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Assignment Review



1.1 An Asynchronous Riddle
A hangman summons his 100 prisoners, announcing that they may meet to plan a strategy, but will 
then be put in isolated cells, with no communication. He explains that he has set up a switch room that 
contains a single switch. Also, the switch is not connected to anything, but a prisoner entering the 
room may see whether the switch is on or off (because the switch is up or down).

Every once in a while the hangman will let one arbitrary prisoner into the switch room. The prisoner 
may throw the switch (on to off, or vice versa), or leave the switch unchanged. Nobody but the 
prisoners will ever enter the switch room. The hangman promises to let any prisoner enter the room 
from time to time, arbitrarily often. That is, eventually, each prisoner has been in the room at least 
once, twice, a thousand times or any number you want. 

At any time, any prisoner may declare: ”We have all visited the switch room at least once.” If the claim 
is correct, all prisoners will be released, otherwise, the hangman will execute his job (on all the 
prisoners). Which strategy would you choose... 

a) ...if the hangman tells them, that the switch is off at the beginning? 

b) ...if they don’t know anything about the initial state of the switch? 



1.2 Paxos
You decide to use Paxos for a system with 3 
servers (acceptors), which we call N1, N2, N3. 
There are two clients (proposers) A and B. The 
implementation of the acceptors is exactly as 
defined in the script, see Algorithm 15.13. We 
extended the code of the proposers, such that 
they now use explicit timeouts. The algorithm 
is described below, note in particular Lines 2-4 
and 12-14.

a) Assume that two users each try to execute 
a command. One user calls 
𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒(𝑁1, 𝑁2, 𝑎, 1, 1) on 𝐴 at time 
𝑇0, and a second user calls 
𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒(𝑁2, 𝑁3, 𝑏, 2, 2) on 𝐵 at time 
𝑇0 + 0.5sec . Draw a timeline containing all 
transmitted messages! We assume that 
processing times on nodes can be neglected 
(i.e. is zero), and that all messages arrive 
within less than 0.5sec .



1.2 Paxos
You decide to use Paxos for a system with 3 
servers (acceptors), which we call N1, N2, N3. 
There are two clients (proposers) A and B. The 
implementation of the acceptors is exactly as 
defined in the script, see Algorithm 15.13. We 
extended the code of the proposers, such that 
they now use explicit timeouts. The algorithm 
is described below, note in particular Lines 2-4 
and 12-14.

b) In a) we chose artificial initial ticket 
numbers and timeout values, and we saw that 
Paxos terminates rather quickly. Let us look at 
another selection of these values: The two 
clients start with initial ticket numbers 
𝑡𝐴 = 𝑡0 and 𝑡𝐵 = 𝑡0 + 1 for some value 𝑡0, 
and both clients have the same timeout 
𝛿𝐴 = 𝛿𝐵. Assume that both clients start at 𝑇0. 
What will happen?



1.3 Improving Paxos
We are not happy with the runtime of the Paxos algorithm of Exercise 1.2. Hence, we study some 
approaches which might improve the runtime.

The point in time when clients start sending messages cannot be controlled, since this will be 
determined by the application that uses Paxos. It might help to use different initial ticket numbers. 
However, if a client with a very high ticket number crashes early, all other clients need to iterate 
through all ticket numbers. This problem can easily be fixed: Every time a client sends an ask(t) 
message with 𝑡 ≤ 𝑇max  , the server can reply with an explicit 𝑛𝑎𝑐𝑘(𝑇max  ) in Phase 1, instead of just 
ignoring the 𝑎𝑠𝑘(𝑡) message.

a) Assume you added the explicit nack message. Do different initial ticket numbers solve runtime issues 
of Paxos, or can you think of a scenario which is still slow?

b) Instead of changing the parameters, we add a waiting time between sending two consecutive 𝑎𝑠𝑘
messages. Sketch an idea of how you could improve the expected runtime in a scenario where multiple 
clients are trying to execute a command by manipulating this waiting time!
Extra challenge: Try not to slow down an individual client if it is alone!



2.1 Consensus with Edge Failures
In the lecture we only discussed node failures, but we always assumed that edges (links) never fail. Let 
us now study the opposite case: Assume that all nodes work correctly, but up to f edges may fail.

