
Exercise Session 9 · HS 2024

Slides last updated:
17.11.2024

Computer Systems
Distributed Systems

Agenda
• Assignment Review

• Lecture Recap
• Byzantine Agreement

• King’s Algorithm

• Ben-Or’s Algorithm

• (Efficient-) Reliable Broadcast

• Quiz

• Assignment Preview

Assignment Review

1.1 An Asynchronous Riddle
A hangman summons his 100 prisoners, announcing that they may meet to plan a strategy, but will
then be put in isolated cells, with no communication. He explains that he has set up a switch room that
contains a single switch. Also, the switch is not connected to anything, but a prisoner entering the
room may see whether the switch is on or off (because the switch is up or down).

Every once in a while the hangman will let one arbitrary prisoner into the switch room. The prisoner
may throw the switch (on to off, or vice versa), or leave the switch unchanged. Nobody but the
prisoners will ever enter the switch room. The hangman promises to let any prisoner enter the room
from time to time, arbitrarily often. That is, eventually, each prisoner has been in the room at least
once, twice, a thousand times or any number you want.

At any time, any prisoner may declare: ”We have all visited the switch room at least once.” If the claim
is correct, all prisoners will be released, otherwise, the hangman will execute his job (on all the
prisoners). Which strategy would you choose...

a) ...if the hangman tells them, that the switch is off at the beginning?

b) ...if they don’t know anything about the initial state of the switch?

1.2 Paxos
You decide to use Paxos for a system with 3
servers (acceptors), which we call N1, N2, N3.
There are two clients (proposers) A and B. The
implementation of the acceptors is exactly as
defined in the script, see Algorithm 15.13. We
extended the code of the proposers, such that
they now use explicit timeouts. The algorithm
is described below, note in particular Lines 2-4
and 12-14.

a) Assume that two users each try to execute
a command. One user calls
𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒(𝑁1, 𝑁2, 𝑎, 1, 1) on 𝐴 at time
𝑇0, and a second user calls
𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒(𝑁2, 𝑁3, 𝑏, 2, 2) on 𝐵 at time
𝑇0 + 0.5sec . Draw a timeline containing all
transmitted messages! We assume that
processing times on nodes can be neglected
(i.e. is zero), and that all messages arrive
within less than 0.5sec .

1.2 Paxos
You decide to use Paxos for a system with 3
servers (acceptors), which we call N1, N2, N3.
There are two clients (proposers) A and B. The
implementation of the acceptors is exactly as
defined in the script, see Algorithm 15.13. We
extended the code of the proposers, such that
they now use explicit timeouts. The algorithm
is described below, note in particular Lines 2-4
and 12-14.

b) In a) we chose artificial initial ticket
numbers and timeout values, and we saw that
Paxos terminates rather quickly. Let us look at
another selection of these values: The two
clients start with initial ticket numbers
𝑡𝐴 = 𝑡0 and 𝑡𝐵 = 𝑡0 + 1 for some value 𝑡0,
and both clients have the same timeout
𝛿𝐴 = 𝛿𝐵. Assume that both clients start at 𝑇0.
What will happen?

1.3 Improving Paxos
We are not happy with the runtime of the Paxos algorithm of Exercise 1.2. Hence, we study some
approaches which might improve the runtime.

The point in time when clients start sending messages cannot be controlled, since this will be
determined by the application that uses Paxos. It might help to use different initial ticket numbers.
However, if a client with a very high ticket number crashes early, all other clients need to iterate
through all ticket numbers. This problem can easily be fixed: Every time a client sends an ask(t)
message with 𝑡 ≤ 𝑇max , the server can reply with an explicit 𝑛𝑎𝑐𝑘(𝑇max) in Phase 1, instead of just
ignoring the 𝑎𝑠𝑘(𝑡) message.

a) Assume you added the explicit nack message. Do different initial ticket numbers solve runtime issues
of Paxos, or can you think of a scenario which is still slow?

b) Instead of changing the parameters, we add a waiting time between sending two consecutive 𝑎𝑠𝑘
messages. Sketch an idea of how you could improve the expected runtime in a scenario where multiple
clients are trying to execute a command by manipulating this waiting time!
Extra challenge: Try not to slow down an individual client if it is alone!

2.1 Consensus with Edge Failures
In the lecture we only discussed node failures, but we always assumed that edges (links) never fail. Let
us now study the opposite case: Assume that all nodes work correctly, but up to f edges may fail.

