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Shared Coins — Motivation

« Worst-case runtime of our randomized
algorithms were limited by the probability
that all nodes sample the same value in a
round

 |dea: use random oracle such that all nodes
always sample the same value

« Gain: constant expected number of rounds
in asynchronous byzantine agreement
algorithm (Ben-Or)

* Major problem: random oracles do not exist

« Solution: shared coin algorithm
o Outputs 0 or 1 with constant probability

ETH:zirich
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Shared Coin Algorithm (f < ™/;)

« Every node samples a biased coin
o Samples 0 with probability 1/,

* Nodes share their coin sets

« Success probabilities:
o 0 with probability 1 — (1 — e)/3 ~ 0.28
o 1 with probability 1/, ~ 0.37

« Let W be the set of coins that a node
receives from f + 1 different coin sets

o W always contains coins from at least f + 1

distinct nodes

ETH:zurich
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Algorithm 19.8 Shared Coin (code for node )

1: Choose local coin ¢, = 0 with probability 1/n, else ¢, = 1

2:

Broadcast myCoin(cy)

3: Wait for n — f coins and store them in the local coin set ',

e

10:

Broadcast mySet(C),)

Wait for n — f coin sets

if at least one coin is 0 among all coins in the coin sets then
return 0

else
return 1

end if




Shared Coin Algorithm (f < ™/;)

ETH:zirich
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1: Choose local coin ¢, = 0 with probability 1/n, else ¢, = 1

Broadcast myCoin(c,)

3: Wait for n — f coins and store them in the local coin set C',

Broadcast mySet(C,,)

Wait for n — f coin sets

. if at least one coin is 0 among all coins in the coin sets then

return 0O
else
return 1

. end if




Blackboard Algorithm (f < n) Distributed £
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Algorithm 19.15 Crash-Resilient Shared Coin with Blackboard (for node w)

« Nodes write result of n? fair coin flips to
a blackboard

1: while true do
2 Choose new local coin ¢, = +1 with probability 1/2, else ¢, = —1
i ) 3:  Write ¢, to the blackboard
* Outcome is the Sign of the sum after a 4:  Set C' = Read all coin flips on the blackboard
node sees > n? results 5. if |C| > n? then
5 return sign(sum(C))
7
8

 Qutcome will be the same for all nodes
if |sum(C)| > n

. end if
- end while

* Probability that all nodes have the
same outcome (0 or 1) is at least
1—®(1) > 0.15

o Proof by applying Central Limit Theorem

 What is the problem of this approach?

o It requires a trusted central authority

ETH:zirich
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Message passing algorithm (f <™/,) oistrbuted  ffw
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Algorithm 19.19 Crash-Resilient Shared Coin (code for node u)

« Using FIFO broadcast to replace 1= 1
trusted central authority 2 while true do - o |
3 Choose local coin ¢, = +1 with probability 1/2, else ¢, = —1
e Gain: Save against crash failures 4:  FIFO-broadcast coin(c,,r) to all nodes
_ . 5: Save all received coins coin(c,,r) in a set C,
and worst-case schedullng 6:  Wait until accepted own coin(c,.,7)
7. Request C, from n — f nodes v, and add newly seen coins to C,,
g8 if |Cy| > n? then
« What is the problem of this 9: return sign(sum(C,))

10:  end if
11: r:=r1-+1
o It doesn’t work with byzantine nodes  12: end while

algorithm?

o It has higher communication
complexity

ETH:zirich




Secret Sharing algorithm (f < t) oistibuted L

Computing W5

e (Generate random po|ynom|a| and distribute Algorithm 19.23 (¢, n)-Threshold Secret Sharing
dlSt|nCt pOIntS on |t tO a” nOdeS 1: Input: A secret s € {0,...,q} for some prime number g > n.

Secret distribution by dealer d
« Can reconstruct secret value at p(0) using

2: Generate ¢ — 1 uniformly random values a,...,a;—1 € F,
t points 3: Obtain a polynomial p of degree t — 1 with p(z) = s+ ayz+---+a;_12t!
4: Distribute share msg(p(1)), to node vy, ..., msg(p(n)), to node v,

Secret recovery

5: Collect t shares msg(p(u)), from at least ¢t nodes

° Why does this work? 6: Use Lagrange’s interpolation formula to obtain p(0) = s
O Any p0|ynomia| of degree t —1 can be Algorithm 19.24 Preprocessing Step for Algorithm (code for dealer d)
reconstructed using t points 1: fori=1,...,\ do
. . 2:  Choose coin flip ¢;, where ¢; = 0 with probability 1/2, else ¢; = 1
~ Also works over some finite field [Fq 3:  Using Algorithm [19.23 generate n shares (p(1)),...,p(n)) for ¢;
4: end for
 \What can go Wrong? 5: Send shares msg(p(1)),, . ..,msg(p(n)), to node u

o Dealer must be a trusted central aUthOfity Algorithm 19.25 Shared Coin using Secret Sharing

