
Distributed
 Computing

Computer Systems
Exercise Session 10
HS 2024

Slides last updated:
26.11.24

Distributed
 Computing

Program

1. Chapter 19 – Shared Coins
2. Chapter 20 – Quorum Systems
3. Algorithms overview
4. Assignment preview

2

Distributed
 Computing

Chapter 19 –
Shared Coins

Distributed
 Computing

• Worst-case runtime of our randomized
algorithms were limited by the probability
that all nodes sample the same value in a
round

• Idea: use random oracle such that all nodes
always sample the same value

• Gain: constant expected number of rounds
in asynchronous byzantine agreement
algorithm (Ben-Or)

• Major problem: random oracles do not exist
• Solution: shared coin algorithm

o Outputs 0 or 1 with constant probability

Shared Coins – Motivation

Distributed
 Computing

Shared Coin Algorithm (𝑓 < ⁄! ")

• Every node samples a biased coin
o Samples 0 with probability ⁄! "

• Nodes share their coin sets
• Success probabilities:

o 0 with probability 1 − 1 − 𝑒 ⁄! " ≈ 0.28
o 1 with probability ⁄! $ ≈ 0.37

• Let W be the set of coins that a node
receives from 𝑓 + 1 different coin sets
o W always contains coins from at least 𝑓 + 1

distinct nodes

Distributed
 Computing

Shared Coin Algorithm (𝑓 < ⁄! ")

Distributed
 Computing

Blackboard Algorithm (𝑓 < 𝑛)

• Nodes write result of 𝑛! fair coin flips to
a blackboard

• Outcome is the sign of the sum after a
node sees ≥ 𝑛! results

• Outcome will be the same for all nodes
if sum 𝐶 > 𝑛

• Probability that all nodes have the
same outcome (0 or 1) is at least

1 − Φ(1) > 0.15
o Proof by applying Central Limit Theorem

• What is the problem of this approach?
o It requires a trusted central authority

Distributed
 Computing

Message passing algorithm (𝑓 < ⁄! 2)

• Using FIFO broadcast to replace
trusted central authority

• Gain: Save against crash failures
and worst-case scheduling

• What is the problem of this
algorithm?
o It doesn’t work with byzantine nodes
o It has higher communication

complexity

Distributed
 Computing

Secret Sharing algorithm (𝑓 < 𝑡)

• Generate random polynomial and distribute
distinct points on it to all nodes

• Can reconstruct secret value at 𝑝(0) using
𝑡 points

• Why does this work?
o Any polynomial of degree 𝑡 − 1 can be

reconstructed using 𝑡 points
− Also works over some finite field 𝔽!

• What can go wrong?
o Dealer must be a trusted central authority
o Shares must be distributed securely using a

private communication channel

Distributed
 Computing

Synchronous Byzantine Shared Coin (𝑓 < ⁄! ")

• Broadcast current round number signed
with private key

• Decide on LSB of smallest hash
received

• Uses signatures
o Every node can only broadcast a single

value as inconsistency will be detected
because of signatures

o It must be hard to compute different
signatures for the same message

• What is the drawback of this approach?
o It requires cryptographically strong hash

functions

Distributed
 Computing

How to use these shared coin algorithms?

• We can replace the sampling for random values with an instance of a shared coin algorithm
• Which algorithm to use depends on our setting

Distributed
 Computing

Async. Byzantine Agreement with Random Oracle (𝑓 < ⁄! 34)

• Replace standard coin flip by the shared coin algorithm
• Gain: Runtime becomes constant
• Proofs for validity and agreement still hold
• The proof for termination must be changed to account for the changed probability that all

coins will give the same result

Icon from https://www.flaticon.com/free-icon/eye_14432782

Distributed
 Computing

Randomized Consensus with Shared Coin (𝑓 < ⁄! ")

• Replace simple coin flip by the shared coin algorithm
• Gain: Termination in expected 3 rounds
• Drawback: Can only deal with 𝑓 < ⁄! " crashes instead of 𝑓 < ⁄! # crashes

Distributed
 Computing

Byzantine Agreement using Secret Sharing (𝑓 < ⁄! 34)

• Uses Shared Coin using Secret Sharing
algorithm

• Terminates in 3 rounds in expectation
• It can be shown that Asynchronous

Byzantine Agreement algorithm to requires
only 𝜆 shared coins with probability 2$%

Distributed
 Computing

Byzantine Agreement using Synchronous Shared Coin (𝑓 < ⁄! 34)

