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1. Clock Synchronization

1. Topology

2. Spanning Tree

2. Distributed Storage

1. Hypercubic Networks

2. Iterative vs. Recursive Lookup

3. Building a set of Hash functions

4. Multiple Skiplists

Assignment review
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Assignment review – Clock Sync
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Assignment review – Clock Sync
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Assignment review – Dist. Storage
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Assignment review – Dist. Storage
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Assignment review – Dist. Storage
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Assignment review – Dist. Storage



Nodes no longer have a common goal – They act selfish

• Prisoner’s Dilemma

• Social optimum, dominant strategies, Nash Equilibrium

• Selfish Caching

• (Optimistic) Price of Anarchy

• Braess’ Paradox

• Rock-Paper-Scissors

• Mechanism Design

Game Theory



• Both 𝑢 and 𝑣 have a better combined outcome if they cooperate – 
but individually, defecting always yields a better result

Prisoner’s Dilemma



• Social optimum: Minimizes global costs

• Dominant strategy: Individually never worse than another strategy

• Nash Equilibrium: No-one can improve by changing only their own 
strategy

If every player plays a dominant strategy, we have a Nash Equilibrium

Terminology



Strategy of player 𝒗: Player 𝑣 will play “Defect” 

Strategy Profile: Player 𝑣 will play “Defect” and player 𝑢 will play “Cooperate”

Dominant Strategy: Playing “Defect”

Social Optimum: Both players cooperate

Nash Equilibrium: Both players defect

Prisoner’s Dilemma - Terminology



Consider a network where a node can either cache a file or fetch it from 
another node within the network. Storing a file costs 1, the demand for it is 
defined by 𝑑 (in many examples defined as 𝑑𝑢 = 𝑑𝑣 = 𝑑𝑤 = 1), while fetching a 
file costs 𝑑 ∗ (𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑡𝑜 𝑓𝑖𝑙𝑒).

𝑐𝑢←𝑣 =
1

2
, 𝑐𝑢←𝑤 =

1

2
+

3

4
= 1.25

Nash Equilibrium: Two exist, either 𝑢 and 𝑤 store the file, or 𝑣 stores the file

Selfish caching



If 𝑣 stores the file, we have total cost of

𝑁𝐸+ = 𝑑𝑣 + 𝑐𝑢←𝑣 + 𝑐𝑤←𝑣 = 1 +
1

2
+
3

4
= 2.25

If 𝑢 and 𝑤 store the file, we have total cost of

𝑁𝐸− = 𝑑𝑢 + 𝑑𝑤 + 𝑐𝑣←𝑢 = 1 + 1 +
1

2
= 2.5

The first strategy is also the socially optimal strategy. Therefore, the 

Price of Anarchy is 𝑃𝑜𝐴 =
𝑁𝐸−

𝑆𝑂
=

2.5

2.25
≈ 1.11

Since a Nash Equilibrium which is also the Social Optimum exists, the 

Optimistic Price of Anarchy is 𝑂𝑃𝑜𝐴 =
𝑁𝐸+

𝑆𝑂
=

2.25

2.25
= 1

(Optimistic) Price of Anarchy



Adding more paths can increase the costs

Assume we have 1000 drivers traveling from 𝑠 to 𝑡. Without the path 
from 𝑢 to 𝑣, they would split up 50/50 with total costs for each being 
1.5. Adding the path would mean all drivers take the same path, 
increasing their cost to 2.

Braess’ Paradox



• Has no Nash Equilibrium

Rock-Paper-Scissors



Mixed Nash Equilibrium



• Has no Nash Equilibrium

• New definition: Mixed Nash Equilibrium – every game has one

• Reached by choosing each with probability 
1

3

Rock-Paper-Scissors



Instead of analysing an existing system, we try to create one that 
incentivises nodes to behave nicely.

• Auction: One good is sold to one bidder

• First price auction: One good is sold to the highest bidder for his bid

• Truthful auction: No player can gain anything by lying

First price auctions are not truthful, since the highest bidder could 
decrease his bid to 𝑏1 − ε > 𝑏2 to save money.

• Second price auction: One good is sold to the highest bidder for the 
second highest bid

Second price auctions are truthful

Mechanism Design



• Mechanism design assumes players want to maximise their profit. In 
the real world, they might not only be selfish, but also byzantine.

