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* Lecture Recap

* Byzantine Agreement
* King’s Algorithm
* Ben-Or’s Algorithm
» (Efficient-) Reliable Broadcast

* Quiz
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1.1 An Asynchronous Riddle

A hangman summons his 100 prisoners, announcing that they may meet to plan a strategy, but will
then be put in isolated cells, with no communication. He explains that he has set up a switch room that
contains a single switch. Also, the switch is not connected to anything, but a prisoner entering the
room may see whether the switch is on or off (because the switch is up or down).

Every once in a while the hangman will let one arbitrary prisoner into the switch room. The prisoner
may throw the switch (on to off, or vice versa), or leave the switch unchanged. Nobody but the
prisoners will ever enter the switch room. The hangman promises to let any prisoner enter the room
from time to time, arbitrarily often. That is, eventually, each prisoner has been in the room at least
once, twice, a thousand times or any number you want.

At any time, any prisoner may declare: "We have all visited the switch room at least once.” If the claim
is correct, all prisoners will be released, otherwise, the hangman will execute his job (on all the
prisoners). Which strategy would you choose...

a) ...if the hangman tells them, that the switch is off at the beginning?
b) ...if they don’t know anything about the initial state of the switch?
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1.2 Paxos

You decide to use Paxos for a system with 3
servers (acceptors), which we call N1, N2, N3.
There are two clients (proposers) A and B. The
implementation of the acceptors is exactly as
defined in the script, see Algorithm 15.13. We
extended the code of the proposers, such that
they now use explicit timeouts. The algorithm
is described below, note in particular Lines 2-4
and 12-14.

a) Assume that two users each try to execute
a command. One user calls
suggestValue(N1,N2,a,1,1) on A at time
Ty, and a second user calls
suggestValue(N2,N3,b,2,2) on B at time
Ty + 0.5sec. Draw a timeline containing all
transmitted messages! We assume that
processing times on nodes can be neglected
(i.e. is zero), and that all messages arrive
within less than 0.5sec.

Algorithm 1 Paxos proposer algorithm with timeouts

12:

13
14:
15:
L
17:
15:

* Execute a command on the Paxos servers.

* N, N'": The Paxos servers to contact.

* ¢ The command to exexcute.

* 4: The timeout between multiple attempts.
* t: The first ticket number to try.

N : . -
* Returns: ¢, the command that was executed on the servers. Note that ¢ might be

* another command than e, if another client already successfully executed a command.

sﬁggcsﬂf’alue{ﬂode N, Node N', command ¢, Timeout &, TicketNumber t) {

. Ask N, N for ticket ¢

Wait for 4 seconds

if within these 4 seconds, either N or N’ has not replied with ok then
return suggestValue(N, N', ¢, 4, 1 + 2)
else
Pick (Tiore, C') with largest Tiiore
if Tiiore = 0 then
c=(
end if
Send propose(t, ¢) to N, N’

: end if

Wait for ¢ seconds

if within these 4 seconds, either N or N’ has not replied with success then
return suggestValue(N, N' ¢, 4, f +2)

else
Send execute(c) to N, N'
return ¢

end if
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1.2 Paxos

You decide to use Paxos for a system with 3
servers (acceptors), which we call N1, N2, N3.
There are two clients (proposers) A and B. The
implementation of the acceptors is exactly as
defined in the script, see Algorithm 15.13. We
extended the code of the proposers, such that
they now use explicit timeouts. The algorithm
is described below, note in particular Lines 2-4
and 12-14.

b) In a) we chose artificial initial ticket
numbers and timeout values, and we saw that
Paxos terminates rather quickly. Let us look at
another selection of these values: The two
clients start with initial ticket numbers

ty = togandtp = ty+ 1for somevalue t,
and both clients have the same timeout

04 = Op. Assume that both clients start at T,.
What will happen?

Algorithm 1 Paxos proposer algorithm with timeouts

13
14:
15:
L
17:
15:

* Execute a command on the Paxos servers.