1: Request shares for ¢; from at least f 4+ 1 nodes

o Shares must be distributed Securely using a 2: Using Algorithm[19.23] let ¢; be the value reconstructed from the shares
prlvate communication channel 3: return ¢;

ETH:zurich
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Synchronous Byzantine Shared Coin (f < "/3) Distributed
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« Broadcast current round number Slgned Algorithm 19.28 Simple Synchronous Byzantine Shared Coin (for node u)

with pnvate key 1: Each node has a public key that is known to all nodes.
2: Let r be the current round of Algorithm
e Decide on LSB of smallest hash 3: Broadcast msg(r),,, i.e., round number r signed by node u
received 4: Compute h, = hash(msg(r),) for all received messages msg(r),
5: Let Ay = min, h,
e Uses Signatu res 6: return least significant bit of h,,:»,

o Every node can only broadcast a single
value as inconsistency will be detected
because of signatures

hy, == hash(msg(r),,)

h;, == hash(msg(r),,)

hy, = hash(msg(r),,)

o It must be hard to compute different hy, = hash(msg(r)y,)
signatures for the same message hys = hash(msg(r)y;)

« What is the drawback of this approach?
o It requires cryptographically strong hash

h" := min (h

functions ‘

Shared coin == h"|[

ETH:zirich



How to use these shared coin algorithms? Distributed  féyes
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« We can replace the sampling for random values with an instance of a shared coin algorithm

* Which algorithm to use depends on our setting

ETH:zirich



Async. Byzantine Agreement with Random Oracle (f < ™/,y) Distributed
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Computing W&o

« Replace standard coin flip by the shared coin algorithm
« Gain: Runtime becomes constant
« Proofs for validity and agreement still hold

« The proof for termination must be changed to account for the changed probability that all
coins will give the same result

Algorithm 17.19 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

1: xy € {0,1} < input bit

2: round = 1 < round

3: while true do

4:  Broadcast propose(,,round)

5. Wait until n — f propose messages of current round arrived
6: if > n/2 + 3f propose messages contain same value = then
7: Broadcast propose(.x,round + 1)

8: Decide for = and terminate

9: elseif > n/2+ f propose messages contain same value = then
10: Ly =&
11: else
12: choose i, randomly, with Pr|xz, = 0] = Pr{z, = 1] =1/2

13: end if
14:  round = round + 1
15: end while

ETH:zirich Icon from https://www.flaticon.com/free-icon/eye 14432782



Randomized Consensus with Shared Coin (f < ™/3) Distributed  /
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» Replace simple coin flip by the shared coin algorithm

« Gain: Termination in expected 3 rounds

« Drawback: Can only deal with f < ™/; crashes instead of f < ™/, crashes

Algorithm 16.28 Randomized Consensus (assuming f < n/2)

ETH:zurich

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

© o@D

v; € {0,1} < input bit
round = 1
while true do

Broadcast myValue(v;, round)
Propose

Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then

Broadcast propose(v, round)
else

Broadcast propose(_L, round)
end if

Vote

Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then
Broadcast myValue(v, round + 1)
Broadcast propose(v, round + 1)
Decide for v and terminate
else if there is at least one proposal for v then
v; = v
else
Choose v; randomly, with Pr[v; = 0] = Prlv; = 1] =1/2
end if

round = round + 1

22: end while

Algorithm 19.8 Shared Coin (code for node w)

1: Choose local coin ¢, = 0 with probability 1/n, else ¢, = 1

-

10:

© XN ST

Broadcast myCoin(cy,)

Wait for n — f coins and store them in the local coin set C,
Broadcast mySet(C',)

Wait for n — f coin sets

if at least one coin is 0 among all coins in the coin sets then
return 0

else
return 1

end if




Byzantine Agreement using Secret Sharing (f < ™/41) Distributed fegwi®s,

» Uses Shared Coin using Secret Sharing
algorithm

 Terminates in 3 rounds in expectation

« It can be shown that Asynchronous
Byzantine Agreement algorithm to requires

only A shared coins with probability 24

ETH:zurich
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Algorithm 17.19 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

=
[

12:
13:
14:
15:

© XN SIT AW

[
T2

xy € {0,1} < input bit
round = 1 < round
while true do
Broadcast propose(.r,,round)
Wait until n — f propose messages of current round arrived
if > n/2 + 3f propose messages contain same value = then
Broadcast propose(x,round + 1)
Decide for = and terminate
else if > n/2 + f propose messages contain same value = then
Ly = &
else
choose &, randomly, with Pr[z, = 0] = Pr[z, = 1] =1/2
end if
round = round + 1
end while

