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• Worst-case runtime of our randomized 
algorithms were limited by the probability 
that all nodes sample the same value in a 
round

• Idea: use random oracle such that all nodes 
always sample the same value

• Gain: constant expected number of rounds 
in asynchronous byzantine agreement 
algorithm (Ben-Or)

• Major problem: random oracles do not exist
• Solution: shared coin algorithm

o Outputs 0 or 1 with constant probability

Shared Coins – Motivation
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Shared Coin Algorithm (𝑓 < ⁄! ")

• Every node samples a biased coin
o Samples 0 with probability ⁄! "

• Nodes share their coin sets
• Success probabilities:

o 0 with probability 1 − 1 − 𝑒 ⁄! " ≈ 0.28
o 1 with probability ⁄! $ ≈ 0.37

• Let W be the set of coins that a node 
receives from 𝑓 + 1 different coin sets
o W always contains coins from at least 𝑓 + 1

distinct nodes
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Shared Coin Algorithm (𝑓 < ⁄! ")
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Blackboard Algorithm (𝑓 < 𝑛)

• Nodes write result of 𝑛! fair coin flips to 
a blackboard

• Outcome is the sign of the sum after a 
node sees ≥ 𝑛! results

• Outcome will be the same for all nodes 
if sum 𝐶 > 𝑛

• Probability that all nodes have the 
same outcome (0 or 1) is at least 

1 − Φ(1) > 0.15
o Proof by applying Central Limit Theorem

• What is the problem of this approach?
o It requires a trusted central authority
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Message passing algorithm (𝑓 < ⁄! 2)

• Using FIFO broadcast to replace 
trusted central authority

• Gain: Save against crash failures 
and worst-case scheduling

• What is the problem of this 
algorithm?
o It doesn’t work with byzantine nodes
o It has higher communication 

complexity
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Secret Sharing algorithm (𝑓 < 𝑡)

• Generate random polynomial and distribute 
distinct points on it to all nodes

• Can reconstruct secret value at 𝑝(0) using 
𝑡 points

• Why does this work?
o Any polynomial of degree 𝑡 − 1 can be 

reconstructed using 𝑡 points
− Also works over some finite field 𝔽!

• What can go wrong?
o Dealer must be a trusted central authority
o Shares must be distributed securely using a 

private communication channel
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Synchronous Byzantine Shared Coin (𝑓 < ⁄! ")

• Broadcast current round number signed 
with private key

• Decide on LSB of smallest hash 
received

• Uses signatures
o Every node can only broadcast a single 

value as inconsistency will be detected 
because of signatures

o It must be hard to compute different 
signatures for the same message

• What is the drawback of this approach?
o It requires cryptographically strong hash 

functions
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How to use these shared coin algorithms?

• We can replace the sampling for random values with an instance of a shared coin algorithm
• Which algorithm to use depends on our setting
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Async. Byzantine Agreement with Random Oracle (𝑓 < ⁄! 34)

• Replace standard coin flip by the shared coin algorithm
• Gain: Runtime becomes constant
• Proofs for validity and agreement still hold
• The proof for termination must be changed to account for the changed probability that all 

coins will give the same result

Icon from https://www.flaticon.com/free-icon/eye_14432782
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Randomized Consensus with Shared Coin (𝑓 < ⁄! ")

• Replace simple coin flip by the shared coin algorithm
• Gain: Termination in expected 3 rounds
• Drawback: Can only deal with 𝑓 < ⁄! " crashes instead of 𝑓 < ⁄! # crashes
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Byzantine Agreement using Secret Sharing (𝑓 < ⁄! 34)

• Uses Shared Coin using Secret Sharing 
algorithm

• Terminates in 3 rounds in expectation
• It can be shown that Asynchronous 

Byzantine Agreement algorithm to requires 
only 𝜆 shared coins with probability 2$%
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Byzantine Agreement using Synchronous Shared Coin (𝑓 < ⁄! 34)

• Uses Synchronous Byzantine Shared Coin
• Takes 2 ⁄# & rounds in expectation
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Fast Synchronous Byzantine Agreement (𝑓 < ⁄! 5)

• 2 communication rounds per iteration
• coin_toss is the min hash algorithm 

from the simple synchronous algorithm
• Termination in 5 ⁄" ' rounds in expectation
• Success probability

Pr 𝐶 = 0 = Pr 𝐶 = 1 > )27
64
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Shared Coins Quiz

1. Let 𝑝( be the probability that a shared coin algorithm outputs 0 and 𝑝) the probability that it 
outputs 1. Do we always have 𝑝( + 𝑝) = 1?
o No. A shared coin algorithm is allowed to fail with constant probability.