* N, N'": The Paxos servers to contact.

* ¢ The command to exexcute.

* 4: The timeout between multiple attempts.
* t: The first ticket number to try.

N : . -
* Returns: ¢, the command that was executed on the servers. Note that ¢ might be

* another command than e, if another client already successfully executed a command.

sﬁggcsﬂf’alue{ﬂode N, Node N', command ¢, Timeout &, TicketNumber t) {

. Ask N, N for ticket ¢

Wait for 4 seconds

if within these 4 seconds, either N or N’ has not replied with ok then
return suggestValue(N, N', ¢, 4, 1 + 2)
else
Pick (Tiore, C') with largest Tiiore
if Tiiore = 0 then
c=(
end if
Send propose(t, ¢) to N, N’

. end if

: Wait for § seconds

if within these 4 seconds, either N or N’ has not replied with success then
return suggestValue(N, N' ¢, 4, f +2)

else
Send execute(c) to N, N'
return ¢

end if
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1.3 Improving Paxos

We are not happy with the runtime of the Paxos algorithm of Exercise 1.2. Hence, we study some
approaches which might improve the runtime.

The point in time when clients start sending messages cannot be controlled, since this will be
determined by the application that uses Paxos. It might help to use different initial ticket numbers.
However, if a client with a very high ticket number crashes early, all other clients need to iterate
through all ticket numbers. This problem can easily be fixed: Every time a client sends an ask(t)
message witht < Ty,.x , the server can reply with an explicit nack (T3 ) in Phase 1, instead of just
ignoring the ask(t) message.

a) Assume you added the explicit nack message. Do different initial ticket numbers solve runtime issues
of Paxos, or can you think of a scenario which is still slow?

b) Instead of changing the parameters, we add a waiting time between sending two consecutive ask
messages. Sketch an idea of how you could improve the expected runtime in a scenario where multiple
clients are trying to execute a command by manipulating this waiting time!

Extra challenge: Try not to slow down an individual client if it is alone!
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2.1 Consensus with Edge Failures

In the lecture we only discussed node failures, but we always assumed that edges (links) never fail. Let
us now study the opposite case: Assume that all nodes work correctly, but up to f edges may fail.

Analogously to node failures, edges may fail at any point during the execution. We say that a failed
edge does not forward any message anymore, and remains failed until the algorithm terminates.
Assume that an edge always simultaneously fails completely, i.e., no message can be exchanged over
that edge anymore in either direction.

We assume that the network is initially fully connected, i.e., there is an edge between every pair of
nodes. Our goal is to solve consensus in such a way, that all nodes know the decision.

a) What is the smallest f such that consensus might become impossible? (Which edges fail in the worst-
case)

b) What is the largest f such that consensus might still be possible? (Which edges fail in the best-case)

c) Assume that you have a setup which guarantees you that the nodes always remain con nected, but
possibly many edges might fail. A very simple algorithm for consensus is the following: Every node
learns the initial value of all nodes, and then decides locally. How much time might this algorithm
require? Assume that a message takes at most 1 time unit from one node to a direct neighbor.
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2.2 Deterministic Random Consensus?!

Algorithm 16.15 from the lecture notes
solves consensus in the asynchronous
time model. It seems that this algorithm
would be faster, if nodes picked a value
deterministically instead of randomly in
Line 23. However, a remark in the
lecture notes claims that such a
deterministic selection of a value will
not work. We did it anyway! (The only
change is on Line 23).

Show that this algorithm does not solve
consensus! Start by choosing initial
values for all nodes and show that the
algorithm below does not terminate.

