Chapter 12

Broadcast & Shared Coins

In Chapter 11 we have developed a fast solution for synchronous byzantine agreement (Algorithm 11.14), yet our asynchronous byzantine agreement solution (Algorithm 11.21) is still awfully slow. Is there a fast asynchronous algorithm, possibly based on some advanced communication methods?

12.1 Random Oracle and Bitstring

Definition 12.1 (Random Oracle). A random oracle is a trusted (non-byzantine) random source which can generate random values.

Algorithm 12.2 Shared Coin with Magic Random Oracle

1: return c_i, where c_i is ith random bit by oracle

Remarks:

- Algorithm 12.2 as well as the following shared coin algorithms will for instance be called in Line 12 of Algorithm 11.21. So instead of every node throwing a local coin (and hoping that all coins end up on the same side), the nodes throw a shared coin. In other words, the value x_u in Line 12 of Algorithm 11.21 will be set to the return value of the shared coin subroutine.

- We have already seen a shared coin in Algorithm 8.22. This concept deserves a proper definition.

Definition 12.3 (Shared Coin). A shared coin is a binary random variable shared among all nodes. It is 0 for all nodes with constant probability, and 1 for all nodes with constant probability. The shared coin is allowed to fail (be 0 for some nodes and 1 for other nodes) with constant probability.

Theorem 12.4. Algorithm 12.2 plugged into Algorithm 11.21 solves asynchronous byzantine agreement in expected constant number of rounds.
Proof. If there is a large majority for one of the input values in the system, all nodes will decide within two rounds since Algorithm 11.21 satisfies all-same-validity; the shared coin is not even used.

If there is no significant majority for any of the input values at the beginning of algorithm 11.21, all correct nodes will run Algorithm 12.2. Therefore, they will set their new value to the bit given by the random oracle and terminate in the following round.

If neither of the above cases holds, some of the nodes see an \(n/2 + f + 1 \) majority for one of the input values, while other nodes rely on the oracle. With probability 1/2, the value of the oracle will coincide with the deterministic majority value of the other nodes. Therefore, with probability 1/2, the nodes will terminate in the following round. The expected number of rounds for termination in this case is 3.

Remarks:

- Unfortunately, random oracles are a bit like pink fluffy unicorns: they do not really exist in the real world. Can we fix that?

Definition 12.5 (Random Bitstring). A random bitstring is a string of random binary values, known to all participating nodes when starting a protocol.

Algorithm 12.6 Naive Shared Coin with Random Bitstring

1: return \(b_i \), where \(b_i \) is \(i \)th bit in common random bitstring

Remarks:

- But is such a precomputed bitstring really random enough? We should be worried because of Theorem 8.14.

Theorem 12.7. If the scheduling is worst-case, Algorithm 12.6 plugged into Algorithm 11.21 does not terminate.

Proof. Assume w.l.o.g. that the first bit of the random bitstring is 0. We start Algorithm 11.21 with the following input: \(n/2 + f + 1 \) nodes have input value 1, the other \(n/2 - f - 1 \) nodes have input value 0.

If the second random bit in the bitstring is also 0, then a worst-case scheduler will let \(n/2 + f + 1 \) nodes see all \(n/2 + f + 1 \) values 1, these will therefore deterministically choose value 1 as their new value. Because of scheduling (or byzantine nodes), the remaining \(n/2 - f - 1 \) nodes receive strictly less than \(n/2 + f + 1 \) values 1 and therefore have to rely on the value of the shared coin, which is 0. The nodes will not come to a decision in this round. Moreover, we have created the very same distribution of values for the next round (which has also random bit 0).

If the second random bit in the bitstring is 1, then a worst-case scheduler can let \(n/2 - f - 1 \) nodes see all \(n/2 + f + 1 \) values 1, and therefore deterministically choose value 1 as their new value. Because of scheduling (or byzantine nodes), the remaining \(n/2 + f + 1 \) nodes receive strictly less than \(n/2 + f + 1 \) values 1 and therefore have to rely on the value of the shared coin, which is 0. The nodes
will not decide in this round. And we have created the symmetric situation for input value 1 that is coming in the next round.

So if the current and the next random bit are known, worst-case scheduling will keep the system in one of two symmetric states that never decide.

Remarks:

• Theorem 12.7 shows that a worst-case scheduler cannot be allowed to know the random bits of the future.

• Note that in the proof of Theorem 12.7 we did not even use any byzantine nodes. Just bad scheduling was enough to prevent termination.

• Worst-case scheduling is an issue that we have not considered so far, in particular in Chapter 8 we implicitly assumed that message scheduling was random. What if scheduling is worst-case in Algorithm 8.22?

Lemma 12.8. Algorithm 8.22 has exponential expected running time under worst-case scheduling.