2. We can use a shared coin in the asynchronous randomized consensus algorithm (16.28). 
How many of the nodes are allowed to crash?
o 𝑓 < ⁄" %. Even though the randomized consensus algorithm can handle 𝑓 < ⁄" & crashes, the shared 

coin algorithm tolerates 𝑓 < ⁄" % crash failures.

3. In the shared secret algorithm: Can we approximate the secret value using 𝑡 − 1 values?
o No. If we have 𝑡 − 1 values of 𝑝 we still have one degree of freedom. Therefore, 𝑝(0) still can take 

on any value.

4. Is the Fast Synchronous Byzantine Agreement Algorithm optimal regarding expected 
number of rounds?
o It depends. With a random oracle (that do not exist) it would be possible to achieve agreement in 

expected 6 rounds.
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Quorum Systems
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Quorum Systems

• Get a lock using a quorum system:
o Client selects a free quorum
o Requests lock from all nodes of the quorum
o Client releases all locks

• Must make sure to request locks in a 
predefined order

• This example is not a quorum system. Why?
o The two vertical quorums do not share a node
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Majority quorum system
(all sets consist of 𝑛 / 2 + 1 nodes)

Singleton quorum system

Singleton and Majority Quorum Systems
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Load and Work

• An access strategy 𝑍 defines the probabilities 𝑃*(𝑄) of accessing a quorum 𝑄 ∈ 𝑆 such 
that:

!
&∈(

𝑃) 𝑄 = 1
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Quorum metrics

• Work: How many servers need to be accessed
• Load: Workload of busiest server
• Resilience: Largest number of servers that can fail such that there still exists a complete 

quorum
• Failure probability: Probability that at least one server of every quorum fails, assuming 

every server works with probability 𝑝
• Asymptotic failure probability: Failure probability for 𝑛 → ∞
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Load and Work

Load of access strategy 𝑍 on a node 𝑣+ 𝐿* 𝑣+ = ∑,∈.;0"∈,𝑃* 𝑄

Load induced by 𝑍 on quorum system 𝑆 𝐿* 𝑆 = max
0"∈.

𝐿* 𝑣+

Load of quorum system 𝑆 𝐿 𝑆 = min
*
𝐿* 𝑆

Work of quorum 𝑄 𝑊 𝑄 = 𝑄

Work induced by 𝑍 on quorum system 𝑆 𝑊* 𝑆 = ∑,∈.𝑃* 𝑄 ⋅ 𝑊 𝑄 = ∑0∈1 𝐿* 𝑣

Work of quorum system 𝑆 𝑊 𝑆 = min
*
𝑊* 𝑆
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Load and Work

Singleton Majority

How many servers need to be contacted? (Work) 1 > n/2

What’s the load of the busiest server? (Load) 100% ≈ 50%

How many server failures can be tolerated? (Resilience) 0 < n/2

Majority quorum system
(all sets consist of 𝑛 / 2 + 1 nodes)

Singleton quorum system
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Grid Idea (𝑛 = 𝑑2)

Size of quorum: 2𝑑 − 1 ≤ 2𝑑 − 1 ≤ 2𝑑 − 1

# of intersects: 2 1 1

Problem: Failure probability 𝐹2 𝒮 ≥ Pr at least one failure per row = 1 − 𝑝3 3 ≥ 1 − 𝑛𝑑𝑝3
!→5

1
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B-Grid Quorum System

• Nodes arranged in rectangular grid with 
ℎ R 𝑟 rows and 𝑑 columns

• Band: Group of 𝑟 rows
• Mini-column: Group of 𝑟 elements in the 

same column and band 
• A quorum consists of

o one mini-column in every band
o for one band: one element from each mini-

column

• Size of quorum: 𝑄 = 𝑟 ⋅ ℎ + 𝑑 − 1
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Different quorum systems

• Theorem: for any quorum system 𝑆 we have load 𝑆 ≥ )
!

o Load of Grid is asymptotically optimal
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Quorum System Quiz

1. Does a quorum system exist which can tolerate that all nodes of a specific quorum fail?
• No, because any two quorums intersect. So, when one quorum fails, all quora fail

2. Consider a quorum system, which is made up of 𝑛 different quorums, each containing 𝑛 − 1 servers. 
We use a uniform access strategy: 𝑃' 𝑄 = !