• Costs in selfish-caching can also be defined to be negative, nodes that 
cache could be rewarded for caching.

Remarks



• Consistency, Availability, and Partitions

• Weak Consistency

• Bitcoin

• Layer 2 (Smart Contracts)

• Selfish Mining

Eventual Consistency & Bitcoin



• Consistency:
• All nodes agree on the current state of the system

• Availability:
• The system is operational and instantly processing incoming requests

• Partition tolerance:
• Still works correctly if a network partition happens

• Good news:
• achieving any two is very easy

• Bad news:
• achieving three is impossible (CAP theorem)

• => Eventual Consistency:
• Guarantees that the state is eventually agreed upon, but the nodes may disagree 

temporarily

Consistency, Availability, 
and Partition Tolerance



Eventual Consistency is only one form of Weak Consistency

• Monotonic Read Consistency: If a node 𝑢 has seen a particular value of an 
object, any subsequent access of 𝑢 will never return any older values

• Monotonic Write Consistency: A write operation of a node is completed 
before any successive write operation by the same node

• Read-Your-Write Consistency: After a node 𝑢 has updated a data item, any 
later read from that node 𝑢 will never see an older value

• Causal Consistency: Need the definition of Causal Relation first

Weak Consistency



Causal Relation



Eventual Consistency is only one form of Weak Consistency

• Monotonic Read Consistency: If a node 𝑢 has seen a particular value of an 
object, any subsequent access of 𝑢 will never return any older values

• Monotonic Write Consistency: A write operation of a node is completed 
before any successive write operation by the same node

• Read-Your-Write Consistency: After a node 𝑢 has updated a data item, any 
later read from that node 𝑢 will never see an older value

• Causal Consistency: A system provides causal consistency if operations that 
potentially are causally related are seen by every node of the system in the 
same order. Concurrent writes are not causally related and may be seen in 
different orders by different nodes. 

Weak Consistency



• Decentralized network consisting of nodes

• Users generate private/public key pair
• Address is generated from public key

• It is difficult to get users “real” identity from public key

1 

signature 

a

Inputs 5

signature 

a

3

signature 

b

Outputs

6

signature a

4

signature 

b

Transaction

Bitcoin



• Conditions:
• Sum of inputs must always be at least the sum of outputs

• Unused part is used as transaction fee, gets paid to miner of block

• An input must always be some whole output, no splitting allowed!

• Money that a user “has” is defined as sum of unspent outputs

Bitcoin Transactions



Bitcoin Transactions

(A, 100)

(B, 100) (A, 10)

(B, 90)

(C, 105)

(A, 5)

Set of unspent transaction outputs 

(UTXOs):

- This set is the shared state of Bitcoin

- The red outputs



1. Issue transaction

2. Add transaction to local history

3. Send transaction to other nodes in network

4. Check whether transaction is valid

• input of transaction must be in local UTXO

• must have valid signature

• sum of inputs >= sum of outputs

6. Add transaction to local history

7. Propagate transaction further

5. Remove any input of transaction from local UTXO

Transaction Broadcast



• Multiple transactions attempt to spend the same output

• Ex: In a transaction, an attacker pretends to transfer an output to a victim, only 
to doublespend the same amount in another transaction back to itself.

Doublespend Attack

(A, 100)(B, 100)

(B, 100)(B, 100)

Broadcast

Broadcast

(C, 10)



• Right now we have infinitely growing memory pool and we can’t be 
sure that other nodes have the same pool

• Solution: Propagate memory pool through network and make sure 
everybody else will have same state

• Problem: How to avoid that everybody wants to propagate its own 
memory pool?

• Solution: Proof-of-Work
• Proof that you put a certain amount of work into propagating your memory pool

Proof-of-Work



Proof-of-Work

Bitcoin 

chooses the 

difficulty such 

that a block is 

created all ~10 

min



• Data structure holding transactions reference to previous blocks and a nonce.
• Header also contains more fields, such as a timestamp, the difficulty, network version, 

etc.

• Miner creates blocks with transactions from its memory pool

Block

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Finding this 

Nonce is 

expensive 



• Why  should someone mine blocks?
• You get a reward for each block you mine

• You get the fee in the transactions

Mining

Bitcoin:
• Reward started at 50B and it is being halved every 210,000 blocks or 4 years in expectation
• This bounds the total number of Bitcoins to 21 million
• What will happen after that?

