
Distributed
 Computing

Prof. T. Roscoe, Prof. R. Wattenhofer

Computer Systems
— Solution to Assignment 9 —

1 Quorum Systems

1.1 The Resilience of a Quorum System

a) No such quorum system exists. According to the definition of a quorum system, every two
quorums of a quorum system intersect, so at least one server is part of both quorums. The
fact that all servers of a particular quorum fail implies that in each other quorum at least
one server fails, namely the one which lies in the intersection. Therefore, it is not possible
to achieve a quorum anymore and the quorum system does not work anymore.

b) Just 1—as soon as 2 servers fail, no quorum survives.

c) Imagine a quorum system in which all quorums overlap exactly in one single node; i.e. each
element of the powerset of the remaining n − 1 nodes joined with this special node is a
quorum. This gives 2n−1 quorums.
Can there be more? No! Consider a set from the powerset of n servers. Its complement
cannot be a quorum as well, as they do not overlap. So, from each such couple, at most one
set can be part of the quorum system. This gives an upper bound of 2n/2 = 2n−1 quorums.

1.2 A Quorum System

111

100

011101
110

010

001

Figure 1: Quorum System

a) This quorum system consists of 7 quorums. As work is defined as the minimum expected
number of servers in an accessed quorum (over all access strategies), this system’s work is
3 (all strategies induce the same work on a system where all quorums are the same size).
Observe that all nodes are in precisely 3 quorums, so the uniform access strategy induces the
same load on all nodes. Since the quorum system is also 3-uniform, by exercise 3 it follows
that the uniform strategy is optimal; it’s load being 3/7.

b) The resilience is R(S) = 2. Proof: every node is in exactly 3 quorums, so 2 nodes can be
contained in at most 2 · 3 = 6 < 7 = |S| quorums, thus, if no more than 2 nodes fail, there
will be at least 1 quorum without a faulty node. If, on the other hand, for example, the
nodes 101, 010 and 111 fail, no quorum can be achieved; see also exercise 1a).

1.3 S-Uniform Quorum Systems

Definitions:
s-uniform: A quorum system S is s-uniform if every quorum in S has exactly s elements.
Balanced access strategy: An access strategy Z for a quorum system S is balanced if it
satisfies LZ(vi) = L for all vi ∈ V , for some value L.

Claim: An s-uniform quorum system S reaches an optimal load with a balanced access strategy,
if such a strategy exists.

a) In an s-uniform quorum system each quorum has exactly s elements, so independently of
which quorum is accessed, s servers have to work. Summed up over all servers we reach a
total load of s, which is the work of the quorum system. As the load induced by an access
strategy is defined as the maximum load on any server, the best strategy would be to evenly
distribute this work on all servers. If such a strategy exists, then it is therefore optimal.

b) Let V = {v1, v2, ..., vn} be the set of servers and S = {Q1, Q2, ..., Qm} an s-uniform quorum
system on V . Let Z be an access strategy, thus it holds that:

∑
Q∈S PZ(Q) = 1. Further-

more, let LZ(vi) =
∑

Q∈S;vi∈Q PZ(Q) be the load of server vi induced by Z.

Then it holds that:∑
vi∈V

LZ(vi) =
∑
vi∈V

∑
Q∈S;vi∈Q

PZ(Q) =
∑
Q∈S

∑
vi∈Q

PZ(Q)

=
∑
Q∈S

PZ(Q) · |Q| ∗=
∑
Q∈S

PZ(Q) · s = s ·
∑
Q∈S

PZ(Q) = s

The transformation marked with an asterisk uses the uniformity of the quorum system.

To minimize the maximal load on any server, the optimal strategy would be to evenly dis-
tribute this load on all servers. Thus, if a balanced access strategy exists, this leads to an
optimal system load of s/n.

Note: A balanced access strategy does not always exist for example for the following 2-
uniform quorum system: V = {1, 2, 3}, S = {{1, 2}, {1, 3}}. We have min{LZ(2), LZ(3)} <
LZ(1) = 1 for any access strategy on this system.

2 Approximate Agreement

Quiz

2.1 Asynchronous protocols in synchronous networks

a) Lemma 20.16 from the lecture notes ensures that there is no such strategy.

b) If a correct node v accepts msg(x) at some point in time τ , then f+1 correct nodes have sent
ready(x) by time τ . Therefore, since the network is synchronous, all correct nodes receive
these f + 1 messages ready(x) within one additional communication round, and therefore
send ready(x). These messages are afterwards received within one more communication
round, hence within two communication rounds after time τ .

