4

Distributed
Systems@ ETH zurcr Com p u t’ n g

|

PRI
o i

Computer Systems/
Distributed Systems

Exercise Session 13
HS 2024

S m

el :
T a
|

—FPGA_PCle_x16 ol o .[—COJ. ro"
COU_JTAG .
s iatatetazate

- -

Program e E N
Distributed (.:__

1. Assignment review Computing easss
2. Script recap

Game Theory

Eventual Consistency & Bitcoin
3. Quiz
4. Assignment preview

Assignment review

1. Clock Synchronization

1.
2.

Topology
Spanning Tree

2. Distributed Storage

1.

2
3.
4

Hypercubic Networks

lterative vs. Recursive Lookup
Building a set of Hash functions
Multiple Skiplists

Systems @ ETH zurch

Distributed !}{-_“ .
Computing W& %%

Assignment review — Clock Sync e

Distributed g..-;" .
j ““‘ 11}
11) Algorithm 23.9 Clock synchronization algorithm (code for node v) Computing WSess

: Increase clock C), at local clock rate
upon clock value C, reaches next integer value:
Send (', to all neighboring nodes
end upon
upon receiving clock value €, from node w:
if ', > C, then
C, = Cy
Send C, to all neighboring nodes
end if
end upon

1

@

Assignment review — Clock Sync e

Distributed gfv;‘ .
. e
12) Computing W% 50

Assignment review — Dist. Storage sl

Distributed 5:-;"-_
2 1) Computing W& %%
M(2,4)
M(3,1) 1100 1110
0o—1— 2
1000 . 1010
SE(2) T 1101 1117
01 s
: 1011
M(3,2) a 1007
010 R
00 - 10_ 20 / 0101 0111.
| ‘ ‘ 10 6007 0011
01T — 11— 21 0100).~ 2Jo110
02 — 12— 22
0000

0010

Assignment review — Dist. Storage sl
2.2) == (3

a) In the recursive lookup there is no difference between a request originating at the node
and a request being forwarded. Only once the lookup is finished do we need to care about
forwarding the result to the previous node or returning it to the caller. This allows the
same lookup logic to be reused for both. Furthermore, if the response is returned through
the same path as the request was sent through, then the intermediate nodes can cache the
result, potentially speeding up future lookups and distributing the load of a popular item.

A\ J

¥
9% g

b) Recursive lookups can easily be misused to mount Denial-of-Service attacks, since a sin-
gle request message from an originating node is forwarded over multiple hops. Each hop
multiplies the impact this message has on the network. Thus the attacker’s bandwidth is
potentially multiplied by the number of hops the request is routed through. Furthermore, if
the result is returned over the same path as the request, then the attacker is hidden behind
a number of hops and the victim only sees traffic originating from the last hop.

Assignment review — Dist. Storage

Systems @ ETH zurch

Distributed g;-;" .
. L)
23) Computing W% 50

The salted hashing function derivation allows random access to any of the derived hashing functions
without having to recompute the intermediate functions, as is the case in the iterative hashing
function derivation scheme. Furthermore, iterative hashing allows a user which knows the first

hash value to deduce all the others by repeatedly applying h. This information can be used by an
attacker to target specific nodes storing a movie.

Assignment review — Dist. Storage

a) Figure 3 shows the structure of a multi-skiplist with 8 nodes and 3 levels. Notice that each

2.4)

of the lists would wrap around at the ends.

b) Unlike in the single skiplist each node now has a constant degree of 2 - d, i.e., on each level

it has a right and a left neighbor, including the full list at { = 0.

c) The number of hops is still O(logn), just like for the simple skiplist.

O
O

0

(010)

(100)

MY
/

(110)

()

o
Oa0

O

(o01)
o o -
o O
e

Systems @ ETH zurch

Distributed éf- .
Computing ¥ %5 u

L
-"

I\ “

Game Theory e
Distributed f:-.'._
Nodes no longer have a common goal — They act selfish Computing W%sesa
Prisoner’s Dilemma
Social optimum, dominant strategies, Nash Equilibrium
Selfish Caching
(Optimistic) Price of Anarchy
Braess’ Paradox
Rock-Paper-Scissors
Mechanism Design

Prisoner’s Dilemma

Both u and v have a better combined outcome if they cooperate —

but individually, defecting always yields a better result

U Player u
v Cooperate | Defect
1 0
Player v Cooperate | 3
3 2
Defect 0 9

Table 25.1: The prisoner’s dilemma game as a matrix.

