FPGA._DDRY.3 . AR Aoy) !’ﬂ | A S (¢, 9
2 i i ’> (15 . ‘ s o ¥

. : FPGA_DOR4_4 FOGA M - il s ! i R P .
b ik - 5 R : 9, - s b SR A :l

%
]

—
-

i

.

- i

-—

p

-—

-—

-

>

=3
2 NVIZN3

O x

L En =R .
.:}j'.-—:" '."_1 “i0y g it o
R i — i
‘: 1111 =2 - 1 P r:.. 3 \%‘
gaish, g radfaegines BT O F (B R 1
Combuter S m oR [l Bod Rt e T ST NEE R/ it
yS e S ~ iy — VIR o {1 NN 2

|
|
I

o~
i

i

Distributed Systems e AR

: : L VR e : 3
Exercise Session 8 ==, ‘ﬂ,ﬂ B ;,' 0P Al |) .

ioh
) e

HS 2024 B T ;"' ' SfuiL e
'@ .9

PoA S 2000 0 C
N T | o~ + <y A Zonsd }___.__._
mih -+, P ,)i —— s 2“ 5?.3‘?%
- B |~ 25255 325,
2= o " . ‘:.E.-'
= om 1 -'D(
l”‘c'\ b ‘ 5 u%d au
o et ' = 2

roGA NNDe 3 cess sore - ' - § wess oy o™ @ 5

e e Tt —FPGA _PCle_x16& . :
P wngs e T :
el -G B 'f‘.‘ T Cou. JTAG o TEOAA g-'r [—CDJ EOC_ BMC_ FPGA |

- - ol 3 Ag,q ,,,,,,, m1'1“_ 1_1,1,5, 1’11& 1111'.5[[\ |
FPGA DORY 1 PN [PP B v
PGA DOR4 1 (e __:_-____s ad __....g--_ mrran BIAA AAAA ddad uu:EE
-_‘-j ‘\)/ -"‘-c‘-héu’_o;»— q Eoc. “ll B | e e B et 1 et i
‘ ’ s ..,.:3 {gjﬁég BT A UD)
e b -._1‘;; E '-" !_!'! ff!'!.. (o 3
N | s WS l P
‘j: --..“ M :l.’..::-'l“ N ’s’vj..'...," - - :&‘7’5’ 5 4
- = T ey : S e naa RS ol L L —— .L»'K:"--',‘ S
il = Y P L e —~ Lo
- iy o '

-~

.

s .y Y -‘\
ETHzlrich EF oitibuted fuds,

Computing 5 %%

Program

1. Lecture Recap
a) Introduction: Distributed Systems
b) Fault Tolerance and Paxos
c) Consensus

2. Quiz

3. Assignment Preview

T . 55"
ETH:z(irich B3R oitbuted fats,

Computing 5 %%
Set-Up
Client 1 Server 1
Server 2
Client 2
Server 3

Node: single actor in a distributed system

Can be both client or server

T " . . H -
ETHziirich ER oistributed fiacts,

Computing

S
%
;8

Challenges
- Messages can get lost
- Nodes may crash

- Messages can have varying delays

T . V. ;i‘
ETHziirich ER oistributed fiacts,

Challenges

- Messages can get lost
- Nodes may crash

- Messages can have varying delays

First Goal: State Replication

- All servers execute the same commands in the same order.

' . . . 75 :‘
ETHziirich ER oistributed fiacts,

Computing '$5 %% i
Why do we want State Replication?

Client 1
X € X*2

Client 2
X € x+2

Server 1

x=5
XEX*2
XE<EX+2

Server 2

x=5
XEX+H2
XEX*2

Result; x=12

Result; x=14

T . m"l
ETHziirich ER oistributed fiacts,

First Approaches

Server sends acknowledgment message
 Reasonable with one client
* Inconsistent state with multiple clients and servers

SN
“‘
.=

]
(8

(S A\

s

m 4 U r I C h Fﬂ; Distributed

Computing

A

First Approaches

Server sends acknowledgment message
 Reasonable with one client
* Inconsistent state with multiple clients and servers

Serializer — all commands go through one node which orders them
* Single point of failure

SN
“‘
.