Proof. In Algorithm 8.22 worst-case scheduling may hide up to \(f \) rare zero coinflips. In order to receive a zero as the outcome of the shared coin, the nodes need to generate at least \(f + 1 \) zeros. The probability for this to happen is \((1/n)^{f+1} \), which is exponentially small for \(f \in \Omega(n) \). In other words, with worst-case scheduling, with probability \(1 - (1/n)^{f+1} \) the shared coin will be 1. The worst-case scheduler must make sure that some nodes will always deterministically go for 0, and the algorithm needs \(n^{f+1} \) rounds until it terminates.

Remarks:

• With worst-case asynchrony, some of our previous results do not hold anymore. Can we at least solve asynchronous (assuming worst-case scheduling) consensus if we have crash failures?

• This is indeed possible, but we need to sharpen our tools first.

12.2 Shared Coin on a Blackboard

Definition 12.9 (Blackboard Model). The blackboard is a trusted authority which supports two operations. A node can write its message to the blackboard and a node can read all the values that have been written to the blackboard so far.

Remarks:

• We assume that the nodes cannot reconstruct the order in which the messages are written to the blackboard, since the system is asynchronous.
Algorithm 12.10 Crash-Resilient Shared Coin with Blackboard (for node u)

1: while true do
2: Choose new local coin $c_u = +1$ with probability $1/2$, else $c_u = -1$
3: Write c_u to the blackboard
4: Set $C = \text{Read all coinflips on the blackboard}$
5: if $|C| \geq n^2$ then
6: return $\text{sign}(\text{sum}(C))$
7: end if
8: end while

Remarks:

- In Algorithm 12.10 the outcome of a coinflip is -1 or $+1$ instead of 0 or 1 because it simplifies the analysis, i.e., $-1 \approx 0$.

- The sign function is used for the decision values. The sign function returns $+1$ if the sum of all coinflips in C is positive, and -1 if it is negative.

- Algorithm 12.10 cannot tolerate even one byzantine failure: assume a byzantine node generates all the n^2 coinflips in every round due to worst-case scheduling. Then this byzantine node can make sure that its coinflips always sum up to a value larger than n, thus making the outcome -1 impossible.

- The algorithm is unusual compared to other asynchronous algorithms we have dealt with so far. Before, we often waited for $n-f$ messages from other nodes. In Algorithm 12.10, a single node can single-handedly generate all n^2 coinflips, without waiting.

- If a node does not need to wait for other nodes, we call the algorithm wait-free.

- Many similar definitions beyond wait-free exist: lock-free, deadlock-free, starvation-free, and generally non-blocking algorithms.

Theorem 12.11 (Central Limit Theorem). Let $\{X_1, X_2, \ldots, X_N\}$ be a sequence of independent random variables with $\Pr[X_i = -1] = \Pr[X_i = 1] = 1/2$ for all $i = 1, \ldots, N$. Then for every real number z,

$$
\lim_{N \to \infty} \Pr \left[\sum_{i=1}^{N} X_i \leq z\sqrt{N} \right] = \Phi(z) < \frac{1}{\sqrt{2\pi}} e^{-z^2/2},
$$

where $\Phi(z)$ is the cumulative distribution function of the standard normal distribution evaluated at z.

Proof. Each node in the algorithm terminates once at least n^2 coinflips are written to the blackboard. Before terminating, nodes may write one additional coinflip. Therefore, every node decides after reading at least n^2 and at most...
$n^2 + n$ coinflips. The adversarial scheduler can prevent $n-1$ nodes from writing their coinflips to the blackboard by delaying their writes.

We need to show that both outcomes for the shared coin ($+1$ or -1 in Line 9) will occur with constant probability, as in Definition 12.3. Let X be the sum of all coinflips that are visible to every node. Since some of the nodes might read n more values from the blackboard than others, the nodes cannot be prevented from deciding if $|X| > n$. By applying Theorem 12.11 with $N = n^2$ and $z = 1$, we get:

\[Pr(X < -n) = Pr(X > n) = 1 - Pr(X \leq n) = 1 - \Phi(1) > 0.15. \]

\[\Box \]

Lemma 12.13. Algorithm 12.10 uses n^2 coinflips, which is optimal in this model.

Proof. The proof for showing quadratic lower bound makes use of configurations that are indistinguishable to all nodes, similar to Theorem 8.14. It requires involved stochastic methods and we therefore will only sketch the idea of where the n^2 comes from.

The basic idea follows from Theorem 12.11. The standard deviation of the sum of n^2 coinflips is n. The central limit theorem tells us that with constant probability the sum of the coinflips will be only a constant factor away from the standard deviation. As we showed in Theorem 12.12, this is large enough to disarm a worst-case scheduler. However, with much less than n^2 coinflips, a worst-case scheduler is still too powerful. If the scheduler sees a positive sum forming on the blackboard, it delays messages trying to write $+1$ in order to turn the sum temporarily negative, so the nodes finishing first see a negative sum, and the delayed nodes see a positive sum.

\[\Box \]

Remarks:

- In Algorithm 12.10 we assume that the blackboard is a trusted central authority. Like the random oracle of Definition 12.1, assuming a blackboard does not seem practical. However, fortunately, we can use advanced broadcast methods in order to implement something like a blackboard with just message passing.