Algorithm 2 Randomized Consensus (Ben-Or)

1. v; € {0,1} < input bit
2: round = 1
3: while true do

4:

e o

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Broadcast myValue(v;, round)
Propose

Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then
Broadcast propose(v, round)
else
Broadcast propose(_L, round)
end if

Vote

Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then
Broadcast my\]a]_ue Ll S
Broadcast propose(v, round + 1)
Decide for v and terminate
else if there is at least one proposal for v then
v; =
else
Choose v; =1
end if
round = round + 1

22: end while
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2.3 Consensus with Bandwidth Limitations

Consensus with no failures, a fully connected network and unlimited bandwidth is trivial: First, every
node sends its value to all other nodes. Second, every node waits for all values, and then decides.

So far, we only studied failures. However, in practice bandwidth limitations are often of great
importance as well. To simplify the problem, we assume no node crashes and no edge crashes in this
exercise. Additionally, you can assume that all nodes have unique ids from 1 through n.

We assume that all messages are transmitted reliably and arrive exactly after one time unit. The
bandwidth limitation is as follows: Assume that every node can only send one message (containing one
value) to one neighbor per time unit. For example, at time 0, ul can send a message to u2, attime 1 a
message to u3, and so on. However, ul cannot send a message to both u2 and u3 at the same time!
Also, a node cannot send multiple values in the same message.

a) Develop an algorithm that solves consensus in this scenario. Optimize your algorithm for runtime!
b) What is the runtime of your algorithm?

c) Assume that you not only need to solve consensus, but the more challenging task that every node
must learn the input values of all nodes. Show that this problem requires at least n -1 time units!
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Set-Up

Node Node

O\

Node

Node: single actor in a distributed system
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Previous Challenges in Consensus

- Messages can get lost
- Nodes may crash

- Messages can have various delay

New Challenge in Byzantine Agreement

- Byzantine nodes = Nodes can have arbitrary behaviour
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Byzantine Agreement

We want:
1. Agreement:
All (correct) nodes decide on the same value.
2. Termination:
All (correct) nodes terminate.
3. All-same Validity:
If all correct nodes start with the same value v, the decision value must be v.
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(Synchronous) King’s Algorithm

0* = “Propose O”
1* = “Propose 1”

2 1
0111 propose 2 propose 1

e Example:n=4,f=1
e Phasel:

“Propose 1”

1 proposal each

Round 1 Round 2

All processes choose
the king’ value

J

-
<
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(Synchronous) King’s Algorithm
e Example:n=4,f=1

e Phase 2:
1* = “Propose 1”
“Propose 1” | take the gl
. | Fa= |
2 propose 1 2 propose 1 R et
0,0,1,1 0,1,1,1
11
0,1’ 1,1 o ”n
Propose 1 3 propose 1 | keep my

Round 1 Round 2 ! ve ! Round 3
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(Asynchronous) Ben-Or’s Algorlthm

e Example:n=11, f=1

e Byzantine node has no power

| Agreement! } C

9, :
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(Asynchronous) Ben-Or’s Algorithm

e Example:n=11, f=1
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(Asynchronous) Ben-Or’s Algorithm

e Example:n=11, f=1
| will ask the

e Byzantine node has no power oracle!

£
| will ask the

oracle!
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(Asynchronous) Ben-Or’s Algorithm
e Example:n=11,f=1

0,0,00,11,1,1,11

e Different views:
Inputs do not change O .

i

1
propese | will ask the

oracle!

0,001,1,1,1,1,11
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(Asynchronous) Ben-Or’s Algorithm

e Example:n=11, f=1 0,0,0,1,1,1,1,1,1,1
e Different views:
Inputs flip . .
| will ask the ‘
propose 1

. oracle!

0,0,00,11,1,1,11
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Broadcast

Validity: If a correct node broadcasts a message, it will eventually be accepted by every other correct
node.

Weak Integrity: If a correct node v has not broadcast a message, no message of v will be accepted
by any other correct node.

Integrity: Every correct node delivers at most one message. The delivered message must have been
broadcast by a node.

Totality: If a correct node accepts a message m, m will eventually be accepted by every other correct
node.