]
(S8

(S A\

s

m 4 U r I C h Fﬂ; Distributed

Computing

W

First Approaches

Server sends acknowledgment message
 Reasonable with one client
* Inconsistent state with multiple clients and servers

Serializer — all commands go through one node which orders them
* Single point of failure

Two-Phase Protocol — ask for locks, execute once acquired all locks
* Breaks down if we even have just one node failure
* How to avoid deadlocks?

ETHziirich ER oistributed fiacts,

.
Computing "W %% 50

Paxos — Main ldeas

1. Tickets

- “Weak lock”

- Can be overwritten by later tickets
- Reissuable

- Expiration

" . L. y :t
ETH:z(irich B3R oitbuted fats,

Computing 5%

T\

Paxos — Main ldeas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration
2. Require majority
- Ensures only single command gets accepted

g
s
ooy w

ETHzurich BF ostibuted e,

Computing s %% i

S

Paxos — Main ldeas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration
2. Require majority
- Ensures only single command gets accepted
3. Servers inform clients about their stored command
- Client can switch to supporting this command

\ "\

N
LY
.Y

S

Pt
Jor - gn
1\"‘ s
‘.“ ‘ AL

NN

m 4 U r I C h ynﬂ; Distributed

Computing

SO

>

Paxos — Main ldeas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration
2. Require majority
- Ensures only single command gets accepted
3. Servers inform clients about their stored command
- Client can switch to supporting this command

Good video with slightly different terminology:
https://www.youtube.com/watch?v=d7nAGI NZPk

https://www.youtube.com/watch?v=d7nAGI_NZPk

Algorithm 7.13 Paxos

m ZUric h Eﬂ; Client (Proposer) Server (Acceptor) Clients can restart

Indtializationo e .
i o e Phase 1 at any time.
istributed /1/”5" . c < command to execute Tmax = 0 < largest issued ticket
Distribute . f’b\““‘ . t =0 < ticket number to try
Computmg %“\ Nessan C=1 < stored command
Titore = 0 <« ticket used to store C
PRase 1 ... e
Clients asks for a Lt=t41 ,
oz q 2: Ask all servers for ticket ¢ Server Only ISSUES
specific ticket t. 3 if t > T, then ticket tif t is the
4: Tma_\' =1
5: Answer with ok(Titore, C) hlghest ticket
6: end if
requested so far.
PRase 2 ... e
. ., 7: if a majority answers ok then
If client receives 8: Pick (Thore, C) with largest Thiore
majority of tickets, it -
proposes a command. 10: c=C
11: end if
12: Send propose(t, c) to same
majority .
13: end if When a server receives a
3 i fh = T;uax th Q
L e proposal, and the ticket of
16: Tstore =1 the client is still valid, the
.. 17: Answer success
If a majority of servers 18: end if server stores the command
store the command, PRASE 3 .t and notifies the client.
the client notifies all , .
19: if a majority answers success
servers to execute the then

20: Send execute(c) to every server

command. o

: end if

ETHz(rich ER pistrivuted fcs.,

.
Computing "W %% 50

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.

v Pt
ETHz(rich ER pistrivuted fcs.,

.8
Computing W%

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).

s] . . / ’!-1\
ETHziirich ER oistributed fiacts,

Computing '$s %%

-

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).
3. Validity:

The decision value is the input value of at least one node.

DN

m 4 U r I C h Fﬂ; Distributed

Computing

s

‘\‘;)

(S A\

s

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).
3. Validity:
The decision value is the input value of at least one node.

Impossibility
Consensus cannot be solved deterministically in the asynchronous model!

_

. . ‘
Distributed ‘/i:ﬂ"»‘-
Computing '$$ %50

(S

Synchronous Model Sytems o ETH.vc

* Nodes operate in synchronous rounds
* In each round a given node can

— send a message

— receive messages

— do some local computation

e Runtime is the number of rounds from start to finish of execution in the worst case

ETH:zirich

. 4. (g
Distributed ‘;/’5.1»“.

. #estses 8
Computing s % s
Synchronous Consensus rrmm——
Algorithm 16.3 Synchronous Consensus with f < n crash failures

1: v; €ER < input
2: min = v;
3 fori=1,..., f+1do
4 Broadcast min

Collect broadcast messages in set M
6: min = min(M)
7: end for
8: Decide on min

 Correctness?