Analogously to node failures, edges may fail at any point during the execution. We say that a failed
edge does not forward any message anymore, and remains failed until the algorithm terminates.
Assume that an edge always simultaneously fails completely, i.e., no message can be exchanged over
that edge anymore in either direction.

We assume that the network is initially fully connected, i.e., there is an edge between every pair of
nodes. Our goal is to solve consensus in such a way, that all nodes know the decision.

a) What is the smallest f such that consensus might become impossible? (Which edges fail in the worst-
case)

b) What is the largest f such that consensus might still be possible? (Which edges fail in the best-case)

c) Assume that you have a setup which guarantees you that the nodes always remain con nected, but
possibly many edges might fail. A very simple algorithm for consensus is the following: Every node
learns the initial value of all nodes, and then decides locally. How much time might this algorithm
require? Assume that a message takes at most 1 time unit from one node to a direct neighbor.

2.2 Deterministic Random Consensus?!
Algorithm 16.15 from the lecture notes
solves consensus in the asynchronous
time model. It seems that this algorithm
would be faster, if nodes picked a value
deterministically instead of randomly in
Line 23. However, a remark in the
lecture notes claims that such a
deterministic selection of a value will
not work. We did it anyway! (The only
change is on Line 23).

Show that this algorithm does not solve
consensus! Start by choosing initial
values for all nodes and show that the
algorithm below does not terminate.

2.3 Consensus with Bandwidth Limitations
Consensus with no failures, a fully connected network and unlimited bandwidth is trivial: First, every
node sends its value to all other nodes. Second, every node waits for all values, and then decides.

So far, we only studied failures. However, in practice bandwidth limitations are often of great
importance as well. To simplify the problem, we assume no node crashes and no edge crashes in this
exercise. Additionally, you can assume that all nodes have unique ids from 1 through n.

We assume that all messages are transmitted reliably and arrive exactly after one time unit. The
bandwidth limitation is as follows: Assume that every node can only send one message (containing one
value) to one neighbor per time unit. For example, at time 0, u1 can send a message to u2, at time 1 a
message to u3, and so on. However, u1 cannot send a message to both u2 and u3 at the same time!
Also, a node cannot send multiple values in the same message.

a) Develop an algorithm that solves consensus in this scenario. Optimize your algorithm for runtime!

b) What is the runtime of your algorithm?

c) Assume that you not only need to solve consensus, but the more challenging task that every node
must learn the input values of all nodes. Show that this problem requires at least n −1 time units!

Byzantine Agreement

Set-Up

Node

Node

Node

Node

Node

Node: single actor in a distributed system

Previous Challenges in Consensus

- Messages can get lost

- Nodes may crash

- Messages can have various delay

New Challenge in Byzantine Agreement

- Byzantine nodes = Nodes can have arbitrary behaviour

Byzantine Agreement

We want:
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate.
3. All-same Validity:

If all correct nodes start with the same value 𝑣, the decision value must be 𝑣.

(Synchronous) King’s Algorithm

• Example: n = 4, f=1

• Phase 1:

All processes choose
the king’ value

0

1 1

0,0,1,1

1
0

0

0,0,1,1 0,1,1,1

0

1 11*

0* 1

0 1

1
0

1

0* = “Propose 0”
1* = “Propose 1”

Round 1 Round 2 Round 3

1*

1*
1*

1*

2 propose 1 2 propose 1

1 proposal each

“Propose 1”

(Synchronous) King’s Algorithm

• Example: n = 4, f=1

• Phase 2:

1

0 1

0,1,1,1

1
0

1

0,0,1,1 0,1,1,1

1

1 11*

1

1 1

1
1

1

0* = “Propose 0”
1* = “Propose 1”

Round 1 Round 2 Round 3

1*

1*

1*

2 propose 1 2 propose 1

3 propose 1

1*

“Propose 1”

“Propose 1”

1*

I take the
king’s value!

I keep my
own value!

Agreement!

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Byzantine node has no power

1

1

1

1

1

1

1

1

1

1Agreement!

0

0

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

1

1

1
1

1

1

0

0

0

0

0

0

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Byzantine node has no power

1

1

1
1

1

1

0

0

0

0

0

0

I will ask the
oracle!

I will ask the
oracle!

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Different views:
Inputs do not change

1 0

1

0

0

00

1

1

1

1

1

0,0,0,1,1,1,1,1,1,1

0,0,0,0,1,1,1,1,1,1

propose 1
I will ask the

oracle!