Systems @ ETH zurch

Distributed ‘ oy e,
Computing W& %%

Terminology et =

7
Distributed £"‘"’-“-
Social optimum: Minimizes global costs Computing \Seaes

1
1

Dominant strategy: Individually never worse than another strategy
Defect

Nash Equilibrium: No-one can improve by changing only their own
strategy

2

2

If every player plays a dominant strategy, we have a Nash Equilibrium

Prisoner’s Dilemma - Terminology

Strategy of player v: Player v will play “Defect”
Strategy Profile: Player v will play “Defect” and player u will play “Cooperate”
Dominant Strategy: Playing “Defect’

Social Optimum: Both players cooperate

Nash Equilibrium: Both players defect

U Player u
v Cooperate | Defect
1 0

Player v Cooperate 1 3
3 2

Defect 0 9

Table 25.1: The prisoner’s dilemma game as a matrix.

Systems @ ETH zunr

4
Distributed £"‘"’-“-
Computing W& %%

Selfish caching ecrerl

Distributed k,w-“‘-l
Consider a network where a node can either cache a file or fetch it from Computing UsSseeti
another node within the network. Storing a file costs 1, the demand for it is
defined by d (in many examples defined as d,, = d,, = d,, = 1), while fetching a
file costs d * (shortest path to file).

@ 1/2 @ 3/4 @

= 1.25

= Cucw =

+

Cu<—v

N |-
Sl w

Nash Equilibrium: Two exist, either u and w store the file, or v stores the file

(Optimistic) Price of Anarchy et

7
Distributed $ (PR

1/2 3/4 Computing ¥ %%

If v stores the file, we have total cost of

1 3
NE, =d,+cycy +Cpeyp = 1+§+Z=2'25

If u and w store the file, we have total cost of)
NE_=d,+d, +cyey=1+1+=-=25

2
The first strategy is also the socially optimal strategy. Therefore, the
Price of Anarchy is PoA = % = 22—2‘1 ~ 1.11

Since a Nash Equilibrium which is also the Social Optimum exists, the
NEy _ 225 _

Optimistic Price of Anarchy is OPoA = — = =
SO 2.25

Braess’ Paradox

Adding more paths can increase the costs

U

1 d/1000 . /1000
04 polo DO

d/1000 P d/1000 o

v v

Assume we have 1000 drivers traveling from s to t. Without the path

from u to v, they would split up 50/50 with total costs for each being

1.5. Adding the path would mean all drivers take the same path,
increasing their cost to 2.

Systems @ ETH zurch

4
Distributed ‘ oy e,
Computing W& %%

Rock-Paper-Scissors et =
gl

Has no Nash Equilibrium

U Player u
v Rock Paper Scissors
0 1 -1
Rock 0 1 1
Player v Paper 1 -1 0 0 1 L
e 1 -1 0
cissors 1 1 0

Mixed Nash Equilibrium ﬁ
CZ:::zet;lng (i:::‘: ..‘.:.

Definition 25.16 (Mixed Nash Equilibrium). A Mixzed Nash Equilibrium (MNE)
s a strateqy profile in which at least one player is playing a randomized strateqy
(choose strategy profiles according to probabilities), and no player can itmprove
their expected payoff by unilaterally changing their (randomized) strategy.

v
L .t

Theorem 25.17. FEvery game has a mixed Nash Equilibrium.

Rock-Paper-Scissors et =
pee

Has no Nash Equilibrium

U Player u
v Rock Paper Scissors
0 1 -1
Rock 0 1 1
Player v Paper 1 -1 0 0 1 L
e 1 -1 0
cissors 1 1 0

New definition: Mixed Nash Equilibrium — every game has one

Reached by choosing each with probability%

Mechanism Design o=y

-
O
Vridd

Distributed ‘:-.-»:‘-_
Computing W& %%

Instead of analysing an existing system, we try to create one that
incentivises nodes to behave nicely.
Auction: One good is sold to one bidder
First price auction: One good is sold to the highest bidder for his bid
Truthful auction: No player can gain anything by lying

First price auctions are not truthful, since the highest bidder could
decrease his bid to b; — € > b, to save money.