Analogously to node failures, edges may fail at any point during the execution. We say that a failed 
edge does not forward any message anymore, and remains failed until the algorithm terminates. 
Assume that an edge always simultaneously fails completely, i.e., no message can be exchanged over 
that edge anymore in either direction.

We assume that the network is initially fully connected, i.e., there is an edge between every pair of 
nodes. Our goal is to solve consensus in such a way, that all nodes know the decision.

a) What is the smallest f such that consensus might become impossible? (Which edges fail in the worst-
case)

b) What is the largest f such that consensus might still be possible? (Which edges fail in the best-case)

c) Assume that you have a setup which guarantees you that the nodes always remain con nected, but 
possibly many edges might fail. A very simple algorithm for consensus is the following: Every node 
learns the initial value of all nodes, and then decides locally. How much time might this algorithm 
require? Assume that a message takes at most 1 time unit from one node to a direct neighbor.



2.2 Deterministic Random Consensus?!
Algorithm 16.15 from the lecture notes 
solves consensus in the asynchronous 
time model. It seems that this algorithm 
would be faster, if nodes picked a value 
deterministically instead of randomly in 
Line 23. However, a remark in the 
lecture notes claims that such a 
deterministic selection of a value will 
not work. We did it anyway! (The only 
change is on Line 23).

Show that this algorithm does not solve 
consensus! Start by choosing initial 
values for all nodes and show that the 
algorithm below does not terminate.



2.3 Consensus with Bandwidth Limitations
Consensus with no failures, a fully connected network and unlimited bandwidth is trivial: First, every 
node sends its value to all other nodes. Second, every node waits for all values, and then decides.

So far, we only studied failures. However, in practice bandwidth limitations are often of great 
importance as well. To simplify the problem, we assume no node crashes and no edge crashes in this 
exercise. Additionally, you can assume that all nodes have unique ids from 1 through n.

We assume that all messages are transmitted reliably and arrive exactly after one time unit. The 
bandwidth limitation is as follows: Assume that every node can only send one message (containing one 
value) to one neighbor per time unit. For example, at time 0, u1 can send a message to u2, at time 1 a 
message to u3, and so on. However, u1 cannot send a message to both u2 and u3 at the same time! 
Also, a node cannot send multiple values in the same message.

a) Develop an algorithm that solves consensus in this scenario. Optimize your algorithm for runtime!

b) What is the runtime of your algorithm?

c) Assume that you not only need to solve consensus, but the more challenging task that every node 
must learn the input values of all nodes. Show that this problem requires at least n −1 time units!



Byzantine Agreement



Set-Up

Node

Node

Node

Node

Node

Node: single actor in a distributed system



Previous Challenges in Consensus

- Messages can get lost

- Nodes may crash

- Messages can have various delay

New Challenge in Byzantine Agreement

- Byzantine nodes = Nodes can have arbitrary behaviour



Byzantine Agreement

We want:
1. Agreement: 

All (correct) nodes decide on the same value.
2. Termination: 

All (correct) nodes terminate.
3. All-same Validity:

If all correct nodes start with the same value 𝑣, the decision value must be 𝑣.



(Synchronous) King’s Algorithm

• Example: n = 4, f=1

• Phase 1:

All processes choose 
the king’ value
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(Synchronous) King’s Algorithm

• Example: n = 4, f=1

• Phase 2:
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(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Byzantine node has no power
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(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

1

1

1
1

1

1

0

0

0

0

0

0



(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Byzantine node has no power

1

1

1
1

1

1

0

0

0

0

0

0

I will ask the 
oracle!

I will ask the 
oracle!



(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Different views:
Inputs do not change
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(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Different views:
Inputs flip
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Broadcast



Broadcast
• Validity: If a correct node broadcasts a message, it will eventually be accepted by every other correct 

node.

• Weak Integrity: If a correct node 𝑣 has not broadcast a message, no message of 𝑣 will be accepted 
by any other correct node.

• Integrity: Every correct node delivers at most one message. The delivered message must have been 
broadcast by a node.

• Totality: If a correct node accepts a message 𝑚, 𝑚 will eventually be accepted by every other correct 
node.

