
Computer Systems/

Distributed Systems
Exercise Session 13

HS 2024

Slides last updated:
12.12.2024

1. Assignment review

2. Script recap

• Game Theory

• Eventual Consistency & Bitcoin

3. Quiz

4. Assignment preview

Program

1. Clock Synchronization

1. Topology

2. Spanning Tree

2. Distributed Storage

1. Hypercubic Networks

2. Iterative vs. Recursive Lookup

3. Building a set of Hash functions

4. Multiple Skiplists

Assignment review

1.1)

Assignment review – Clock Sync

1.2)

Assignment review – Clock Sync

2.1)

Assignment review – Dist. Storage

2.2)

Assignment review – Dist. Storage

2.3)

Assignment review – Dist. Storage

2.4)

Assignment review – Dist. Storage

Nodes no longer have a common goal – They act selfish

• Prisoner’s Dilemma

• Social optimum, dominant strategies, Nash Equilibrium

• Selfish Caching

• (Optimistic) Price of Anarchy

• Braess’ Paradox

• Rock-Paper-Scissors

• Mechanism Design

Game Theory

• Both 𝑢 and 𝑣 have a better combined outcome if they cooperate –
but individually, defecting always yields a better result

Prisoner’s Dilemma

• Social optimum: Minimizes global costs

• Dominant strategy: Individually never worse than another strategy

• Nash Equilibrium: No-one can improve by changing only their own
strategy

If every player plays a dominant strategy, we have a Nash Equilibrium

Terminology

Strategy of player 𝒗: Player 𝑣 will play “Defect”

Strategy Profile: Player 𝑣 will play “Defect” and player 𝑢 will play “Cooperate”

Dominant Strategy: Playing “Defect”

Social Optimum: Both players cooperate

Nash Equilibrium: Both players defect

Prisoner’s Dilemma - Terminology

Consider a network where a node can either cache a file or fetch it from
another node within the network. Storing a file costs 1, the demand for it is
defined by 𝑑 (in many examples defined as 𝑑𝑢 = 𝑑𝑣 = 𝑑𝑤 = 1), while fetching a
file costs 𝑑 ∗ (𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑡𝑜 𝑓𝑖𝑙𝑒).

𝑐𝑢←𝑣 =
1

2
, 𝑐𝑢←𝑤 =

1

2
+

3

4
= 1.25

Nash Equilibrium: Two exist, either 𝑢 and 𝑤 store the file, or 𝑣 stores the file

Selfish caching

If 𝑣 stores the file, we have total cost of

𝑁𝐸+ = 𝑑𝑣 + 𝑐𝑢←𝑣 + 𝑐𝑤←𝑣 = 1 +
1

2
+
3

4
= 2.25

If 𝑢 and 𝑤 store the file, we have total cost of

𝑁𝐸− = 𝑑𝑢 + 𝑑𝑤 + 𝑐𝑣←𝑢 = 1 + 1 +
1

2
= 2.5

The first strategy is also the socially optimal strategy. Therefore, the

Price of Anarchy is 𝑃𝑜𝐴 =
𝑁𝐸−

𝑆𝑂
=

2.5

2.25
≈ 1.11

Since a Nash Equilibrium which is also the Social Optimum exists, the

Optimistic Price of Anarchy is 𝑂𝑃𝑜𝐴 =
𝑁𝐸+

𝑆𝑂
=

2.25

2.25
= 1

(Optimistic) Price of Anarchy

Adding more paths can increase the costs

Assume we have 1000 drivers traveling from 𝑠 to 𝑡. Without the path
from 𝑢 to 𝑣, they would split up 50/50 with total costs for each being
1.5. Adding the path would mean all drivers take the same path,
increasing their cost to 2.

Braess’ Paradox

• Has no Nash Equilibrium

Rock-Paper-Scissors

Mixed Nash Equilibrium

• Has no Nash Equilibrium

• New definition: Mixed Nash Equilibrium – every game has one

• Reached by choosing each with probability
1

3

Rock-Paper-Scissors

Instead of analysing an existing system, we try to create one that
incentivises nodes to behave nicely.

• Auction: One good is sold to one bidder

• First price auction: One good is sold to the highest bidder for his bid

• Truthful auction: No player can gain anything by lying

First price auctions are not truthful, since the highest bidder could
decrease his bid to 𝑏1 − ε > 𝑏2 to save money.

