

Slides last updated: 26.11.24

Computing Program

- 1. Chapter 19 Shared Coins
- 2. Chapter 20 Quorum Systems
- 3. Algorithms overview
- 4. Assignment preview

Chapter 19 – **Shared Coins**

Shared Coins – Motivation

- Worst-case runtime of our randomized algorithms were limited by the probability that all nodes sample the same value in a round
- **Idea:** use random oracle such that all nodes always sample the same value
- **Gain:** constant expected number of rounds in asynchronous byzantine agreement algorithm (Ben-Or)
- **Major problem:** random oracles do not exist
- **Solution:** shared coin algorithm
	- \circ Outputs 0 or 1 with constant probability

Shared Coin Algorithm $(f ⁿ/3)$ *Distributed Computing Computing Computing*

- Every node samples a biased coin
	- \circ Samples 0 with probability $\frac{1}{n}$
- Nodes share their coin sets
- Success probabilities:
	- o 0 with probability $1-(1-e)^{1/3} \approx 0.28$
	- o 1 with probability $\frac{1}{e}$ ≈ 0.37
- Let W be the set of coins that a node receives from $f + 1$ different coin sets
	- \circ W always contains coins from at least $f + 1$ distinct nodes

Algorithm 19.8 Shared Coin (code for node u) 1: Choose local coin $c_u = 0$ with probability $1/n$, else $c_u = 1$ 2: Broadcast myCoin (c_u) 3: Wait for $n-f$ coins and store them in the local coin set C_u 4: Broadcast mySet (C_u) 5: Wait for $n - f$ coin sets 6: if at least one coin is 0 among all coins in the coin sets then return 0 $7:$ $8:$ else return 1 \mathbf{Q}

 $10:$ end if

Shared Coin Algorithm $(f ⁿ/3)$ Distributed Distributed

$\textsf{Blackboard Algorithm } (f < n)$ *Distributed Computing*

- Nodes write result of n^2 fair coin flips to a blackboard
- Outcome is the sign of the sum after a node sees $\geq n^2$ results
- Outcome will be the same for all nodes if $|\text{sum}(C)| > n$
- **Probability** that all nodes have the same outcome (0 or 1) is at least $1 - \Phi(1) > 0.15$
	- o Proof by applying Central Limit Theorem
- What is the **problem** of this approach?
	- \circ It requires a trusted central authority

Message passing algorithm $(f ⁿ/₂)$ ^{Distributed}

Distributed

- Using FIFO broadcast to replace trusted central authority
- **Gain:** Save against crash failures and worst-case scheduling
- What is the problem of this algorithm?
	- \circ It doesn't work with byzantine nodes
	- o It has higher communication complexity

Algorithm 19.19 Crash-Resilient Shared Coin (code for node u) 1: $r = 1$ $2:$ while true do Choose local coin $c_u = +1$ with probability 1/2, else $c_u = -1$ $3:$ FIFO-broadcast $\operatorname{coin}(c_u, r)$ to all nodes $4:$ Save all received coins $\text{coin}(c_v, r)$ in a set C_u $5:$ Wait until accepted own $\operatorname{coin}(c_u, r)$ $6:$ Request C_v from $n-f$ nodes v, and add newly seen coins to C_u $7:$ if $|C_u| > n^2$ then 8: **return** sign(sum(C_u)) $9:$ end if $10:$ $r:=r+1$ $11:$ 12: end while

Secret Sharing algorithm $(f < t)$

- Generate random polynomial and distribute distinct points on it to all nodes
- Can reconstruct secret value at $p(0)$ using t points
- Why does this work?
	- \circ Any polynomial of degree $t-1$ can be reconstructed using t points
		- Also works over some finite field \mathbb{F}_q
- What can go wrong?
	- o Dealer must be a trusted central authority
	- o Shares must be distributed securely using a private communication channel

Algorithm 19.23 (t, n) -Threshold Secret Sharing

1: Input: A secret $s \in \{0, \ldots, q\}$ for some prime number $q > n$.