Second price auction: One good is sold to the highest bidder for the
second highest bid

Second price auctions are truthful

Re m a r ks Systems @ ETH zurch

Distributed £"‘"’-“-
Computing W& %%

Mechanism design assumes players want to maximise their profit. In
the real world, they might not only be selfish, but also byzantine.

Costs in selfish-caching can also be defined to be negative, nodes that
cache could be rewarded for caching.

Eventual Consistency & Bitcoin e
Distributed g{;:;:‘-_
Consistency, Availability, and Partitions Computing Geeasss
Weak Consistency
Bitcoin
Layer 2 (Smart Contracts)
Selfish Mining

Consistency, Availability, =
and Partition Tolerance outabuted (.

Computing W& %%
Consistency:
All nodes agree on the current state of the system
Availability:
The system is operational and instantly processing incoming requests

Partition tolerance:
Still works correctly if a network partition happens

Good news:
achieving any two is very easy

Bad news:
achieving three is impossible (CAP theorem)

=> Eventual Consistency:

Guarantees that the state is eventually agreed upon, but the nodes may disagree
temporarily

Weak Consistency e

e v
A"
".‘

Distributed ‘/: ;

Computing W& %%
Eventual Consistency is only one form of Weak Consistency

Monotonic Read Consistency: If a node u has seen a particular value of an
object, any subsequent access of u will never return any older values

Monotonic Write Consistency: A write operation of a node is completed
before any successive write operation by the same node

Read-Your-Write Consistency: After a node u has updated a data item, any
later read from that node u will never see an older value

Causal Consistency: Need the definition of Causal Relation first

Causal REIatlon Systems @ ETH zurch
Distributed é{i‘;‘-_
Computing W& %%
Definition 26.11 (Causal Relation). The following pairs of operations are said
to be causally related:
o Two writes by the same node to different variables.
o A read followed by a write of the same node.

e A read that returns the value of a write from any node.

e Two operations that are transitively related according to the above condi-
tions.

Weak Consistency e

Distributed f"'.‘-‘:‘._
Computing W& %%

Eventual Consistency is only one form of Weak Consistency

Monotonic Read Consistency: If a node u has seen a particular value of an
object, any subsequent access of u will never return any older values

Monotonic Write Consistency: A write operation of a node is completed
before any successive write operation by the same node

Read-Your-Write Consistency: After a node u has updated a data item, any
later read from that node u will never see an older value

Causal Consistency: A system provides causal consistency if operations that
potentially are causally related are seen by every node of the system in the
same order. Concurrent writes are not causally related and may be seen in
different orders by different nodes.

B i t C O i n Systems @ ETH zurch

.

. . e Distributed oi®
* Decentralized network consisting of nodes Compiting é-':‘,,,

» Users generate private/public key pair
e Address is generated from public key
* |tis difficult to get users “real” identity from public key

Outputs 5

signature
a

6
signature a

4
signature
b 1
signature
a

3
signature
b

Y Transaction

Bitcoin Transactions romr—

Distributed ‘ oy e,
Computing W& %%

e Conditions:

* Sum of inputs must always be at least the sum of outputs
* Unused part is used as transaction fee, gets paid to miner of block
* An input must always be some whole output, no splitting allowed!

* Money that a user “has” is defined as sum of unspent outputs

Bitcoin Transactions

_’C

(A, 100)

\ 4

——0O—

(B, 100)

(A, 10)

(B, 90)

\ 4

_"

(C, 105)

(A, 5)

Set of unspent transaction outputs

(UTXOs):

- This set is the shared state of Bitcoin

- The red outputs

Systems @ ETH zurch

Distributed g{- .
Computing ¥ %50

A\ J

¥
9% g

Transaction Broadcast r—

8
»

1. Issue transaction 3. Send transaction to other nodes in network Distr "b“te‘.j ﬁ""”-_".
Computing ¥ %%

2. Add transaction to local history
4. Check whether transaction is valid
@ + input of transaction must be in local UTXO
v * must have valid signature

* sum of inputs >= sum of outputs

@ 6. Add transaction to local history

5. Remove any input of transaction from local UTXO

7. Propagate transaction further

NS

Doublespend Attack et =

i‘b
d .
Distributed (”"-"-
Computing W5 %%,

* Multiple transactions attempt to spend the same output

* Ex: In atransaction, an attacker pretends to transfer an output to a victim, only
to doublespend the same amount in another transaction back to itself.