• Uses Synchronous Byzantine Shared Coin
• Takes 2 ⁄# & rounds in expectation

Distributed
 Computing

Fast Synchronous Byzantine Agreement (𝑓 < ⁄! 5)

• 2 communication rounds per iteration
• coin_toss is the min hash algorithm

from the simple synchronous algorithm
• Termination in 5 ⁄" ' rounds in expectation
• Success probability

Pr 𝐶 = 0 = Pr 𝐶 = 1 >)27
64

Distributed
 Computing

Shared Coins Quiz

1. Let 𝑝(be the probability that a shared coin algorithm outputs 0 and 𝑝) the probability that it
outputs 1. Do we always have 𝑝(+ 𝑝) = 1?
o No. A shared coin algorithm is allowed to fail with constant probability.

2. We can use a shared coin in the asynchronous randomized consensus algorithm (16.28).
How many of the nodes are allowed to crash?
o 𝑓 < ⁄" %. Even though the randomized consensus algorithm can handle 𝑓 < ⁄" & crashes, the shared

coin algorithm tolerates 𝑓 < ⁄" % crash failures.

3. In the shared secret algorithm: Can we approximate the secret value using 𝑡 − 1 values?
o No. If we have 𝑡 − 1 values of 𝑝 we still have one degree of freedom. Therefore, 𝑝(0) still can take

on any value.

4. Is the Fast Synchronous Byzantine Agreement Algorithm optimal regarding expected
number of rounds?
o It depends. With a random oracle (that do not exist) it would be possible to achieve agreement in

expected 6 rounds.

Distributed
 Computing

Chapter 20 –
Quorum Systems

Distributed
 Computing

Quorum Systems

• Get a lock using a quorum system:
o Client selects a free quorum
o Requests lock from all nodes of the quorum
o Client releases all locks

• Must make sure to request locks in a
predefined order

• This example is not a quorum system. Why?
o The two vertical quorums do not share a node

Distributed
 Computing

Majority quorum system
(all sets consist of 𝑛 / 2 + 1 nodes)

Singleton quorum system

Singleton and Majority Quorum Systems

Distributed
 Computing

Load and Work

• An access strategy 𝑍 defines the probabilities 𝑃*(𝑄) of accessing a quorum 𝑄 ∈ 𝑆 such
that:

!
&∈(

𝑃) 𝑄 = 1

Distributed
 Computing

Quorum metrics

• Work: How many servers need to be accessed
• Load: Workload of busiest server
• Resilience: Largest number of servers that can fail such that there still exists a complete

quorum
• Failure probability: Probability that at least one server of every quorum fails, assuming

every server works with probability 𝑝
• Asymptotic failure probability: Failure probability for 𝑛 → ∞

Distributed
 Computing

Load and Work

Load of access strategy 𝑍 on a node 𝑣+ 𝐿* 𝑣+ = ∑,∈.;0"∈,𝑃* 𝑄

Load induced by 𝑍 on quorum system 𝑆 𝐿* 𝑆 = max
0"∈.

𝐿* 𝑣+

Load of quorum system 𝑆 𝐿 𝑆 = min
*
𝐿* 𝑆

Work of quorum 𝑄 𝑊 𝑄 = 𝑄

Work induced by 𝑍 on quorum system 𝑆 𝑊* 𝑆 = ∑,∈.𝑃* 𝑄 ⋅ 𝑊 𝑄 = ∑0∈1 𝐿* 𝑣

Work of quorum system 𝑆 𝑊 𝑆 = min
*
𝑊* 𝑆

Distributed
 Computing

Load and Work

Singleton Majority

How many servers need to be contacted? (Work) 1 > n/2

What’s the load of the busiest server? (Load) 100% ≈ 50%

How many server failures can be tolerated? (Resilience) 0 < n/2

Majority quorum system
(all sets consist of 𝑛 / 2 + 1 nodes)

Singleton quorum system

Distributed
 Computing

Grid Idea (𝑛 = 𝑑2)

Size of quorum: 2𝑑 − 1 ≤ 2𝑑 − 1 ≤ 2𝑑 − 1

of intersects: 2 1 1

Problem: Failure probability 𝐹2 𝒮 ≥ Pr at least one failure per row = 1 − 𝑝3 3 ≥ 1 − 𝑛𝑑𝑝3
!→5

1

Distributed
 Computing

B-Grid Quorum System

• Nodes arranged in rectangular grid with
ℎ R 𝑟 rows and 𝑑 columns

• Band: Group of 𝑟 rows
• Mini-column: Group of 𝑟 elements in the

same column and band
• A quorum consists of

o one mini-column in every band
o for one band: one element from each mini-

column

• Size of quorum: 𝑄 = 𝑟 ⋅ ℎ + 𝑑 − 1

Distributed
 Computing

Different quorum systems

• Theorem: for any quorum system 𝑆 we have load 𝑆 ≥)
!

o Load of Grid is asymptotically optimal

Distributed
 Computing

Quorum System Quiz

1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?
• No, because any two quorums intersect. So, when one quorum fails, all quora fail

2. Consider a quorum system, which is made up of 𝑛 different quorums, each containing 𝑛 − 1 servers.
We use a uniform access strategy: 𝑃' 𝑄 = !