Secret distribution by dealer d

- 2. Generate $t-1$ uniformly random values $a_1, \ldots, a_{t-1} \in \mathbb{F}_q$
- 3: Obtain a polynomial p of degree $t-1$ with $p(x) = s + a_1x + \cdots + a_{t-1}x^{t-1}$
- 4: Distribute share $\text{msg}(p(1))_d$ to node $v_1, \ldots, \text{msg}(p(n))_d$ to node v_n

Secret recovery

- 5: Collect t shares $\text{msg}(p(u))_d$ from at least t nodes
- 6: Use Lagrange's interpolation formula to obtain $p(0) = s$

Algorithm 19.24 Preprocessing Step for Algorithm $\overline{19.25}$ (code for dealer d) 1: for $i = 1, ..., \lambda$ do

- Choose coin flip c_i , where $c_i = 0$ with probability 1/2, else $c_i = 1$ $2:$
- Using Algorithm [19.23], generate *n* shares $(p(1)), \ldots, p(n)$ for c_i $3:$

 $4:$ end for

5: Send shares $\text{msg}(p(1))_d, \ldots, \text{msg}(p(n))_d$ to node u

Algorithm 19.25 Shared Coin using Secret Sharing

- 1: Request shares for c_i from at least $f + 1$ nodes
- 2. Using Algorithm 19.23, let c_i be the value reconstructed from the shares

3: return c_i

Synchronous Byzantine Shared Coin $(f < \frac{n}{3})$ Distributed Computing

- Broadcast current round number signed with private key
- Decide on LSB of smallest hash received
- Uses signatures
	- o Every node can only broadcast a single value as inconsistency will be detected because of signatures
	- \circ It must be hard to compute different signatures for the same message
- What is the drawback of this approach?
	- o It requires cryptographically strong hash functions
- **Algorithm 19.28** Simple Synchronous Byzantine Shared Coin (for node u) 1: Each node has a public key that is known to all nodes. 2. Let r be the current round of Algorithm $\boxed{17.19}$ 3: Broadcast $\text{msg}(r)_{u}$, i.e., round number r signed by node u 4: Compute $h_v = \text{hash}(\text{msg}(r)_v)$ for all received messages $\text{msg}(r)_v$ 5: Let $h_{min} = \min_v h_v$
- 6: return least significant bit of h_{min}

How to use these shared coin algorithms?
 Computi

- We can replace the sampling for random values with an instance of a shared coin algorithm
- Which algorithm to use depends on our setting

Async. Byzantine Agreement with Random Oracle $(f ⁿ/₁₀)$ Distributed

- Replace standard coin flip by the shared coin algorithm
- **Gain:** Runtime becomes constant

- Proofs for validity and agreement still hold
- The proof for termination must be changed to account for the changed probability that all coins will give the same result

```
Algorithm 17.19 Asynchronous Byzantine Agreement (Ben-Or, for f \le n/10)
                        \triangleleft input bit
 1: x_u \in \{0, 1\}2: round = 1\triangleleft round
 3: while true do
      Broadcast propose(x_u,round)
      Wait until n - f propose messages of current round arrived
 5:if > n/2 + 3f propose messages contain same value x then
 6:Broadcast propose(x,round + 1)
 7:Decide for x and terminate
 8:else if > n/2 + f propose messages contain same value x then
 9:x_u = x10:else
11:choose x_u randomly, with Pr[x_u = 0] = Pr[x_u = 1] = 1/212:end if
13:round = round +114:15: end while
```