— Termination? yes! Runs for exactly f + 1 rounds
— Validity? yes! Selection from set of broadcast input values

- Agreement? yes! At least one round without failures guarantees finding local min
Of remaining nOdeS_ (imagine only f rounds where in the last round the

node with the global min crashes while
boradcasting, reaching only a subset of all nodes —

 Runtime? Always f + 1 rounds this would prohibit agreement)

ETH:zirich

#55" %
Distributed /{’" »

Computing 6«:“:9‘5: :.
Synchronous Lower Bound rm——

Any deterministic consensus algorithm in the synchronous model has a runtime of

at least f + 1 rounds for any f £ n -2 even under a relaxed validity constraint

Definition 16.6 (Validity). If all non-faulty nodes start with the same value
x, the output must be x.

instead of

e Validity The decision value must be the input value of a node.

- Detailed proof in the script!

ETH:zirich

ETHzirich BF psbuted (ol

Computing ’:‘ (B

Randomized Consensus

Easy cases:
* All inputs are equal (all 0 or 1)

e Almost all input values equal

'y " . . /t“’! s
ETHzlrich EF oitibuted fuds,

Computing 5 %%

Randomized Consensus

Easy cases:
e All inputs are equal (allO or 1)

e Almost all input values equal

Otherwise:

* Choose a random value locally - Expected time O(2") until all agree (once)

m 4 U r IC h Eii 8.4 Randomized Consensus

-
PO,

o2
Distributed ﬂfi’:‘n‘l‘ Algorithm 8.15 Randomized Consensus (Ben-Or)
| | . :
Computing ’g‘}\‘\\‘t‘__;,, 1: v; € {0,1} < input bit
2: round = 1

3. decided = false

&

10:
11:

12:
13:
14:
15:

16:
Majority has seen a majority —> .
18:
9:

1€
At least someone has seen majority —
21:

No majority seen = 22
23:
24:
25:
26:
27:

Broadcast myValue(v;, round)

while true do

Propose
Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then
Broadcast propose(v, round)
else
Broadcast propose(_L, round)
end if
if decided then
Broadcast myValue(v;, round+1)
Decide for v; and terminate
end if
Adapt
Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then
Vi =10
decided = true
else if there is at least one proposal for v then
Vi = U
else
Choose v; randomly, with Pr(v; = 0] = Prlv; = 1] = 1/2
end if
round = round + 1
Broadcast myValue(w;, round)
end while

/

mzuriCh WEH; Distributed ‘/‘:‘“‘ :

Computing W55 o

s

Ben-Or: Consensus Proof
Validity:

If all nodes start with the same value, then all proposals are for the same value.
Thus, the algorithm terminated within one round, deciding on the common value.

If some nodes start with 0 and some start with 1, then both outcomes are legal.

/

mzuriCh WEH; Distributed ‘/“:‘\ :

Computing a S SO EH:

s

Ben-Or: Consensus Proof

Agreement: (need to show: if one node decides - all nodes decide on the same value)

In a single round r:

- Nodes only decide after having received a proposal.

- Note, that a proposal required a majority, therefore a proposal in round r can only
occur for one value.

— In any round r, all nodes decide on at most one identical value.

g
P P

ETHzurich BF ostibuted e,

Computing W< %%

S

Ben-Or: Consensus Proof

Agreement: (need to show: if one node decides - all nodes decide on the same value)

In any round r:

- Nodes only decide after having received a proposal.

- Note, that a proposal required a majority, therefore a proposal in round r can only
occur for one value.

— In any round r, all nodes decide on at most one identical value.

If any node decided in round r:

- Deciding node received > n/2 proposals for v. - All nodes received > 1 proposal for v.
- They adapt their own value to v in round r, and broadcast it in round r+1.

- As all nodes broadcast v, they will also all propose v in the same round.

- All nodes receive > n/2 proposals for v in round r+1 and decide on v.

/

mzuriCh WEH; Distributed ‘/‘:‘“‘ :

Computing W55 o

s

Ben-Or: Consensus Proof
Termination:

Trivial case: all nodes start with the same value
—> Termination after one round.

In the worst case: no node receives allOidentical majorities, and all repeatedly choose a
random value. The probability of all nodes getting the same value is 27, thus we expect all
nodes to send the same “my value” after 2" runs.

ETHziirich ER oistributed fiacts,

.
Computing "W %% 50

Randomized Consensus

e Wouldn’t it be useful if the nodes could all toss the same coin? - Shared Coin

e s . y ;\
ETHziirich ER oistributed fiacts,

.
Computing '$s %

AT

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?