Agreement: If correct nodes v and v’ accept messages m and m’, respectively, then m = m’.
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Efficient Reliable Broadcast

* Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

* Split message m into n fragments f1, f5, ..., f, using (n, k) erasure code.
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Efficient Reliable Broadcast

* Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

* Split message m into n fragments f1, f5, ..., f, using (n, k) erasure code.

* Assume optimal erasure code, any k fragments allow to restore the
message m.

* What values do we choose for n and k, and why?

foll 2 ||z || fa
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Efficient Reliable Broadcast

* Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

* Split message m into n fragments f1, f5, ..., f, using (n, k) erasure code.

* Assume optimal erasure code, any k fragments allow to restore the
message m.

* What values do we choose for n and k, and why?

* What are we still missing?
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Efficient Reliable Broadcast

* Use fact that usually, the size of the message is way larger than the
number of nodes in the system.

* Split message m into n fragments f1, f5, ..., f, using (n, k) erasure code.

* Assume optimal erasure code, any k fragments allow to restore the
message m.

* What values do we choose for n and k, and why?

* What are we still missing?
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Merkle Trees

* Atree in which every leaf is labeled with the hash of a data
block, and every inner node (including the root) is labeled
with the hash of its children.

f f2

f3

fa
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Merkle Proof

How do | know
that f; is a valid

fragment of m? hy, h3 4
hl hz h3 h4‘
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Merkle Proof

 All hashes required to recompute the root has h, given a
fragment f;.

[ ]

e Can you find a closed form expression for the size of a Merkle
Proof for n fragments?

How do | know
that f5is avalid
fragment of m?

ho
hl 2 h3,4
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Merkle Proof

 All hashes required to recompute the root has h, given a
fragment f;.

e Can you find a closed form expression for the size of a Merkle
Proof for n fragments?

 Still need a “correct” root hash to compare computed root
hash to. Any idea on how to distribute it?

hl h3,4 fZ !!0
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. f o 1: (f1,...,fn) = get_fragments(m
ystemse ETHzw Computing geSoseass 2: 510 = get_)merkgle_rootg_iash((( fl), oesigilpal)
3: Execute Algorithm [I8.TT] for message root _hash :=h,
P H 4: for v; € V do
Efficient Reliable Broadcast B gt merEle, oot fismeesduls ]
6: Send (f;, Pj) tov;
7: end for
m 8:
9: upon receiving (f;, P;) and root _hash # 1:
10:  if valid(f;, Pj, root_hash) then
11: Pe=nr {fJ}
12: if i = j and not broadcast (f;, P;) before then
13: Broadcast (f;, P;)
14: end if
15:  end if
16: end upon
17:
18: if |[F|= f+1 and m = L then
19: m = recover_message(F)
20:  (f1,...,fn) = get_fragments(m)
21:  hg = get_merkle_root_hash((f1,...,fn))
22:  if hg = root _hash then
23: if not broadcast (f;, P;) before then
24: P; .= get_merkle_path((fi,...,fn), ©)
25 Broadcast (f;, P;)
26: end if
27:  else
28: root _hash = L
29: end if
30: end if
31:
32: if |[F|=n— f and m # L and root _hash # L and not delivered then
33:  deliver(m)
34: end if
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- Computing '$$5°% : (f1,.+., fn) = get_fragments(m)
ystemscETH. ho = get_merkle_root_hash((fi,...,fn))
Execute Algorithm [T8.TT] for message root _hash :=hg
for v; € V do
Pj := get_merkle_proof((fi,..., fn), J)
Send (f;, P) to v;
end for

Efficient Reliable Broadcast

© [N S

h
fl fZ f3 f4 0 upon receiving (f;, P;) and root _hash # L:

10:  if valid(f;, Pj, root_hash) then
11: Fe=F1 {f]}
12: if i = j and not broadcast (f;, P;) before then

13: Broadcast (f;, P;
h1'2 h3’4 14: end if ; )
15:  end if
/\ /\ 16: end upon
157
hl hz h3 h4 18: if |[F|= f+1 and m = L then