• Second price auction: One good is sold to the highest bidder for the
second highest bid

Second price auctions are truthful

Mechanism Design

• Mechanism design assumes players want to maximise their profit. In
the real world, they might not only be selfish, but also byzantine.

• Costs in selfish-caching can also be defined to be negative, nodes that
cache could be rewarded for caching.

Remarks

• Consistency, Availability, and Partitions

• Weak Consistency

• Bitcoin

• Layer 2 (Smart Contracts)

• Selfish Mining

Eventual Consistency & Bitcoin

• Consistency:
• All nodes agree on the current state of the system

• Availability:
• The system is operational and instantly processing incoming requests

• Partition tolerance:
• Still works correctly if a network partition happens

• Good news:
• achieving any two is very easy

• Bad news:
• achieving three is impossible (CAP theorem)

• => Eventual Consistency:
• Guarantees that the state is eventually agreed upon, but the nodes may disagree

temporarily

Consistency, Availability,
and Partition Tolerance

Eventual Consistency is only one form of Weak Consistency

• Monotonic Read Consistency: If a node 𝑢 has seen a particular value of an
object, any subsequent access of 𝑢 will never return any older values

• Monotonic Write Consistency: A write operation of a node is completed
before any successive write operation by the same node

• Read-Your-Write Consistency: After a node 𝑢 has updated a data item, any
later read from that node 𝑢 will never see an older value

• Causal Consistency: Need the definition of Causal Relation first

Weak Consistency

Causal Relation

Eventual Consistency is only one form of Weak Consistency

• Monotonic Read Consistency: If a node 𝑢 has seen a particular value of an
object, any subsequent access of 𝑢 will never return any older values

• Monotonic Write Consistency: A write operation of a node is completed
before any successive write operation by the same node

• Read-Your-Write Consistency: After a node 𝑢 has updated a data item, any
later read from that node 𝑢 will never see an older value

• Causal Consistency: A system provides causal consistency if operations that
potentially are causally related are seen by every node of the system in the
same order. Concurrent writes are not causally related and may be seen in
different orders by different nodes.

Weak Consistency

• Decentralized network consisting of nodes

• Users generate private/public key pair
• Address is generated from public key

• It is difficult to get users “real” identity from public key

1

signature

a

Inputs 5

signature

a

3

signature

b

Outputs

6

signature a

4

signature

b

Transaction

Bitcoin

• Conditions:
• Sum of inputs must always be at least the sum of outputs

• Unused part is used as transaction fee, gets paid to miner of block

• An input must always be some whole output, no splitting allowed!

• Money that a user “has” is defined as sum of unspent outputs

Bitcoin Transactions

Bitcoin Transactions

(A, 100)

(B, 100) (A, 10)

(B, 90)

(C, 105)

(A, 5)

Set of unspent transaction outputs

(UTXOs):

- This set is the shared state of Bitcoin

- The red outputs

1. Issue transaction

2. Add transaction to local history

3. Send transaction to other nodes in network

4. Check whether transaction is valid

• input of transaction must be in local UTXO

• must have valid signature

• sum of inputs >= sum of outputs

6. Add transaction to local history

7. Propagate transaction further

5. Remove any input of transaction from local UTXO

Transaction Broadcast

• Multiple transactions attempt to spend the same output

• Ex: In a transaction, an attacker pretends to transfer an output to a victim, only
to doublespend the same amount in another transaction back to itself.

Doublespend Attack

(A, 100)(B, 100)

(B, 100)(B, 100)

Broadcast

Broadcast

(C, 10)

• Right now we have infinitely growing memory pool and we can’t be
sure that other nodes have the same pool

• Solution: Propagate memory pool through network and make sure
everybody else will have same state

• Problem: How to avoid that everybody wants to propagate its own
memory pool?

• Solution: Proof-of-Work
• Proof that you put a certain amount of work into propagating your memory pool

Proof-of-Work

Proof-of-Work

Bitcoin

chooses the

difficulty such

that a block is

created all ~10

min

• Data structure holding transactions reference to previous blocks and a nonce.
• Header also contains more fields, such as a timestamp, the difficulty, network version,

etc.