Randomized Consensus with Shared Coin $(f ⁿ/₃)$

- Replace simple coin flip by the shared coin algorithm
- **Gain:** Termination in expected 3 rounds
- Drawback: Can only deal with $f < \frac{n}{3}$ crashes instead of $f < \frac{n}{2}$ crashes

```
Algorithm 16.28 Randomized Consensus (assuming f < n/2)
                1: v_i \in \{0, 1\}\triangleleft input bit
                 2: round = 13: while true do
                     Broadcast myValue(v_i, round)
                 4:Algorithm 19.8 Shared Coin (code for node u)
                     Propose
                                                                                             1: Choose local coin c_u = 0 with probability 1/n, else c_u = 1Wait until a majority of myValue messages of current round arrived
                 5:2: Broadcast myCoin(c_u)if all messages contain the same value v then
                 6:Broadcast propose(v, round)7:3: Wait for n-f coins and store them in the local coin set C_uelse
                 8:Broadcast propose(\perp, round)
                                                                                             4: Broadcast mySet(C_u)9:end if
                10:5: Wait for n - f coin sets
                     Vote
                                                                                             6: if at least one coin is 0 among all coins in the coin sets then
                     Wait until a majority of propose messages of current round arrived
                11:if all messages propose the same value v then
                                                                                                   return 0
                12:7:Broadcast myValue(v, round + 1)
                13:
                                                                                             8: else
                       Broadcast propose(v, round +1)14:return 1
                       Decide for v and terminate
                                                                                             9:
                15:
                     else if there is at least one proposal for v then
                16:10: end if
                      v_i = v17:_{\rm else}18:
                      Choose v_i randomly, with Pr[v_i = 0] = Pr[v_i = 1] = 1/2end if
                     round = round + 1
ETH ZU
                22: end while
```
Byzantine Agreement using Secret Sharing $(f < \frac{n}{10})$ Distributed Computing

- Uses Shared Coin using Secret Sharing algorithm
- Terminates in 3 rounds in expectation
- It can be shown that Asynchronous Byzantine Agreement algorithm to requires only λ shared coins with probability $2^{-\lambda}$

Algorithm 17.19 Asynchronous Byzantine Agreement (Ben-Or, for $f < n/10$) 1: $x_u \in \{0,1\}$ \triangleleft input bit 2: round $= 1$ \triangle round $3:$ while true do Broadcast propose $(x_u,$ round) $4:$ Wait until $n - f$ propose messages of current round arrived $5:$ if $> n/2 + 3f$ propose messages contain same value x then $6:$ Broadcast propose $(x,$ round + 1) $7:$ Decide for x and terminate 8: else if $> n/2 + f$ propose messages contain same value x then $9:$ $x_u = x$ $10:$ else $11:$ choose x_u randomly, with $Pr[x_u = 0] = Pr[x_u = 1] = 1/2$ $12:$ end if $13:$ round $=$ round $+1$ $14:$ 15: end while Algorithm 19.25 Shared Coin using Secret Sharing 1: Request shares for c_i from at least $f + 1$ nodes

- 2. Using Algorithm $\boxed{19.23}$, let c_i be the value reconstructed from the shares
- 3: return c_i

Byzantine Agreement using Synchronous Shared Coin ($f < \frac{n}{10}$) Distributed

Distributed

- Uses Synchronous Byzantine Shared Coin
- Takes $2^2/g$ rounds in expectation

Fast Synchronous Byzantine Agreement $(f < \frac{n}{4})$ Distributed Computing

- 2 communication rounds per iteration
- coin_toss is the min hash algorithm from the simple synchronous algorithm
- Termination in $5\frac{3}{4}$ rounds in expectation
- Success probability

$$
Pr[C = 0] = Pr[C = 1] > \frac{27}{64}
$$

- 1. Let p_0 be the probability that a shared coin algorithm outputs 0 and p_1 the probability that it outputs 1. Do we always have $p_0 + p_1 = 1$?
	- \circ No. A shared coin algorithm is allowed to fail with constant probability.
- 2. We can use a shared coin in the asynchronous randomized consensus algorithm (16.28). How many of the nodes are allowed to crash?
	- \circ $f <$ ⁿ/₃. Even though the randomized consensus algorithm can handle $f <$ ⁿ/₂ crashes, the shared coin algorithm tolerates $f < \frac{n}{3}$ crash failures.
- 3. In the shared secret algorithm: Can we approximate the secret value using $t 1$ values?
	- o No. If we have $t 1$ values of p we still have one degree of freedom. Therefore, $p(0)$ still can take on any value.
- 4. Is the Fast Synchronous Byzantine Agreement Algorithm optimal regarding expected number of rounds?
	- \circ It depends. With a random oracle (that do not exist) it would be possible to achieve agreement in expected 6 rounds.