19: m = recover_message(F)

20:  (f1,...,fn) = get_fragments(m)

21:  hg = get_merkle_root_hash((f1,...,fn))
22:  if hg = root _hash then

23: if not broadcast (f;, P;) before then

24: P; .= get_merkle_path((fi,...,fn), ©)
25 Broadcast (f;, P;)

26: end if

27:  else

28: root _hash = L

29: end if

30: end if

313

32: if |[F|=n— f and m # L and root _hash # L and not delivered then
33:  deliver(m)
34: end if
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Algorithm 18.22 Executed at node v;. The algorithm uses a (n, f + 1)-

erasure code. Initially, root hash = 1, F ={}, and m = L.
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(fiy.-., fn) = get_fragments(m)
ho = get_merkle_root_hash((f1,...,fn))
Execute Algorithm [T8.TT] for message root _hash :=hg
for v; € V do
Pj := get_merkle_proof((fi,..., fn), J)
Send (fjv P)J) to v;
end for

upon receiving (f;, P;) and root _hash # 1:
if valid(f;, P;, root_hash) then
F=FU{f}}
if i = j and not broadcast (f;, P;) before then
Broadcast (f;, P;)
end if
end if

: end upon

: if |[F|=f+1and m = L then

m = recover_message(F)
(fiy--., fn) == get_fragments(m)
ho := get_merkle_root_hash((f1,..., fn))
if hg = root _hash then
if not broadcast (f;, P;) before then
P; .= get_merkle_path((fi,...,fn), ©)
Broadcast (f;, P;)
end if
else
root _hash = 1L
end if

30: end if

W W W
el L

w
= O

. if |F|=n— f and m # L and root _hash # L and not delivered then

deliver (m)

. end if
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Efficient Reliable Broadcast

e Upon receiving a fragment, we can use the
Merkle Proof to establish authenticity of the
fragment data.

hi | hsa || f2 I!o

f3 h4 h1,2 hO

Algorithm 18.22 Executed at node v;. The algorithm uses a (n, f + 1)-
erasure code. Initially, root hash = 1, F ={}, and m = L.

1: (f1,..., fn) = get_fragments(m)

2: ho = get_merkle_root_hash((f1,...,fn))

3: Execute Algorithm [I8.TT] for message root _hash :=h,
4: for v; € V do

5. Pj := get_merkle_proof((fi,..., fn), J)

6: Send (f;, P;) to v

7: end for

8:

9: upon receiving (f;, P;) and root _hash # 1:
10:  if valid(f;, Pj, root_hash) then

1l =51 {fJ}

12: if i = j and not broadcast (f;, P;) before then
13: Broadcast (f;, P;)

14: end if

15:  end if

16: end upon

177

18: if |[F|= f+1 and m = L then

19:  m = recover_message(F')

20:  (f1,...,fn) = get_fragments(m)

21:  hg = get_merkle_root_hash((f1,...,fn))
22:  if hg = root _hash then

23: if not broadcast (f;, P;) before then

24: P; .= get_merkle_path((fi,...,fn), ©)
25: Broadcast (f;, P;)

26: end if

27:  else

28: root _hash = L

29: end if

30: end if
31:
32: if |[F|=n— f and m # L and root _hash # L and not delivered then
33:  deliver(m)

34: end if




A
'y " 1
ETHzirich B o foos,
Systemse ETH zuicn Comp Ut' ”g ‘:?‘:“\"“;-wll

Efficient Reliable Broadcast

e Upon receiving a fragment, we can use the
Merkle Proof to establish authenticity of the
fragment data.

he | ==  hg

f3

Algorithm 18.22 Executed at node v;. The algorithm uses a (n, f + 1)-
erasure code. Initially, root hash = 1, F ={}, and m = L.