• Agreement: If correct nodes 𝑣 and 𝑣′ accept messages 𝑚 and 𝑚′, respectively, then 𝑚 = 𝑚′.



Efficient Reliable Broadcast

𝑚

• Use fact that usually, the size of the message is way larger than the 
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.



Efficient Reliable Broadcast

𝑓1 𝑓2 𝑓3 𝑓4

• Use fact that usually, the size of the message is way larger than the 
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.

• Assume optimal erasure code, any 𝑘 fragments allow to restore the 
message 𝑚.

• What values do we choose for 𝑛 and 𝑘, and why? 



Efficient Reliable Broadcast

𝑓1

𝑓2 𝑓3

𝑓4

• Use fact that usually, the size of the message is way larger than the 
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.

• Assume optimal erasure code, any 𝑘 fragments allow to restore the 
message 𝑚.

• What values do we choose for 𝑛 and 𝑘, and why?

• What are we still missing?
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𝑓1

𝑓2 𝑓3

𝑓4

• Use fact that usually, the size of the message is way larger than the 
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.

• Assume optimal erasure code, any 𝑘 fragments allow to restore the 
message 𝑚.

• What values do we choose for 𝑛 and 𝑘, and why?

• What are we still missing?



Merkle Trees
• A tree in which every leaf is labeled with the hash of a data 

block, and every inner node (including the root) is labeled 
with the hash of its children. 

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4



Merkle Proof

𝑓1

𝑓2 𝑓3

𝑓4

How do I know 
that  𝑓3 is a valid 
fragment of 𝑚?

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4



ℎ2

Merkle Proof
• All hashes required to recompute the root has ℎ0 given a 

fragment 𝑓𝑖.

• Can you find a closed form expression for the size of a Merkle 
Proof for 𝑛 fragments?

𝑓1

𝑓2 𝑓3

𝑓4

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4

ℎ4 ℎ1,2

How do I know 
that  𝑓3 is a valid 
fragment of 𝑚?

ℎ3 ℎ1,2

ℎ3,4

ℎ3,4

ℎ1



ℎ0ℎ2

Merkle Proof
• All hashes required to recompute the root has ℎ0 given a 

fragment 𝑓𝑖.

• Can you find a closed form expression for the size of a Merkle 
Proof for 𝑛 fragments?

• Still need a “correct” root hash to compare computed root 
hash to. Any idea on how to distribute it?

𝑓1

𝑓2 𝑓3

𝑓4

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4

ℎ4 ℎ1,2

ℎ3 ℎ1,2

ℎ3,4

ℎ3,4

ℎ1 ℎ0ℎ0

ℎ0



Efficient Reliable Broadcast

𝑚



Efficient Reliable Broadcast

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4



Efficient Reliable Broadcast

ℎ0ℎ2 𝑓1
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Efficient Reliable Broadcast

ℎ0ℎ2 𝑓1
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ℎ4 ℎ1,2

ℎ3 ℎ1,2
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ℎ1 ℎ0ℎ0

ℎ0

• Upon receiving a fragment, we can use the 
Merkle Proof to establish authenticity of the 
fragment data.



Efficient Reliable Broadcast

𝑓3

ℎ4

ℎ1,2

ℎ0

• Upon receiving a fragment, we can use the 
Merkle Proof to establish authenticity of the 
fragment data.
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Efficient Reliable Broadcast
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Efficient Reliable Broadcast
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Efficient Reliable Broadcast
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Efficient Reliable Broadcast
• What did we gain?

• Communication complexity of 3 𝑚 𝑛 +
𝑂(𝑛2 log 𝑛 𝐻) in the asynchronous model

𝑓1

𝑓2 𝑓3

𝑓4

𝑓4

𝑓1𝑓3

𝑓4 𝑚 𝑚

𝑚𝑚

𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚)

𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚) 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚)

𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚)



Quiz



Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f.

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model.

3. If in the first phase of the King algorithm the first king is honest, then: 
1. Every honest node will decide for the initial input of the king.
2. An honest node will propose a value in the first phase.
3. The king himself can change its own value in the first phase.
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast: 
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.
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