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

• Different views:
Inputs flip

1 0

1

0

0

00

1

1

1

1

1

0,0,0,1,1,1,1,1,1,1

0,0,0,0,1,1,1,1,1,1

propose 1
I will ask the

oracle!

Broadcast

Broadcast
• Validity: If a correct node broadcasts a message, it will eventually be accepted by every other correct

node.

• Weak Integrity: If a correct node 𝑣 has not broadcast a message, no message of 𝑣 will be accepted
by any other correct node.

• Integrity: Every correct node delivers at most one message. The delivered message must have been
broadcast by a node.

• Totality: If a correct node accepts a message 𝑚, 𝑚 will eventually be accepted by every other correct
node.

• Agreement: If correct nodes 𝑣 and 𝑣′ accept messages 𝑚 and 𝑚′, respectively, then 𝑚 = 𝑚′.

Efficient Reliable Broadcast

𝑚

• Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.

Efficient Reliable Broadcast

𝑓1 𝑓2 𝑓3 𝑓4

• Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.

• Assume optimal erasure code, any 𝑘 fragments allow to restore the
message 𝑚.

• What values do we choose for 𝑛 and 𝑘, and why?

Efficient Reliable Broadcast

𝑓1

𝑓2 𝑓3

𝑓4

• Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.

• Assume optimal erasure code, any 𝑘 fragments allow to restore the
message 𝑚.

• What values do we choose for 𝑛 and 𝑘, and why?

• What are we still missing?

Efficient Reliable Broadcast

𝑓1

𝑓2 𝑓3

𝑓4

• Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

• Split message 𝑚 into 𝑛 fragments 𝑓1, 𝑓2, … , 𝑓𝑛 using (𝑛, 𝑘) erasure code.

• Assume optimal erasure code, any 𝑘 fragments allow to restore the
message 𝑚.

• What values do we choose for 𝑛 and 𝑘, and why?

• What are we still missing?

Merkle Trees
• A tree in which every leaf is labeled with the hash of a data

block, and every inner node (including the root) is labeled
with the hash of its children.

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4

Merkle Proof

𝑓1

𝑓2 𝑓3

𝑓4

How do I know
that 𝑓3 is a valid
fragment of 𝑚?

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4

ℎ2

Merkle Proof
• All hashes required to recompute the root has ℎ0 given a

fragment 𝑓𝑖.

• Can you find a closed form expression for the size of a Merkle
Proof for 𝑛 fragments?

𝑓1

𝑓2 𝑓3

𝑓4

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4

ℎ4 ℎ1,2

How do I know
that 𝑓3 is a valid
fragment of 𝑚?

ℎ3 ℎ1,2

ℎ3,4

ℎ3,4

ℎ1

ℎ0ℎ2

Merkle Proof
• All hashes required to recompute the root has ℎ0 given a

fragment 𝑓𝑖.

• Can you find a closed form expression for the size of a Merkle
Proof for 𝑛 fragments?

• Still need a “correct” root hash to compare computed root
hash to. Any idea on how to distribute it?

𝑓1

𝑓2 𝑓3

𝑓4

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4

ℎ4 ℎ1,2

ℎ3 ℎ1,2

ℎ3,4

ℎ3,4

ℎ1 ℎ0ℎ0

ℎ0

Efficient Reliable Broadcast

𝑚

Efficient Reliable Broadcast

𝑓1 𝑓2 𝑓3 𝑓4

ℎ1,2 ℎ3,4

ℎ0

ℎ1 ℎ2 ℎ3 ℎ4

Efficient Reliable Broadcast

ℎ0ℎ2 𝑓1

𝑓2 𝑓3

𝑓4

ℎ4 ℎ1,2

ℎ3 ℎ1,2

ℎ3,4

ℎ3,4

ℎ1 ℎ0ℎ0

ℎ0

Efficient Reliable Broadcast

ℎ0ℎ2 𝑓1

𝑓2 𝑓3

𝑓4

ℎ4 ℎ1,2

ℎ3 ℎ1,2

ℎ3,4

ℎ3,4

ℎ1 ℎ0ℎ0

ℎ0

• Upon receiving a fragment, we can use the
Merkle Proof to establish authenticity of the
fragment data.

Efficient Reliable Broadcast

𝑓3

ℎ4

ℎ1,2

ℎ0

• Upon receiving a fragment, we can use the
Merkle Proof to establish authenticity of the
fragment data.