Broadcast
(B, 100) (A, 100)
OoO—
(C, 10)
O_> _’O
(B, 100) (B, 100) Broadcast

Proof-of-Work

Distributed é?::‘. ; .
Computing W x50
* Right now we have infinitely growing memory pool and we can’t be
sure that other nodes have the same pool

‘.“.‘ |

e Solution: Propagate memory pool through network and make sure
everybody else will have same state

* Problem: How to avoid that everybody wants to propagate its own
memory pool?

e Solution: Proof-of-Work
* Proof that you put a certain amount of work into propagating your memory pool

Proof-of-Work

5
Distributed gf.-‘ .
. % e
Computing W% 5

,.
L wt

.- Mining Blocks requires to proof that a certain amount of
computational resources has been utilized
F;(c,x) = {true, false}
d: difficulty (is adapted all 24h)
c: challenge (the transactions and the hash of the previous block)
X: nonce (has to be found)

For fixed parameters d and c, finding x such that the function

Bitcoin
chooses the
difficulty such

, that a block is
Fa(c,z) — SHA256(SHA256(c|z)) < ' created all ~10

min

B I O C k Systemseﬂﬂm

Distributed ‘. ‘o0
Computing Sonn

L
- Data structure holding transactions reference to previous blocks and a nonce.

L
- Header also contains more fields, such as a timestamp, the difficulty, network version,
etc.

- Miner creates blocks with transactions from its memory pool

“‘.‘I

Hash(previous)

Hash(previous)

Hash(previous)

T1 T1 T1
T2 T2 T2
Finding this
Tn Tn Tn Nonce is
I I I expensive

Hash(this) Hash(this) Hash(this)

M i n i n g Systems @ ETH zurch

%

1
v

Distributed .
Computing ¥

.t
*% '! »
8% g

 Why should someone mine blocks?
* You get a reward for each block you mine
* You get the fee in the transactions

Bitcoin:

* Reward started at 50B and it is being halved every 210,000 blocks or 4 years in expectation
* This bounds the total number of Bitcoins to 21 million

* What will happen after that?

* Fee is the positive difference of input-output
* Miner include transactions which have a high fee.

* Problem: More miners -> more blocks are mined -> higher difficulty -> more Power needed

How does this prevent et =
i P, Distributed J.'."
double spending: et (o

* An intruder needs to have more than 50% of computation power to
be faster in mining than all other together

)]
9%y

3) Doublespend
transaction

R A->B:
> 10 —_—> —

1) Initial 2) Typically: transaction is accepted
transaction by Bob after he sees 6-7 blocks.

How does this prevent et =
double spending? outiuted (s

* An intruder needs to have more than 50% of computation power to
be faster in mining than all other together

4) The goal of Alice is now to
3) Doublespend make the branch where she
transaction spends the money to herself
growing faster.

\ 4

N A->B:

i 10 —_— e —_—
1) Initial 2) Typically: The transaction is
transaction accepted by Bob after he sees 6-7

blocks.

Blockchain e

Distributed @;‘"- .
Computing W x50
. IStaFS with the genesis block and is the longest path from this genesis block to a
eaf.

- Consistent transaction history on which all nodes eventually agree

. _ j A->B:
V - V

Note: To ensure that you'll get the money you should wait 5-10 further blocks

Smart Contracts

Systems @ ETH zunr

4
Distributed g-,-»_‘-_
Computing W& %%

* Contract between two or more parties, encoded in such a way that
correct execution is guaranteed by blockchain

* Timelock transaction: Tx will only get added to memory pool after some
time has expired

* Micropayment channel:

Idea: Two parties want to do multiple small transactions, but want to avoid fees. So

they only submit first and last transaction to blockchain and privately do everything in
between

Micropayment Channel et =

-
-

L

L

.’
.