• Fee is the positive difference of input-output
• Miner include transactions which have a high fee.

• Problem: More miners -> more blocks are mined -> higher difficulty -> more Power needed



How does this prevent 
double spending?
• An intruder needs to have more than 50% of computation power to 

be faster in mining than all other together

A -> B: 

10

A -> A:

10

1) Initial 

transaction

3) Doublespend 

transaction

2) Typically:  transaction is accepted 

by Bob after he sees 6-7 blocks.

...



How does this prevent 
double spending?
• An intruder needs to have more than 50% of computation power to 

be faster in mining than all other together

A -> B: 

10

A -> A:

10

1) Initial 

transaction

4) The goal of Alice is now to 

make the branch where she 

spends the money to herself 

growing faster.

3) Doublespend 

transaction

2) Typically: The transaction is 

accepted by Bob after he sees 6-7 

blocks.

...

...



Blockchain

• Starts with the genesis block and is the longest path from this genesis block to a 
leaf.

• Consistent transaction history on which all nodes eventually agree

A -> B: 

10

A -> A:

10
Blockchain

Genesis …

Note: To ensure that you’ll get the money you should wait 5-10 further blocks



• Contract between two or more parties, encoded in such a way that 
correct execution is guaranteed by blockchain
• Timelock transaction: Tx will only get added to memory pool after some 

time has expired

• Micropayment channel:
• Idea: Two parties want to do multiple small transactions, but want to avoid fees. So 

they only submit first and last transaction to blockchain and privately do everything in 
between

Smart Contracts



A B

1) Creates shared “account”, does not sign it

2) Creates timelocked transaction that unrolls

shared account, signs it

3) Sends them to B

A can't do anything with 

this, since no transaction 

has all required signatures

4) Signs both transactions
B can’t do anything with this, since 

unroll transaction is not valid without 

create transaction5) Signs create transaction

6) Broadcasts them to network

Micropayment Channel
Setup Transaction



Set up shared account and unrolling

Create settlement transaction

While buyer still has money and timelock not expired

Exchange goods and adapt money

Update settlement transactions with new values

S signs transaction and sends it to R

Why does s sign it?

• Like this, R always holds all fully signed transactions and can choose the last one (where he gets the most money)

• S cannot submit any transaction, so S cannot get the goods and later submit a transaction where S did not pay the money for it

R signs last transaction and broadcasts it 

before timelock expires

Micropayment Channel



Selfish Mining: A selfish miner hopes to earn a reward of a larger share 
of blocks than its hardware would allow. He achieves this by temporarily 
keeping newfound blocks.

• Selfish mining can become the dominant strategy depending on how 
the network is set up

• Depends on γ, the share of altruistic miners that the selfish miner can 
reach before they receive the new correct block, and α, the share of 
computational power of the selfish miner

• If γ=0, the selfish miner needs 1/3 of the computational power

• If γ=1/2, having 1/4 of the computational power is enough

• If γ=1, selfish mining is always dominant

Selfish Mining



Quiz – Game Theory

No.

Let‘s say 𝑝𝑡𝑟𝑢𝑒 = 500 

and 𝑝𝐶𝑎𝑟𝑜𝑙 = 499. 

Here, writing down 500 

yields 494, while 

writing down 498 yields 

503



Quiz – Game Theory

For every value 𝑝 that 

one of them chooses, 

the other is better of 

choosing 𝑝 − 1. 

Therefore, the only NE 

is a 𝑝𝐶 = 𝑝𝐴 = 20



Quiz – Game Theory

Here, we have a NE for 

every 𝑝𝐶 = 𝑝𝐴, so 

𝑁𝐸+ = 2000. Since 

𝑆𝑂 = 2000, we have 

𝑂𝑃𝑜𝐴 =
2000

2000
= 1



Quiz – Game Theory

For 2 ≤ Δ ≤ 20, we 

only have the NE 𝑝𝐶 =
𝑝𝐴 = 20. As seen in 𝑐), 
for 1 = Δ we have 981 

NEs. For 0 = Δ, we 

have the same 981 

NEs, so 2 ≤ Δ ≤ 20.



Quiz







Quiz



Quiz
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