• Miner creates blocks with transactions from its memory pool

Block

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Finding this

Nonce is

expensive

• Why should someone mine blocks?
• You get a reward for each block you mine

• You get the fee in the transactions

Mining

Bitcoin:
• Reward started at 50B and it is being halved every 210,000 blocks or 4 years in expectation
• This bounds the total number of Bitcoins to 21 million
• What will happen after that?

• Fee is the positive difference of input-output
• Miner include transactions which have a high fee.

• Problem: More miners -> more blocks are mined -> higher difficulty -> more Power needed

How does this prevent
double spending?
• An intruder needs to have more than 50% of computation power to

be faster in mining than all other together

A -> B:

10

A -> A:

10

1) Initial

transaction

3) Doublespend

transaction

2) Typically: transaction is accepted

by Bob after he sees 6-7 blocks.

...

How does this prevent
double spending?
• An intruder needs to have more than 50% of computation power to

be faster in mining than all other together

A -> B:

10

A -> A:

10

1) Initial

transaction

4) The goal of Alice is now to

make the branch where she

spends the money to herself

growing faster.

3) Doublespend

transaction

2) Typically: The transaction is

accepted by Bob after he sees 6-7

blocks.

...

...

Blockchain

• Starts with the genesis block and is the longest path from this genesis block to a
leaf.

• Consistent transaction history on which all nodes eventually agree

A -> B:

10

A -> A:

10
Blockchain

Genesis …

Note: To ensure that you’ll get the money you should wait 5-10 further blocks

• Contract between two or more parties, encoded in such a way that
correct execution is guaranteed by blockchain
• Timelock transaction: Tx will only get added to memory pool after some

time has expired

• Micropayment channel:
• Idea: Two parties want to do multiple small transactions, but want to avoid fees. So

they only submit first and last transaction to blockchain and privately do everything in
between

Smart Contracts

A B

1) Creates shared “account”, does not sign it

2) Creates timelocked transaction that unrolls

shared account, signs it

3) Sends them to B

A can't do anything with

this, since no transaction

has all required signatures

4) Signs both transactions
B can’t do anything with this, since

unroll transaction is not valid without

create transaction5) Signs create transaction

6) Broadcasts them to network

Micropayment Channel
Setup Transaction

Set up shared account and unrolling

Create settlement transaction

While buyer still has money and timelock not expired

Exchange goods and adapt money

Update settlement transactions with new values

S signs transaction and sends it to R

Why does s sign it?

• Like this, R always holds all fully signed transactions and can choose the last one (where he gets the most money)

• S cannot submit any transaction, so S cannot get the goods and later submit a transaction where S did not pay the money for it

R signs last transaction and broadcasts it

before timelock expires

Micropayment Channel

Selfish Mining: A selfish miner hopes to earn a reward of a larger share
of blocks than its hardware would allow. He achieves this by temporarily
keeping newfound blocks.

• Selfish mining can become the dominant strategy depending on how
the network is set up

• Depends on γ, the share of altruistic miners that the selfish miner can
reach before they receive the new correct block, and α, the share of
computational power of the selfish miner

• If γ=0, the selfish miner needs 1/3 of the computational power

• If γ=1/2, having 1/4 of the computational power is enough

• If γ=1, selfish mining is always dominant

Selfish Mining

Quiz – Game Theory

No.

Let‘s say 𝑝𝑡𝑟𝑢𝑒 = 500

and 𝑝𝐶𝑎𝑟𝑜𝑙 = 499.

Here, writing down 500

yields 494, while

writing down 498 yields

503

Quiz – Game Theory

For every value 𝑝 that

one of them chooses,

the other is better of

choosing 𝑝 − 1.

Therefore, the only NE

is a 𝑝𝐶 = 𝑝𝐴 = 20

Quiz – Game Theory

Here, we have a NE for

every 𝑝𝐶 = 𝑝𝐴, so

𝑁𝐸+ = 2000. Since

𝑆𝑂 = 2000, we have

𝑂𝑃𝑜𝐴 =
2000

2000
= 1

Quiz – Game Theory

For 2 ≤ Δ ≤ 20, we

only have the NE 𝑝𝐶 =
𝑝𝐴 = 20. As seen in 𝑐),
for 1 = Δ we have 981

NEs. For 0 = Δ, we

have the same 981

NEs, so 2 ≤ Δ ≤ 20.

Quiz

Quiz

Quiz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