% -l

Setup Transaction oitabuted (s

.
Computing ¥

g

Algorithm 26.32 Parties A and B create a 2-of-2 multisig output o

1: B sends a list Iz of inputs with ¢z coins to A

2: A selects its own inputs 4 with ¢4 coins

3: A creates transaction t.{[l, Ip],[0=ca + cp — (A, B)|}

4: A creates timelocked transaction ¢,.{[o],[ca — A, c¢p — B]} and signs it
5: A sends tg and t, to B

6: B signs both t; and ¢, and sends them to A

7. A signs ts and broadcasts it to the Bitcoin network

A B
A can't do anything with 1) Creates shared “account”, does not sign it
this, since no transaction 2) Creates timelocked transaction that unrolls
has all required signatures shared account, signs it

3) Sends them to B
B can’t do anything with this, since

4) Signs both transactions unroll transaction is not valid without

5) Signs create transaction create transaction

vy 0) Broadcasts them to network v

Micropayment Channel et =

Distributed 5--- .
Computing ¥ %50

L

Algorithm 26.33 Simple Micropayment Channel from s to » with capacity ¢

Le,=cc =0 Set up shared account and unrolling

2: s and r use Algorithm [26.32|to set up output o with value ¢ from s Create settlement transaction

3: Create settlement transaction t¢{[o], [cs = s,¢, — 7]} While buyer still has money and timelock not expired
4: while channel open and ¢, < ¢ do

5: In exchange for good with value ¢ Exchange goods and adapt money

6: ¢ —=¢Cr+90

7. Ce=cCs— 0 Update settlement transactions with new values
8: Update t; with outputs [c, — r,cs — s S signs transaction and sends it to R

9: s signs and sends £y to r)))

. R signs last transaction and broadcasts it

10: end while before timelock .
11: r signs last £y and broadcasts it elore imelock expires

Why does s sign it?
+ Like this, R always holds all fully signed transactions and can choose the last one (where he gets the most money)
* S cannot submit any transaction, so S cannot get the goods and later submit a transaction where S did not pay the money for it

Selfish Mining Eﬂg

Distributed f"'.‘-:‘._
Computing W& %%

Selfish Mining: A selfish miner hopes to earn a reward of a larger share
of blocks than its hardware would allow. He achieves this by temporarily

keeping newfound blocks.

« Selfish mining can become the dominant strategy depending on how
the network is set up

« Depends on vy, the share of altruistic miners that the selfish miner can
reach before they receive the new correct block, and a, the share of
computational power of the selfish miner

« If y=0, the selfish miner needs 1/3 of the computational power
» If y=1/2, having 1/4 of the computational power is enough
« If y=1, selfish mining is always dominant

Quiz — Game Theory

Alice and Carol went on a trip and bought two identical antique vases for 500 Francs each.
Unfortunately, their luggage was not handled properly when flying back home, and both vases
broke. The airport manager wants to compensate Alice and Carol for the broken vases. As he
does not know the true price of such a vase, he proposes a scheme.

Alice and Carol are placed in separate rooms so that they cannot communicate. Each of them is
asked to write down the price of one vase as a natural number between 20 and 1000. Then, let
PAtice and P carer denote the prices they wrote and let A denote an integer (0 < A < 20). They
will be compensated as follows:

o If pajice = PCarol = P, then p must be the true price of the vase and Alice and Carol receive
p Francs each.

o If pAtice > PCarol, the airport manager assumes that Alice lied and Carol’s price is correct.
Then, Alice receives pogor — A Francs, and Carol receives peogror + A Francs.

« Symmetrically, if pajce < PCarol; the airport manager assumes that Carol lied and Alice’s
price is correct. Then, Alice receives p apce +A Francs, and Carol receives p ajee — A Francs.

Alice and Carol are both smart and rational. Each of them wants to maximize their own com-
pensation, even if it means to lie to the airport manager.

a) [3] Is writing down the true price of the vase a dominant strategy for Alice when A = 57

Why?

Systems @ ETH zurch

Distributed
Computing

No.

Let's say p¢yrye = 500
and pcgror = 499.
Here, writing down 500
yields 494, while
writing down 498 yields
503

Quiz — Game Theory

Alice and Carol went on a trip and bought two identical antique vases for 500 Francs each.
Unfortunately, their luggage was not handled properly when flying back home, and both vases
broke. The airport manager wants to compensate Alice and Carol for the broken vases. As he
does not know the true price of such a vase, he proposes a scheme.