1: (fi1y..., fn) = get_fragments(m)

2: ho = get_merkle_root_hash((f1,...,fn))

3: Execute Algorithm [I8.TT] for message root_hash :=hg
4: for v; € V do

5. Pj := get_merkle_proof((fi,..., fn), J)

6: Send (fj, P]) to Vj

7: end for

8:

9: upon receiving (f;, P;) and root _hash # 1:
10:  if valid(f;, Pj, root_hash) then

1l =51 {f]}

12: if i = j and not broadcast (f;, P;) before then
13: Broadcast (f;, P;)

14: end if

15:  end if

16: end upon

17:

18: if |[F|= f+1 and m = L then

19: m = recover_message(F')
20:  (f1,...,fn) = get_fragments(m)
21:  hg = get_merkle_root_hash((f1,...,fn))
22:  if hg = root _hash then
23: if not broadcast (f;, P;) before then
24: P; := get_merkle_path((f1,..., fn), 1)
25: Broadcast (f;, P;)
26: end if
27:  else
28: root _hash = 1L
29: end if
30: end if
31:

32: if |[F|=n— f and m # L and root _hash # 1 and not delivered then
33: deliver(m)
34: end if
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6: Send (f;, P;) to v;
7: end for
8:
9: upon receiving (f;, P;) and root _hash # 1:
10:  if valid(f;, Pj, root_hash) then
11: Fe=F1 {f]}
12: if i = j and not broadcast (f;, P;) before then
13: Broadcast (f;, P;)
14: end if
15:  end if
16: end upon
17:
18: if |F| = f+1 and m = L then
19:  m = recover_message(F)
20:  (f1,...,fn) = get_fragments(m)
21:  hg := get_merkle_root_hash((f1,...,fn))
22:  if hg = root_hash then
23: if not broadcast (f;, P;) before then
f f 24: P; := get_merkle_path((fi,...,fn), ?)
4 4 25: Broadcast (f;, P;)
26: end if
27:  else
28: root _hash = L
29: end if
30: end if
31:
32: if |[F|=n— f and m # L and root _hash # L and not delivered then
fl 33: deliver(m)
34: end if
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11: Fe=F1 {f]}
12: if i = j and not broadcast (f;, P;) before then
13: Broadcast (f;, P;)
14: end if
15:  end if
16: end upon
17:
18: if |F| = f+1 and m = L then

19:  m = recover_message(F)

20:  (f1,...,fn) = get_fragments(m)

21:  hg := get_merkle_root_hash((f1,...,fn))
22:  if hg = root_hash then

23: if not broadcast (f;, P;) before then

24: P; := get_merkle_path((fi,...,fn), ?)
25: Broadcast (f;, P;)

26: end if

27:  else

28: root _hash = L

29: end if

30: end if

31:

32: if |[F|=n— f and m # L and root _hash # L and not delivered then
33: deliver(m)

34: end if
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6: Send (f;, Pj) tov;
7: end for
8:
9: upon receiving (f;, P;) and root _hash # 1:
10:  if valid(f;, Pj, root_hash) then
11: Pe=nr {fJ}
12: if i = j and not broadcast (f;, P;) before then
13: Broadcast (f;, P;)
14: end if
15:  end if
16: end upon
17:
18: if |[F|= f+1 and m = L then
19: m = recover_message(F)
20:  (f1,...,fn) = get_fragments(m)
21:  hg = get_merkle_root_hash((f1,...,fn))
22:  if hg = root _hash then
23: if not broadcast (f;, P;) before then
24: P; .= get_merkle_path((fi,...,fn), ©)
25 Broadcast (f;, P;)
26: end if
27:  else
28: root _hash = L
29: end if
30: end if
31:
32: if |[F|=n— f and m # L and root _hash # L and not delivered then
33:  deliver(m)
34: end if
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Algorithm 18.22 Executed at node v;. The algorithm uses a (n, f + 1)-
erasure code. Initially, root _hash = 1, F = {}, and m = L.