"
. What is the work, load, and resilience?

• Work: 𝑛 − 1 Because all quora are of the same size and the access strategy is uniform

• Load: "(!
"

For all nodes 𝑣) we have: ∑*∈,;.#∈* 𝑃' 𝑄 = ∑*∈,;.#∈*
!
"

• Resilience: 1 If 2 nodes fail, all quora fail
3. Can you think of a quorum system that contains as many quorums as possible?

Hint: it does not have to be minimal.
• Construction: Pick a node 𝑣 and create quorum for all possible sets containing that one node 𝑣.

o All quora share at least one node. Which one?

o Maximality (informally): of any quorum 𝑄 and its complement 𝑄 at most one quorum can 
be in the system. This system maximizes this number.
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Algorithms Overview
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Shared Coin Algorithms

Shared Coins 
(19.8)

Blackboard 
(19.15)

Message 
Passing 
(19.19)

Secret Sharing 
(19.23)

Synchronous 
Shared Coin 
(19.28)

Number of failures 𝑓 < ⁄" % 𝑓 < 𝑛 𝑓 < ⁄" & 𝑓 < 𝑛 𝑓 < ⁄" %

Min number of nodes 3𝑓 + 1 𝑓 + 1 2𝑓 + 1 𝑓 + 1 3𝑓 + 1

With byzantine 
nodes?

❌ ❌ ❌ ✅ (unless it’s 
the dealer)

✅

Asynchronous 
model?

✅ ✅ ✅ ✅ ❌

Runtime (worst-case) 𝑛/0! rounds 𝑛& round 𝑛& rounds 1 round 2 ⁄1 2 rounds
Success probabilities P 𝐶 = 0 ≈ 0.28

P 𝐶 = 1 ≈ 0.37
P 𝐶 = 0 > 0.15
P 𝐶 = 1 > 0.15

P 𝐶 = 0 > 0.15
P 𝐶 = 1 > 0.15

P 𝐶 = 0 = ⁄! &
P 𝐶 = 1 = ⁄! &

P 𝐶 = 0 = ⁄2 !3
P 𝐶 = 1 = ⁄2 !3

Drawbacks Exponential 
expected 
runtime

Requires 
trusted central 
authority

Not robust 
against 
byzantine 
behaviour

Requires 
trusted dealer 
and/or 
cryptography

Only in the 
synchronous 
setting
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Byzantine Agreement Algorithms with Shared Coins

Byzantine 
Agreement with 
Random Oracle 
(19.2)

Byzantine 
Agreement 
using Secret 
Sharing (19.25)

Synchronous 
Algorithm using 
Shared Coin 
(19.28)

Fast 
Synchronous 
Byzantine 
Agreement 
(19.30)

Number of failures 𝑓 < ⁄" !4 𝑓 < ⁄" !4 𝑓 < ⁄" !4 𝑓 < ⁄" 1

Min number of nodes 10𝑓 + 1 10𝑓 + 1 10𝑓 + 1 4𝑓 + 1
With byzantine nodes? ✅ ✅ ✅ ✅

Asynchronous model? ✅ ✅ ❌ ❌

Expected runtime 3 rounds 3 rounds 3 + ⁄& 5 rounds < 5 ⁄% 1 rounds
Success probabilities 
of shared coin

Pr 𝐶 = 0 = ⁄! &
Pr 𝐶 = 1 = ⁄! &

Pr 𝐶 = 0 = ⁄! &
Pr 𝐶 = 1 = ⁄! &

Pr 𝐶 = 0 = ⁄5 &⋅!4
Pr 𝐶 = 1 = ⁄5 &⋅!4

Pr 𝐶 = 0 > ⁄&2
71

Pr 𝐶 = 1 > ⁄&2
71

Shortcomings Random Oracles 
do not exist

Requires trusted 
dealer and/or 
cryptography

Analysis uses 
Random Oracle 
Model

Uses 
cryptography
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Assignment Preview
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Task 1 – Quorum Systems