Alice and Carol are placed in separate rooms so that they cannot communicate. Each of them is
asked to write down the price of one vase as a natural number between 20 and 1000. Then, let
PAtice and P carer denote the prices they wrote and let A denote an integer (0 < A < 20). They
will be compensated as follows:

o If pajice = PCarol = P, then p must be the true price of the vase and Alice and Carol receive
p Francs each.

o If pAtice > PCarol, the airport manager assumes that Alice lied and Carol’s price is correct.
Then, Alice receives pogor — A Francs, and Carol receives peogror + A Francs.

« Symmetrically, if pajce < PCarol; the airport manager assumes that Carol lied and Alice’s
price is correct. Then, Alice receives p apce +A Francs, and Carol receives p ajee — A Francs.

Alice and Carol are both smart and rational. Each of them wants to maximize their own com-
pensation, even if it means to lie to the airport manager.

b) [3] Find a pure Nash Equilibrium for A = 5.

Systems @ ETH zurch
Distributed 5-:‘ .
Computing W& %%

For every value p that
one of them chooses,
the other is better of
choosing p — 1.
Therefore, the only NE
iIsap: =py, = 20

Quiz — Game Theory

Alice and Carol went on a trip and bought two identical antique vases for 500 Francs each.
Unfortunately, their luggage was not handled properly when flying back home, and both vases
broke. The airport manager wants to compensate Alice and Carol for the broken vases. As he
does not know the true price of such a vase, he proposes a scheme.

Alice and Carol are placed in separate rooms so that they cannot communicate. Each of them is
asked to write down the price of one vase as a natural number between 20 and 1000. Then, let
PAtice and P carer denote the prices they wrote and let A denote an integer (0 < A < 20). They
will be compensated as follows:

o If pajice = PCarol = P, then p must be the true price of the vase and Alice and Carol receive
p Francs each.

o If pAtice > PCarol, the airport manager assumes that Alice lied and Carol’s price is correct.
Then, Alice receives pogor — A Francs, and Carol receives peogror + A Francs.

« Symmetrically, if pajce < PCarol; the airport manager assumes that Carol lied and Alice’s
price is correct. Then, Alice receives p apce +A Francs, and Carol receives p ajee — A Francs.

Alice and Carol are both smart and rational. Each of them wants to maximize their own com-
pensation, even if it means to lie to the airport manager.

c) [5] What is the Optimistic Price of Anarchy (OPoA) for A =17

Systems @ ETH zurch
Distributed f{-{' »
. ZTA TR
Computing W% 50

Here, we have a NE for
every Pc = Pa, SO
NE, = 2000. Since

SO = 2000, we have

2000
OPoA = — =
2000

Quiz — Game Theory

Alice and Carol went on a trip and bought two identical antique vases for 500 Francs each.
Unfortunately, their luggage was not handled properly when flying back home, and both vases
broke. The airport manager wants to compensate Alice and Carol for the broken vases. As he
does not know the true price of such a vase, he proposes a scheme.

Alice and Carol are placed in separate rooms so that they cannot communicate. Each of them is
asked to write down the price of one vase as a natural number between 20 and 1000, Then, let
PAtice and P carer denote the prices they wrote and let A denote an integer (0 < A < 20)) They
will be compensated as follows:

o If pajice = PCarol = P, then p must be the true price of the vase and Alice and Carol receive
p Francs each.

o If pAtice > PCarol, the airport manager assumes that Alice lied and Carol’s price is correct.
Then, Alice receives pogor — A Francs, and Carol receives peogror + A Francs.

« Symmetrically, if pajce < PCarol; the airport manager assumes that Carol lied and Alice’s
price is correct. Then, Alice receives p apce +A Francs, and Carol receives p ajee — A Francs.

Alice and Carol are both smart and rational. Each of them wants to maximize their own com-
pensation, even if it means to lie to the airport manager.

Systems @ ETH zurch

For2 <A < 20,we
only have the NE p. =
ps = 20. As seenin c),
for 1 = A we have 981
NEs. For 0 = A, we
have the same 981
NEs, so 2 < A < 20.

d) (5] For which values of A is there a unique pure Nash equilibrium? Justify your answer.