2. Does the Paxos algorithm in the script achieve state replication?

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

s—
\\
“‘
.

ETHzurich B5 ostibuted ¢

Computing W%

(S A\

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

425"
g
“'i"‘ u
(S

(S

DN

m 4 U r I C h Fﬂ; Distributed

Computing

s——

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?
No, it only shows agreement on a single command, for several commands we

would need to restart the system.

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

s—
\\
“‘
.

ETHzurich B5 ostibuted ¢

Computing W%

(S A\

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?
No, it only shows agreement on a single command, for several commands we

would need to restart the system.

3. How many nodes could crash so the Paxos still works?
Less than n/2

4. Does Paxos solve consensus?

DN
“‘
.

m 4 U r I C h Fﬂ; Distributed

Computing

s

(8

(S A\

s——

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?

No, it only shows agreement on a single command, for several commands we
would need to restart the system.

3. How many nodes could crash so the Paxos still works?
Less than n/2

4. Does Paxos solve consensus?
No, termination is not guaranteed.

ETHziirich BER ostiuted fusr.,

Computing "$ %% 50

More quiz questions (choose the right answer)

State replication is trivial for fewer than 3 nodes? T/F
In Paxos, a new ticket can only be issued if all previous tickets have been returned. T/F
Which is not a property of consenus? Agreement Termination Tolerance Validity

A configuration includes all received messages but not the messages in transit. T/F

A S

In a synchronous system, a message has a delay of ___ time units. 1/n/f-n/ potentially

infinite

ETHz(rich B5E ostibuted find.,

Computing "$ %% 50

More quiz questions (choose the right answer)

State replication is trivial for fewer than 3 nodes? T/
In Paxos, a new ticket can only be issued if all previous tickets have been returned. T/
Which is not a property of consenus? Agreement Termination Validity

A configuration includes all received messages but not the messages in transit. T/

A S

In a synchronous system, a message has a delay of time units. 1/n/f-n/ potentially

infinite

ETHziirich B2 ostued fluc,

Computing s

Assignment Preview

1.1 An Asynchronous Riddle

A hangman summons his 100 prisoners, announcing that they may meet to plan a strategy, but
will then be put in isolated cells, with no communication. He explains that he has set up a switch
room that contains a single switch. Also, the switch is not connected to anything, but a prisoner
entering the room may see whether the switch is on or off (because the switch is up or down).
Every once in a while the hangman will let one arbitrary prisoner into the switch room. The
prisoner may throw the switch (on to off, or vice versa), or leave the switch unchanged. Nobody
but the prisoners will ever enter the switch room. The hangman promises to let any prisoner
enter the room from time to time, arbitrarily often. That is, eventually, each prisoner has been
in the room at least once, twice, a thousand times or any number you want. At any time, any
prisoner may declare “We have all visited the switch room at least once”. If the claim is correct,
all prisoners will be released. If the claim is wrong, the hangman will execute his job (on all the
prisoners). Which strategy would you choose...

a) ...if the hangman tells them, that the switch is off at the beginning?

b) ...if they don’t know anything about the initial state of the switch?

.Y
I\

m A h n; Distributed ﬁn“. .
ZUricr == Computing PSSt

Assignment Preview

2.1 Consensus with Edge Failures

In the lecture we only discussed node failures, but we always assumed that edges (links) never
fail. Let us now study the opposite case: Assume that all nodes work correctly, but up to f
edges may fail.

Analogously to node failures, edges may fail at any point during the execution. We say that
a failed edge does not forward any message anymore, and remains failed until the algorithm
terminates. Assume that an edge always simultaneously fails completely, i.e., no message can be
exchanged over that edge anymore in either direction.

We assume that the network is initially fully connected, i.e., there is an edge between every
pair of nodes. Our goal is to solve consensus in such a way, that all nodes know the decision.

a) What is the smallest f such that consensus might become impossible? (Which edges fail
in the worst-case)

b) What is the largest f such that consensus might still be possible? (Which edges fail in the
best-case)

c) Assume that you have a setup which guarantees you that the nodes always remain con-
nected, but possibly many edges might fail. A very simple algorithm for consensus is the
following: Every node learns the initial value of all nodes, and then decides locally. How
much time might this algorithm require?

Assume that a message takes at most 1 time unit from one node to a direct neighbor.