Algorithm 19.25 Shared Coin using Secret Sharing

1:
2:
3:

Request shares for ¢; from at least f + 1 nodes
Using Algorithm 19.23] let ¢; be the value reconstructed from the shares

return c;
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. UseS SynChronOUS Byzantine Shared COin Algorithm 17.19 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

1: xy € {0,1} < input bit
« Takes 2 2/4 rounds in expectation o g

4:  Broadcast propose(.,,round)

5. Wait until n — f propose messages of current round arrived
6: if > n/2 + 3f propose messages contain same value = then
7: Broadcast propose(x,round + 1)

8: Decide for x and terminate

9: else if > n/2 + f propose messages contain same value = then
10: Ly = &
11: else

12: choose x,, randomly, with Pr[z, = 0] = Pr{z, = 1] =1/2
13:  end if

14: round = round + 1
15: end while

Algorithm 19.28 Simple Synchronous Byzantine Shared Coin (for node u)

Each node has a public key that is known to all nodes.

Let r be the current round of Algorithm

Broadcast msg(r),,, i.e., round number 7 signed by node u
Compute h, = hash(msg(r),) for all received messages msg(r)
Let h,,in = min, h,

return least significant bit of A,

v

@«
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Fast Synchronous Byzantine Agreement (f < "/,) Distributed ffgacte,
Computing 3<% 5
e 2 communication rounds per iteration Algorithm 19.30 Fast Synchronous Byzantine Agreement
1: x, € {O. 1}.
* coin_toss is the min hash algorithm 2: while true do
from the simple synchronous algorithm %  Proadcast propose(r,)
4:  x, = most frequently received value
R . . . 3 . . 5. if > n — f propose messages contain the same value =, then
Termination in 5 °/, rounds in expectation * = =" .
R IF 7: broadcast propose(z,, decided)
Success probability , o terminate
PI‘[C = O] = PI‘[C = 1] > 7/64 9: else
10: broadcast propose(z,,)
11: x, = most frequently received value
12: if < n— f propose messages contain the same value r and coin_toss|()
= (0 then
13: Ty =0
14: end if
15:  end if

16: end while

ETH:zurich
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1. Let p, be the probability that a shared coin algorithm outputs 0 and p; the probability that it
outputs 1. Do we always have p, + p; = 1?

o No. A shared coin algorithm is allowed to fail with constant probability.

2. We can use a shared coin in the asynchronous randomized consensus algorithm (16.28).
How many of the nodes are allowed to crash?

o f <™/5;. Even though the randomized consensus algorithm can handle f < "/, crashes, the shared
coin algorithm tolerates f < ™/; crash failures.

3. Inthe shared secret algorithm: Can we approximate the secret value using t — 1 values?

o No. If we have t — 1 values of p we still have one degree of freedom. Therefore, p(0) still can take
on any value.

4. Is the Fast Synchronous Byzantine Agreement Algorithm optimal regarding expected
number of rounds?

o It depends. With a random oracle (that do not exist) it would be possible to achieve agreement in
expected 6 rounds.

ETH:zirich
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Quorum Systems

» Get alock using a quorum system:

o Client selects a free quorum
o Requests lock from all nodes of the quorum
o Client releases all locks

 Must make sure to request locks in a
predefined order

* This example is not a quorum system. Why?
o The two vertical quorums do not share a node

ETH:zurich
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Singleton and Majority Quorum Systems Distributed /

Computing o“‘“ at:

Singleton quorum system Majority quorum system
(all sets consistofn /2 4+ 1 nodes)

ETH:zurich



Load and Work Distributed

Computing

« An access strategy Z defines the probabilities P,(Q) of accessing a quorum Q € S such

> PQ) =1

QES
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Quorum metrics Distributed
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 Work: How many servers need to be accessed
« Load: Workload of busiest server

» Resilience: Largest number of servers that can fail such that there still exists a complete
quorum

« Failure probability: Probability that at least one server of every quorum fails, assuming
every server works with probability p

« Asymptotic failure probability: Failure probability for n — oo

ETH:zirich



Load and Work

Load of access strategy Z on a node v;

Load induced by Z on quorum system S

Load of quorum system S

Work of quorum (@
Work induced by Z on quorum system S

Work of quorum system S

ETH:zirich

Distributed
Computing

Lz (vi) = Xgesweq Pz(Q)
Lz(S) = max Lz(v;)

L(S) = mZin L,(S)

W) = 10|
Wz(S) = Xoes Pz(Q) - W(Q) = Xpey Lz (V)
W(s) = mZin W, (S)
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Load and Work

(o)

Singleton quorum system

Majority quorum system

(all sets consistofn /2 4+ 1 nodes)

Singleton Majority
How many servers need to be contacted? (Work) 1 > n/2
What'’s the load of the busiest server? (Load) 100% ~ 50%
How many server failures can be tolerated? (Resilience) 0 <n/2