Chapter 20 – Quorum Systems

Quorum Systems *Distributed Distributed Computing*

- Get a lock using a quorum system:
	- o Client selects a free quorum
	- o Requests lock from all nodes of the quorum
	- o Client releases all locks
- Must make sure to request locks in a predefined order
- This example is **not** a quorum system. Why?
	- \circ The two vertical quorums do not share a node

Singleton and Majority Quorum Systems

Singleton quorum system

Majority quorum system (all sets consist of $n/2 + 1$ nodes)

• An **access strategy** *Z* defines the probabilities $P_Z(Q)$ of accessing a quorum $Q \in S$ such that:

- **Work:** How many servers need to be accessed
- **Load:** Workload of busiest server
- **Resilience:** Largest number of servers that can fail such that there still exists a complete quorum
- **Failure probability:** Probability that at least one server of every quorum fails, assuming every server works with probability p
- **Asymptotic failure probability:** Failure probability for $n \to \infty$

Load and Work

Load of access strategy *Z* on a node v_i $L_Z(v_i) = \sum_{0 \in S: v_i \in O} P_Z(Q)$ **Load induced by** Z on quorum system S

Load of quorum system S

$$
L_Z(v_i) = \sum_{Q \in S; v_i \in Q} P_Z(Q
$$

\n
$$
L_Z(S) = \max_{v_i \in S} L_Z(v_i)
$$

\n
$$
L(S) = \min_{Z} L_Z(S)
$$

Work of quorum *Q* **Work induced by** *Z* on quorum system *S* **Work of quorum system S**

$$
W(Q) = |Q|
$$

\n
$$
W_Z(S) = \sum_{Q \in S} P_Z(Q) \cdot W(Q) = \sum_{v \in V} L_Z(v)
$$

\n
$$
W(S) = \min_{Z} W_Z(S)
$$

Singleton quorum system

Majority quorum system (all sets consist of $n/2 + 1$ nodes)

 Grid dea $(n = d^2)$

Problem: Failure probability $F_p(\mathcal{S}) \ge \Pr[\text{at least one failure per row}] = \left(1-p^d\right)^d \ge 1 - ndp^d \stackrel{n \to \infty}{\longrightarrow} 1$

B-Grid Quorum System

-
- Nodes arranged in rectangular grid with $h \cdot r$ rows and d columns
- **Band:** Group of r rows
- **Mini-column:** Group of r elements in the same column and band
- A quorum consists of
	- \circ one mini-column in every band
	- \circ for one band: one element from each minicolumn
- Size of quorum: $|Q| = r \cdot h + d 1$

- Theorem: for any quorum system S we have $\text{load}(S) \geq \frac{1}{\sqrt{S}}$ \overline{n}
	- o Load of Grid is asymptotically optimal

Computing Quorum System Quiz

- 1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?
	- No, because any two quorums intersect. So, when one quorum fails, all quora fail
- 2. Consider a quorum system, which is made up of n different quorums, each containing $n-1$ servers. We use a uniform access strategy: $P_Z(Q) = \frac{1}{2}$ $\frac{1}{n}$. What is the work, load, and resilience?
	- Work: $n 1$ Because all quora are of the same size and the access strategy is uniform
	- Load: $\frac{n-1}{n}$ $\frac{-1}{n}$ For all nodes v_i we have: $\sum_{Q\in S; v_i\in Q} P_Z(Q) = \sum_{Q\in S; v_i\in Q} \frac{1}{n}$ \overline{n}
	- Resilience: 1 If 2 nodes fail, all quora fail
- 3. Can you think of a quorum system that contains as many quorums as possible? *Hint:* it does not have to be minimal.
	- Construction: Pick a node v and create quorum for all possible sets containing that one node v .
		- o All quora share at least one node. Which one?
		- o Maximality (informally): of any quorum Q and its complement \overline{Q} at most one quorum can be in the system. This system maximizes this number.

Algorithms Overview

Assignment Preview

The Resilience of a Quorum System 1.1

- a) Does a quorum system exist, which can tolerate that all nodes of a specific quorum fail? Give an example or prove its nonexistence.
- b) Consider the *nearly all* quorum system, which is made up of n different quorums, each containing $n-1$ servers. What is the resilience of this quorum system?
- c) Can you think of a quorum system that contains as many quorums as possible? Note: the quorum system does not have to be minimal.