ℎ3,4

ℎ0

ℎ3

≟

Efficient Reliable Broadcast

𝑓1

𝑓2 𝑓3

𝑓4

𝑓4

𝑓1𝑓3

𝑓4

Efficient Reliable Broadcast

𝑓1

𝑓2 𝑓3

𝑓4

𝑓4

𝑓1𝑓3

𝑓4 𝑚 𝑚

𝑚𝑚

Efficient Reliable Broadcast

𝑓1

𝑓2 𝑓3

𝑓4

𝑓4

𝑓1𝑓3

𝑓4 𝑚 𝑚

𝑚𝑚

Efficient Reliable Broadcast
• What did we gain?

• Communication complexity of 3 𝑚 𝑛 +
𝑂(𝑛2 log 𝑛 𝐻) in the asynchronous model

𝑓1

𝑓2 𝑓3

𝑓4

𝑓4

𝑓1𝑓3

𝑓4 𝑚 𝑚

𝑚𝑚

𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚)

𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚) 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚)

𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚)

Quiz

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f.

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model.

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king.
2. An honest node will propose a value in the first phase.
3. The king himself can change its own value in the first phase.
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model.

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king.
2. An honest node will propose a value in the first phase.
3. The king himself can change its own value in the first phase.
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king.
2. An honest node will propose a value in the first phase.
3. The king himself can change its own value in the first phase.
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase.
3. The king himself can change its own value in the first phase.
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase. False
3. The king himself can change its own value in the first phase.
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase. False
3. The king himself can change its own value in the first phase. True
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase. False
3. The king himself can change its own value in the first phase. True
4. The nodes might change the value in future phases if there are other honest kings later. False

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase. False
3. The king himself can change its own value in the first phase. True
4. The nodes might change the value in future phases if there are other honest kings later. False

4. In reliable broadcast:
1. All honest nodes accept at most one message. False
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase. False
3. The king himself can change its own value in the first phase. True
4. The nodes might change the value in future phases if there are other honest kings later. False

4. In reliable broadcast:
1. All honest nodes accept at most one message. False
2. All honest nodes accept at least one message. False
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase. False
3. The king himself can change its own value in the first phase. True
4. The nodes might change the value in future phases if there are other honest kings later. False

4. In reliable broadcast:
1. All honest nodes accept at most one message. False
2. All honest nodes accept at least one message. False
3. All honest nodes echo at least one message. False
4. It might happen that no honest node accepts a message.

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. True

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. True

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. False
2. An honest node will propose a value in the first phase. False
3. The king himself can change its own value in the first phase. True
4. The nodes might change the value in future phases if there are other honest kings later. False

4. In reliable broadcast:
1. All honest nodes accept at most one message. False
2. All honest nodes accept at least one message. False
3. All honest nodes echo at least one message. False
4. It might happen that no honest node accepts a message. True

Assignment Preview

Assignment Preview

Assignment Preview

Assignment Preview

Assignment Preview

Assignment Preview

	Standardabschnitt
	Folie 1:
	Folie 2: Agenda

	Assignment Review
	Folie 3: Assignment Review
	Folie 4: 1.1 An Asynchronous Riddle
	Folie 5: 1.2 Paxos
	Folie 6: 1.2 Paxos
	Folie 7: 1.3 Improving Paxos
	Folie 8: 2.1 Consensus with Edge Failures
	Folie 9: 2.2 Deterministic Random Consensus?!
	Folie 10: 2.3 Consensus with Bandwidth Limitations

	Byzantine Agreement
	Folie 11: Byzantine Agreement
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

	Broadcast
	Folie 22: Broadcast
	Folie 23: Broadcast
	Folie 30: Efficient Reliable Broadcast
	Folie 31: Efficient Reliable Broadcast
	Folie 32: Efficient Reliable Broadcast
	Folie 33: Efficient Reliable Broadcast
	Folie 34: Merkle Trees
	Folie 35: Merkle Proof
	Folie 36: Merkle Proof
	Folie 37: Merkle Proof
	Folie 38: Efficient Reliable Broadcast
	Folie 39: Efficient Reliable Broadcast
	Folie 40: Efficient Reliable Broadcast
	Folie 41: Efficient Reliable Broadcast
	Folie 42: Efficient Reliable Broadcast
	Folie 43: Efficient Reliable Broadcast
	Folie 44: Efficient Reliable Broadcast
	Folie 45: Efficient Reliable Broadcast
	Folie 46: Efficient Reliable Broadcast

	Quiz
	Folie 48: Quiz
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59

	Assignment Preview
	Folie 60: Assignment Preview
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65