2

c) Note that, if the sender vS is correct, every correct node accepts msg(xS) in round 4. This
is because all nodes receive the sender’s value by the beginning of round 2. In round 2, all
correct nodes send echo(xS), and these n − f messages get delivered by the third round.
Then, round 3, all correct nodes send ready(xS), and therefore all correct nodes accept the
sender’s value in round 4.

Then, if a node did not receive the sender’s value by the end of round 4, then the sender
must be a byzantine node.

Basic

2.2 From Approximate Agreement to Byzantine Agreement

a) Yes. If all correct nodes have the same input bit b, correct-range validity ensures that all
correct nodes obtain value x = b.

b) No. If the correct nodes have distinct input bits, then they can obtain any ε-close values in
[0, 1]. It is possible that a correct node obtains x = 0.5− ε/3, and therefore its final output
is 0, while another correct node obtains x = 0.5 + ε/3 and therefore its final output is 1.

c) We set ε = 1/2 · 10−2023. The nodes join the approximate agreement algorithm with their
input bits as initial values. When a node obtains a value x, it queries the shared coin. Once
f+1 nodes (hence at least one correct node v) query the coin, the random value r is decided
and all nodes learn it eventually. When a node has obtained both the random value r and
a value x via approximate agreement, if outputs 0 if x < r and 1 otherwise.

The outputs x obtained via approximate agreement are ε-close, and agreement only fails if
r is between the lowest and the highest values x obtained by correct nodes via approximate
agreement. Then, if the first correct node that queries the coin has obtained value x, all
correct nodes obtain outputs in the interval [x − ε, x + ε]. This means that only values
r ∈ [x − ε, x + ε] may lead to disagreement. Such a value r is obtained with probability at
most 2 · ε = 10−2023.

Advanced

2.3 Unbounded Input Space: Quick Fix

a) Nodes could simply define the number of iterations I = dlog2((maxX −minX)/ε)e.

b) Similarly to correct-input validity, one cannot distinguish between a correct node and a
byzantine node that follows the algorithm correctly, but with an input of its own choice.

c) The algorithm proceeds as follows: every node sends its value to all nodes. Node v computes
its estimation max rangev as the difference between the highest value received (which is at
least maxX, since all correct values were received), and the lowest value received (which is
at most minX, also because all correct values were received).

Note: removing the lowest f and the highest f values might discard some correct values and
make the algorithm stop too early.

d) Nodes first run the algorithm from Task c). Each node obtains an estimation max rangev.
It computes Iv = dlog2(max rangev/ε)e as a sufficient number of iterations.

3

Then, the for loop goes up to Iv instead of the hardcoded number of iterations I. When
node v computes its last value xIv , it sends a halting message (halt, xIv) to everyone. If
node v receives a halting message (halt, xIu), it pretends it got xIu from u in each of its
following iterations.

Algorithm 1 Synchronous Approximate Agreement: Unbounded Input Space

1: Code for node v with input x.
2: Send v to all nodes.
3: Add every received value to X.
4: max rangev = maxX −minX.
5: Iv = dlog2(max rangev/ε)e.
6: x0 = x.
7: for i in 1...Iv do
8: Send xi−1 to all nodes.
9: Add every received value to Ri.

10: If node u sent (halt, xIu) (now or in some previous iteration), add xIu to Ri.
11: Ti = the multiset obtained by removing the lowest f and the highest f values in Ri.
12: xi = (minTi + maxTi)/2.
13: end for
14: Send (halt, xIu) to all the nodes.
15: Output xIu .

Let Iu denote the lowest correct estimation on the number of iterations, obtained by some
correct node u. Since every correct node obtains max rangev ≥ maxX − minX, correct
values obtained in iteration Iu already satisfy ε-Agreement (and correct-range validity).
Then, once node u sends its halt message, we only need to ensure that all the following
iterations maintain the range of correct values obtained in iteration Iu (and don’t need to
guarantee anything about convergence). This can be proven with the help of Lemma 20.6.

e) With the mechanism above, not really. The values max rangev are essentially chosen by the
byzantine nodes.

4

