backoff time b = 0. Hence, if there is
only a single client trying to execute a command, it will be immediately executed, i.e., there
is no disadvantage by applying the backoff approach.

Assume that multiple clients try to execute a command. Recall that the time required for
a successful run of suggestValue is 2δ. Hence, as soon as b > 2δ, the probability that two
clients interfere with each other diminishes rapidly.

3

Algorithm 1 Paxos proposer algorithm with timeouts and backoff

/* Execute a command on the Paxos servers.
*
* N,N ′: The Paxos servers to contact.
* c: The command to exexcute.
* δ: The timeout between multiple attempts.
* t: The first ticket number to try.
* b: The backoff time to wait.
*
* Returns: c′, the command that was executed on the servers. Note that c′ might be
* another command than c, if another client already successfully executed a command.
*/
suggestValue(Node N , Node N ′, command c, Timeout δ, TicketNumber t, BackoffTime b) {

1: Wait for rand(0,b) seconds

2: if b = 0 then
3: b = bmin ◁ Set b to a value larger than 0, such that the doubling can start
4: end if

Phase 1 .

5: Ask N,N ′ for ticket t

Phase 2 .

6: Wait for δ seconds

7: if within these δ seconds, either N or N ′ has not replied with ok then
8: return suggestValue(N , N ′, c, δ, t+ 2, min(2b,bmax))
9: else

10: Pick (Tstore, C) with largest Tstore

11: if Tstore > 0 then
12: c = C
13: end if
14: Send propose(t, c) to N,N ′

15: end if

Phase 3 .

16: Wait for δ seconds

17: if within these δ seconds, either N or N ′ has not replied with success then
18: return suggestValue(N , N ′, c, δ, t+ 2, min(2b,bmax))
19: else
20: Send execute(c) to every server
21: return c
22: end if

2 Consensus

2.1 Consensus with Edge Failures

a) f = n − 1. Remove all edges from a node – this node will not receive any messages and
cannot decide.

Proof why n− 2 is too small to prevent consensus:

Note that if f < n − 1 the remaining network is always connected. To prove that, assume

4

by contradiction, that you can split the network into two partitions by only removing n− 2
many edges.

In that case there are two groups of nodes K and L which do not have a remaining edge
between them: one containing k many nodes, and one containing l many nodes. Note that
k ≥ 1, l ≥ 1 and k + l = n.

K
L

Figure 2: n = 6 nodes partitioned into two groups K and L. Since they should be disconnected,
all edges between the two sets have to fail. (Edges within the groups are not drawn to avoid
cluttering up the drawing.)

Since the network is initially fully connected, there are initially k · l many edges between the
two groups. As we assumed that the two groups are disconnected, all of these edges have
failed, thus k · l ≤ n− 2.

From k + l = n follows k = n− l. Plugging that into the inequality we know that

k · l = (n− l) · l = n · l − l2 ≤ n− 2

or
−l2 + nl − n+ 2 ≤ 0

Since n is fixed, we need to see if there is an l which satisfies this inequality, subject to
l ∈ [1, n − 1]. The first derivative of the inequality (−2l + n) shows that there is only one
extreme point (l = n/2), and it is a local maximum (compare, e.g., the second derivative).
Since the function is continuous, it follows that it is minimal on the border cases for l, i.e.,
l = 1 or l = n− 1. Plugging in these values for l we see:

−1 + n− n+ 2 ≤ 0

−(n− 1)2 + n · (n− 1)− n+ 2 = −n2 + 2n− 1 + n2 − n− n+ 2 = 1 ≤ 0

Which both do not hold. Hence the inequality is unsatisfiable, and the split into two parti-
tions is not possible1.

We showed that with only f = n − 2 many failures, the network always stays connected.
Thus, all nodes can – by routing messages via other nodes – always learn all initial values,
and then decide.

b) f = n(n−1)
2 − (n − 1) = n2−3n+2

2 . Remove all edges (n(n−1)
2) except a path which connects

all nodes (n− 1).

1What did we do in this proof? We showed that there is no cut of size n− 2 in the fully connected graph with
n nodes.

5

Figure 3: Smallest remaining connected network with n = 6.

c) Up to n− 1 time units.

Observe that the time to terminate is equal to the longest shortest path between two nodes
in the network. This path contains at most n nodes, since there are only n nodes in the
network, and a shortest path can never contain a loop. In b) we showed that such a scenario
can indeed happen, where we have two nodes in distance n−1. Hence, the algorithm requires
up to n− 1 time units.

2.2 Deterministic Random Conensus?!

We partition the nodes into two groups A and B. All nodes in A start with initial value 0, all
nodes in B with 1. Let A contain ⌈n/2⌉+ 1 many nodes, and all other nodes are in B.

We show that – only with a bad scheduling, we do not even need any crash failures – it is
possible that the system remains in the identical distribution as before; and since there is no
randomness anymore, we can therefore deduce that the system will not reach consensus.

1) In the Propose phase only one node u ∈ A receives messages only from A. All other nodes
receive messages from both A and B. Hence, u proposes 0, and all other nodes propose ⊥.

2) In the Vote phase all nodes from A receive the proposal of u, and all nodes from B do not
receive the proposal of u. Thus, all nodes in A set v = 0, and all nodes in B set v = 1. This
is exactly the same configuration as initially assumed!

Since our goal is to solve consensus in the worst-case scenario (allowing for a worst-case schedul-
ing), this scheduling might happen in every round and the algorithm does not terminate.

2.3 Consensus with Bandwidth Limitations

a) Note that we assumed that no nodes or edges crash. Hence, we can use a designated leader,
that just decides for its own value, and the only question is how fast the leader can distribute
its value to all nodes.

For readability we call one time unit a round.

It is obvious that the leader can distribute its value one by one to every other node, requiring
n− 1 rounds. But can we do better?

Yes: By having a carefully selected forwarding mechanism. Let u1 be the leader. In the first
round, u1 sends its value to u2. In the second round u1 sends the value to u3, and u2 to u4.
This pattern is easily generalized: Every node which receives the value in round i will send
it to nodes in all rounds i+ 1, i+ 2, Note that with this approach the number of nodes
which know the value doubles in every round.

Since the number of nodes which know the value of the leader doubles in every round, it
follows that the algorithm requires only log(n) many rounds.

6

b) It requires log(n) time units.

c) The task is that n nodes learn n− 1 values. Since we assumed that each message can only
contain one value, it follows that every node needs to receive at least n− 1 many messages.
Thus, there are in total at least n · (n − 1) many received messages. Of course the number
of received messages is equal to the number of sent messages (assuming no message loss).
Observe that in any round every node can send at most one message, thus, the number of
sent messages in a round is at most n. Therefore, any algorithm which requires n · (n − 1)
many sent messages requires at least n− 1 many rounds.

Note: Notice that a node may receive more than one message per round. It is necessary to
argue with the number of messages sent.

7