1: (fi,...,fn) = get_fragments(m)

2: ho = get_merkle_root_hash((f1,...,fn))

3: Execute Algorithm [I8.TT] for message root _hash :=h,
4: for v; € V do

5. Pj = get_merkle_proof((fi,..., fn), 7)

6: Send (f;, P;) to v;

7: end for

8:

9: upon receiving (f;, P;) and root _hash # 1:

10:  if valid(f;, Pj, root_hash) then

11: Pe=nr {fJ}

12: if i = j and not broadcast (f;, P;) before then
13: Broadcast (f;, P;)

14: end if

15:  end if

16: end upon

17:

18: if |[F|= f+1 and m = L then

19: m = recover_message(F)

20:  (f1,...,fn) = get_fragments(m)

21:  hg = get_merkle_root_hash((f1,...,fn))
22:  if hg = root _hash then

23; if not broadcast (f;, P;) before then

24: P; .= get_merkle_path((fi,...,fn), ©)
25 Broadcast (f;, P;)

26: end if

27:  else

28: root hash = L

29: end if

30: end if

31:

32: if |[F|=n— f and m # L and root _hash # L and not delivered then
33:  deliver(m)
34: end if
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Quiz questions (choose the right answer)

1.  No algorithm satisfies byzantine agreement with n = 3f.

2. Asingle byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model.

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king.
2. An honest node will propose a value in the first phase.
3. The king himself can change its own value in the first phase.
4. The nodes might change the value in future phases if there are other honest kings later.

4. In reliable broadcast:
1. All honest nodes accept at most one message.
2. All honest nodes accept at least one message.
3. All honest nodes echo at least one message.
4. It might happen that no honest node accepts a message.
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1 Synchronous Model
Quiz

1.1 Synchronous Consensus in a Grid

In the lecture you learned how to reach consensus in a fully connected network where every
process can communicate directly with every other process. Now consider a network that is
organized as a 2-dimensional grid such that every process has up to 4 neighbors. The width of
the grid is w, the height is h. Width and height are defined in terms of edges: A 2 x 2 grid
contains 9 nodes! The grid is big, meaning that w + A is much smaller than w - h. We use the
synchronous time model; i.e., in every round every process may send a message to each of its
neighbors, and the size of the message is not limited.

a) Assume every node knows w and h. Write a short protocol to reach consensus.

b) From now on the nodes do not know the size of the grid. Write a protocol to reach consensus
and optimize it according to runtime.

¢) How many rounds does your protocol from b) require?

Assume there are Byzantine nodes and that you are the adversary who can select which nodes
are Byzantine.

d) What is the smallest number of Byzantine nodes that you need to prevent the system from
reaching agreement, and where would you place them?
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1.2 Synchronous Consensus in a Grid - Crash Failures

Consider the same network as in Question 1.1. Assume that some of the nodes crashed at the
beginning of the algorithm such that any two correct processes are still connected through at
least one path of correct processes.

Let [ be the length of the longest shortest path between any pair of nodes in the grid; i.e., [
is the number of edges between those two nodes which are “farthest away” from each other. If
there are no failures, [ is the distance between two corners, i.e. [ = w + h.

a) Modify the algorithm from 1.1b) to solve consensus in [ + 1 rounds with this special type
of crash failures. Show that your algorithm works correctly; i.e., a node does not terminate
before it learned the initial value of all nodes.

b) As an adversary you are allowed to crash up to w + h many nodes at the beginning of the
algorithm. Let w = 7,h = 6. What is the largest | you can achieve?

c) Assume that you run the algorithm with any type of crash failures; i.e, nodes can crash at
any time during the execution. Show that with such failures the algorithm does not always
work correctly anymore, by giving an execution and a failure pattern in which some nodes
terminate too early!
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Advanced

1.3 Consensus in a Grid. .. again!

In exercise 1 a) you had to develop a deterministic algorithm which reached consensus if there
are no failures. In this exercise we want to show a tight bound on the runtime for this problem.