Distributed

¢ ‘I
Computing %%

° Systems @ ETH zurch
Quiz :
o

e

1.1 Delayed Bitcoin

In the lecture we have seen that Bitcoin only has eventual consistency guarantees. The state
of nodes may temporarily diverge as they accept different transactions and consistency will be
re-estalished eventually by blocks confirming transactions. If, however, we consider a delayed
state, i.e., the state as it was a given number A of blocks ago, then we can say that all nodes are
consistent with high probability.

a) Can we say that the A-delayed state is strongly consistent for sufficiently large A?

b) Reward transactions make use of the increased consistency by allowing reward outputs
to be spent after maturing for 100 blocks. What are the advantages of this maturation
period?

Systems @ ETH zurch

Distributed
1.1 Delayed Bitcoin Computing

a) It is true that naturally occurring forks of length / decrease exponentially with [, however
this covers naturally occuring blockchain forks only. As there is no information how much
calculation power exists in total, it is always possible a large blockchain fork exists. This may
be the result of a network partition or an attacker secretly running a large mining operation.

This is a general problem with all “open-membership” consensus systems, where the number
of existing consensus nodes is unknown and new nodes may join at any time. As it is always
possible a much larger unknown part of the network exists, it is impossible to have strong
consistency.

In the Bitcoin world an attack where an attacker is secretly mining a sccond blockchain to
later revert many blocks is called a 51% attack, because it was thought necessary to have a
majority of the mining power to do so. However later research showed that by using other
weaknesses in Bitcoin it is possible to do such attacks already with about a third of the
mining power.

Systems @ ETH zurch

Distributed
Computing

b) The delay in this case prevents coins from completely vanishing in the case of a fork. Newly
mined coins only exist in the fork containing the block that created them. In case of a
blockchain fork the coins would disappear and transactions spending them would become
invalid as well. It would therefore be possible to taint any number of transactions that are
valid in one fork and not valid in another. Waiting for maturation ensures that it is very
improbable that the coins will later disappear accidentially.

Note that this is however only a protection against someone accidentially sending you money
that disappears with a discontinued fork. The same thing can still happen. if someone with
evil intent double spends the same coins on the other side of the fork. You will not be
able to replay a transaction of a discontinued fork on the new active chain if the old owner
spent them in a different transaction in the meantime. To prevent theft by such an attacker
vou need to wait enough time to regard the chance of forks continuing to exist to be small
enough. A common value used is about one hour after a transaction entered a block (~6
blocks).

e Systems @ ETH zurch
Quiz

2.2 Double Spending D’Z::Zf:et?ng é:‘}‘:‘.

Figure 1 represents the topology of a small Bitcoin network. Further assume that the two
transactions 1" and 71” of a doublespend are released simultaneously at the two nodes in the
network and that forwarding is synchronous, i.e., after ¢ rounds a transaction was forwarded ¢
hops.

a) Once the transactions have fully propagated, which nodes know about which transactions?

b) Assuming that all nodes have the same computational power, i.e., same chances of finding
a block, what is the probability that 7" will be confirmed?

¢) Assuming the rightmost node, which sees 7" first, has 20% of the computational power and
all nodes have equal parts of the remaining 80%, what is the probability that 7" will be
confirmed?

Figure 1: Random Bitcoin network

° Systems @ ETH zurch
Quiz

2.2 Double Spending prerules f{"‘: "

Computing W %50
Figure 1 represents the topology of a small Bitcoin network. Further assume that the two
transactions 1" and 71” of a doublespend are released simultaneously at the two nodes in the
network and that forwarding is synchronous, i.e., after ¢ rounds a transaction was forwarded ¢
hops.

a) Once the transactions have fully propagated, which nodes know about which transactions?

b) Assuming that all nodes have the same computational power, i.e., same chances of finding 7
a block, what is the probability that 7" will be confirmed? 12

¢) Assuming the rightmost node, which sees 7" first, has 20% of the computational power and
all nodes have equal parts of the remaining 80%, what is the probability that 7" will be

confirmed? 80
20+4* H = 4‘9‘%)

Figure 1: Random Bitcoin network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