"
. What is the work, load, and resilience?

• Work: 𝑛 − 1 Because all quora are of the same size and the access strategy is uniform

• Load: "(!
"

For all nodes 𝑣) we have: ∑*∈,;.#∈* 𝑃' 𝑄 = ∑*∈,;.#∈*
!
"

• Resilience: 1 If 2 nodes fail, all quora fail
3. Can you think of a quorum system that contains as many quorums as possible?

Hint: it does not have to be minimal.
• Construction: Pick a node 𝑣 and create quorum for all possible sets containing that one node 𝑣.

o All quora share at least one node. Which one?

o Maximality (informally): of any quorum 𝑄 and its complement 𝑄 at most one quorum can
be in the system. This system maximizes this number.

Distributed
 Computing

Algorithms Overview

Distributed
 Computing

Shared Coin Algorithms

Shared Coins
(19.8)

Blackboard
(19.15)

Message
Passing
(19.19)

Secret Sharing
(19.23)

Synchronous
Shared Coin
(19.28)

Number of failures 𝑓 < ⁄" % 𝑓 < 𝑛 𝑓 < ⁄" & 𝑓 < 𝑛 𝑓 < ⁄" %

Min number of nodes 3𝑓 + 1 𝑓 + 1 2𝑓 + 1 𝑓 + 1 3𝑓 + 1

With byzantine
nodes?

❌ ❌ ❌ ✅ (unless it’s
the dealer)

✅

Asynchronous
model?

✅ ✅ ✅ ✅ ❌

Runtime (worst-case) 𝑛/0! rounds 𝑛& round 𝑛& rounds 1 round 2 ⁄1 2 rounds
Success probabilities P 𝐶 = 0 ≈ 0.28

P 𝐶 = 1 ≈ 0.37
P 𝐶 = 0 > 0.15
P 𝐶 = 1 > 0.15

P 𝐶 = 0 > 0.15
P 𝐶 = 1 > 0.15

P 𝐶 = 0 = ⁄! &
P 𝐶 = 1 = ⁄! &

P 𝐶 = 0 = ⁄2 !3
P 𝐶 = 1 = ⁄2 !3

Drawbacks Exponential
expected
runtime

Requires
trusted central
authority

Not robust
against
byzantine
behaviour

Requires
trusted dealer
and/or
cryptography

Only in the
synchronous
setting

Distributed
 Computing

Byzantine Agreement Algorithms with Shared Coins

Byzantine
Agreement with
Random Oracle
(19.2)

Byzantine
Agreement
using Secret
Sharing (19.25)

Synchronous
Algorithm using
Shared Coin
(19.28)

Fast
Synchronous
Byzantine
Agreement
(19.30)

Number of failures 𝑓 < ⁄" !4 𝑓 < ⁄" !4 𝑓 < ⁄" !4 𝑓 < ⁄" 1

Min number of nodes 10𝑓 + 1 10𝑓 + 1 10𝑓 + 1 4𝑓 + 1
With byzantine nodes? ✅ ✅ ✅ ✅

Asynchronous model? ✅ ✅ ❌ ❌

Expected runtime 3 rounds 3 rounds 3 + ⁄& 5 rounds < 5 ⁄% 1 rounds
Success probabilities
of shared coin

Pr 𝐶 = 0 = ⁄! &
Pr 𝐶 = 1 = ⁄! &

Pr 𝐶 = 0 = ⁄! &
Pr 𝐶 = 1 = ⁄! &

Pr 𝐶 = 0 = ⁄5 &⋅!4
Pr 𝐶 = 1 = ⁄5 &⋅!4

Pr 𝐶 = 0 > ⁄&2
71

Pr 𝐶 = 1 > ⁄&2
71

Shortcomings Random Oracles
do not exist

Requires trusted
dealer and/or
cryptography

Analysis uses
Random Oracle
Model

Uses
cryptography

Distributed
 Computing

Assignment Preview

Distributed
 Computing

Task 1 – Quorum Systems