Definition 1 (upper bound). We call tyy an upper bound on the runtime, if we can show that
the problem can be solved in time ty.

The easiest way to show an upper bound is to design an algorithm which solves the problem
in time ty.

Definition 2 (lower bound). We call t;, a lower bound on the runtime, if we can show, that no
algorithm exists which solves the problem in less than t, time.

This is usually more difficult to show than an upper bound, since it requires an argument
why no such algorithm can exist.

Definition 3 (tight bound). We call a bound t tight, if we have an upper bound ty =t, and a
lower bound t;, =t; i.e., the bounds match. In that case, we know exactly how much time solving
a problem requires.

Your task is to show that £ = (w+h)/2 is a tight bound on the runtime for consensus if there
are no failures! For simplicity, assume that both w and h are even numbers, and that every node
knows w and h and its “coordinates” in the grid.

Assume the that one round consists of “send, receive, compute” in this order. ILe., if u sends
a message to v in round 1, v receives this message already in round 1.

a) Show an upper bound for the problem by providing an algorithm which runs in (w + h)/2
many rounds! (If your solution of 1 a) terminates in (w + h)/2 rounds you're done!)
b) Show a lower bound of (w + h)/2.

Hint: Choose some distributions of initial values and show that no algorithm can solve
consensus for all these distributions in less than (w + h)/2, without violating at least one
of the requirements of consensus at least for one distribution.

Hint: We used a similar approach in the proof of Theorem 16.21.
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2 Asynchronous Model
Quiz

2.1 What is the Average?

Assume that we are given 7 nodes with input values {—3,—-2,—1,0,1,2,3}. The task of the
nodes is to establish agreement on the average of these values. As always, our system might be
faulty - nodes could crash or even be byzantine.

a) Show that in the presence of even one failure (crash or byzantine), the nodes cannot agree
on the average of all input values.

Since we cannot establish agreement on the exact value, it would be great to understand how
close we can get to the average value. Let us begin by only considering crash failures in the
system. Assume that at most 2 of the 7 given nodes can crash.

b) In which range do you expect the consensus value to be?

From now on, we will consider byzantine failures as well. Assume that we have 9 nodes in total.
7 of these nodes are correct and have the input values specified above. The remaining two nodes
are byzantine. We will start with a synchronous system.

¢) Show that the consensus values can be basically anything now.

d) Suggest a rule that a node could use to locally choose a value as an approximation to the
average.

e) What is the range of all possible local approximations of the average?
f) Suggest a validity condition that can be used to determine a consensus value.

Now assume that the system is asynchronous. Keep in mind that the scheduling is worst-case.
g) How does the range of all possible local approximations of the average change in this case?

h) Suggest a new validity condition that can be used to determine a consensus value.
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2.2 Computing the Average Synchronously

In the lecture, we have focused on a class of algorithms which satisfy termination and agreement.
In the following, we drop the termination condition and relax the agreement assumption:

Agreement The interval size of the input values of all correct nodes converges to 0.

a) Suggest a simple synchronous algorithm satisfying the agreement property defined above.
Use the strategy from Question 2.1d).

b) Apply your algorithm to the input from Question 2.1, again with 9 nodes in total, two of
which are byzantine. Compute 3 iterations assuming that byzantine nodes try to prevent
the nodes from converging.
Advanced

2.3 Computing the Average Asynchronously

Consider the algorithm you derived in Question 2.2 in an asynchronous system. Assume that
each node broadcasts the current round together with the current input value.

a) Sketch your algorithm in the asynchronous setting.

b) Show that byzantine nodes can prevent this algorithm from converging if we apply it to
the input sequence from Question 2.1.

c) What is the largest value of f for which your algorithm will work in the asynchronous
system?

d) Show that with the chosen bounds on the number of byzantine nodes each of the algorithms
will converge.

e) Explain how the bounds change in the asynchronous case if FIFO broadcast is used instead
of best-effort broadcast or vice versa?
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