ETH:zurich



Grid Idea (Tl = dz Distributed

Computing
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Size of quorum: 2d — 1 <2d -1

# of intersects: 2

p—
p—

n—>0co

d
Problem: Failure probability F,(§) = Pr[at least one failure per row] = (1 — pd) >1-—ndp? —1

ETH:zurich



B-Grid Quorum System

* Nodes arranged in rectangular grid with
h - r rows and d columns

« Band: Group of r rows

« Mini-column: Group of r elements in the
same column and band

« A quorum consists of

o one mini-column in every band

o for one band: one element from each mini-
column

Sizeof quorum: |Q|=r- h +d — 1

ETH:zurich
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Different quorum systems
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Singleton Majority Grid

B-Grid”

Work 1 ~n/2 O (v/n) © (v/n)
Load 1 ~1/2 ©(1/y/n) ©(1/y/n)
Resilience 0 ~n/2 O (yv/n) © (v/n)
F. Prob.™™ 1—0p — 0 — 1 — 0

« Theorem: for any quorum system S we have load(S) = \/—%

o Load of Grid is asymptotically optimal

ETH:zurich
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Quorum System Quiz Distributed
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1.  Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?
. No, because any two quorums intersect. So, when one quorum fails, all quora fail

2. Consider a quorum system, which is made up of n different quorums, each containing n — 1 servers.
We use a uniform access strategy: P,(Q) = % What is the work, load, and resilience?

. Work: n — 1 Because all quora are of the same size and the access strategy is uniform

-1 1
+ Load: ~— For all nodes v; we have: ¥ ges,v,eq Pz(Q) = Zgeswen

. Resilience: 1  If 2 nodes fail, all quora fail

3. Can you think of a quorum system that contains as many quorums as possible?
Hint: it does not have to be minimal.

. Construction: Pick a node v and create quorum for all possible sets containing that one node v.
o  All quora share at least one node. Which one?

o Maximality (informally): of any quorum Q and its complement Q at most one quorum can
be in the system. This system maximizes this number.

ETH:zirich



Computing ".‘\“\‘t&ﬁih

Algorithms Overview




S

g
:

Shared Coin Algorithms oistrbuted  ffw
omputing (G S
Shared Coins | Blackboard Message Secret Sharing | Synchronous
(19.8) (19.15) Passing (19.23) Shared Coin
(19.19) (19.28)
Number of failures f <"/, f<n f<m, f<n f <"/
Min number of nodes | 3f +1 f+1 2f +1 f+1 3f +1
With byzantine X X X (unless it’s
nodes? the dealer)
Asynchronous X
model?
Runtime (worst-case) |n/*! rounds n* round n® rounds 1 round 24/, rounds
Success probabilities | P[C = 0] =~ 0.28 |P[C =0] > 0.15 |P[C =0] > 0.15 |P[C=0]=1/, |P[C=0]=7/4
P[C =1] = 0.37 |P[C =1]>0.15 |P[C=1]>0.15 |P[C=1]=1/, |P[C=1]=7/43
Drawbacks Exponential Requires Not robust Requires Only in the
expected trusted central | against trusted dealer | synchronous
runtime authority byzantine and/or setting
behaviour cryptography

ETH:zurich
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Byzantine Agreement Algorithms with Shared Coins oistrbuted e
omputing ¥
Byzantine Byzantine Synchronous Fast
Agreement with | Agreement Algorithm using | Synchronous
Random Oracle | using Secret Shared Coin Byzantine
(19.2) Sharing (19.25) | (19.28) Agreement
(19.30)
Number of failures f <™ <™ f <™ f<m/,
Min number of nodes 10f + 1 10f + 1 10f +1 4f +1
With byzantine nodes?
Asynchronous model? X X
Expected runtime 3 rounds 3 rounds 3 + 2/, rounds < 53/, rounds
Success probabilities |Pr[C =0]=1/, |Pr[C=0]=1/, |Pr[C =0]="2/540 |Pr[C=0]>2"/c,
of shared coin Pr[C =1] =1/, Pr[C =1] =1/, Pr[C =1] =%/5.10 | Pr[C =1] > %7/¢,
Shortcomings Random Oracles | Requires trusted | Analysis uses Uses
do not exist dealer and/or Random Oracle | cryptography
cryptography Model
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1.1 The Resilience of a Quorum System

a) Does a quorum system exist, which can tolerate that all nodes of a specific quorum fail?
Give an example or prove its nonexistence.

b) Consider the nearly all quorum system, which is made up of n different quorums, each
containing n — 1 servers. What is the resilience of this quorum system?

c¢) Can you think of a quorum system that contains as many quorums as possible?
Note: the quorum system does not have to be minimal.

ETH:zurich