12.3 Broadcast Abstractions

Definition 12.14 (Accept). A message received by a node v is called **accepted** if node v can consider this message for its computation.

Definition 12.15 (Best-Effort Broadcast). **Best-effort broadcast** ensures that a message that is sent from a correct node u to another correct node v will eventually be received and accepted by v.
Remarks:

- Note that best-effort broadcast is equivalent to the simple broadcast primitive that we have used so far.
- Reliable broadcast is a stronger paradigm which implies that byzantine nodes cannot send different values to different nodes. Such behavior will be detected.

Definition 12.16 (Reliable Broadcast). **Reliable broadcast** ensures that the nodes eventually agree on all accepted messages. That is, if a correct node \(v \) considers message \(m \) as accepted, then every other node will eventually consider message \(m \) as accepted.

Algorithm 12.17 Asynchronous Reliable Broadcast (code for node \(u \))

1: Broadcast own message \(\text{msg}(u) \)
2: if received \(\text{msg}(v) \) from node \(v \) then
3: Broadcast \(\text{echo}(u, \text{msg}(v)) \)
4: end if
5: if received \(\text{echo}(w, \text{msg}(v)) \) from \(n - 2f \) nodes \(w \) but not \(\text{msg}(v) \) then
6: Broadcast \(\text{echo}(u, \text{msg}(v)) \)
7: end if
8: if received \(\text{echo}(w, \text{msg}(v)) \) from \(n - f \) nodes \(w \) then
9: Accept(\(\text{msg}(v) \))
10: end if

Theorem 12.18. Algorithm 12.17 satisfies the following properties:

1. If a correct node broadcasts a message reliably, it will eventually be accepted by every other correct node.
2. If a correct node has not broadcast a message, it will not be accepted by any other correct node.
3. If a correct node accepts a message, it will be eventually accepted by every correct node

Proof. We start with the first property. Assume a correct node broadcasts a message \(\text{msg}(v) \), then every correct node will receive \(\text{msg}(v) \) eventually. In Line 3, every correct node (including the originator of the message) will echo the message and, eventually, every correct node will receive at least \(n - f \) echoes, thus accepting \(\text{msg}(v) \).

The second property follows from byzantine nodes being unable to forge an incorrect sender address, see Definition 11.1.

The third property deals with a byzantine originator \(b \). If a correct node accepted message \(\text{msg}(b) \), this node must have received at least \(n - f \) echoes for this message in Line 8. Since at most \(f \) nodes are byzantine, at least \(n - 2f \) correct nodes have broadcast an echo message for \(\text{msg}(b) \). Therefore, every correct node will receive these \(n - 2f \) echoes eventually and will broadcast an echo itself. Thus, all \(n - f \) correct nodes will have broadcast an echo for \(\text{msg}(b) \) and every correct node will accept \(\text{msg}(b) \).
Remarks:

- Algorithm 12.17 does not terminate. Only eventually, all messages by correct nodes will be accepted.
- The algorithm has a linear message overhead, since every node again broadcasts every message.
- Note that byzantine nodes can issue arbitrarily many messages. This may be a problem for protocols where each node is only allowed to send one message (per round). Can we fix this, for instance with sequence numbers?

Definition 12.19 (FIFO Reliable Broadcast). The FIFO (reliable) broadcast defines an order in which the messages are accepted in the system. If a node \(u \) broadcasts message \(m_1 \) before \(m_2 \), then any node \(v \) will accept message \(m_1 \) before \(m_2 \).

Algorithm 12.20 FIFO Reliable Broadcast (code for node \(u \))

1: Broadcast own round \(r \) message \(\text{msg}(u, r) \)
2: if received first message \(\text{msg}(v, r) \) from node \(v \) for round \(r \) then
3: Broadcast \(\text{echo}(u, \text{msg}(v, r)) \)
4: end if
5: if not echoed any \(\text{msg}'(v, r) \) before then
6: if received \(\text{echo}(w, \text{msg}(v, r)) \) from \(f + 1 \) nodes \(w \) but not \(\text{msg}(v, r) \) then
7: Broadcast \(\text{echo}(u, \text{msg}(v, r)) \)
8: end if
9: end if
10: if received \(\text{echo}(w, \text{msg}(v, r)) \) from \(n - f \) nodes \(w \) then
11: if accepted \(\text{msg}(v, r - 1) \) then
12: Accept(\(\text{msg}(v, r) \))
13: end if
14: end if

Theorem 12.21. Algorithm 12.20 satisfies the properties of Theorem 12.18. Additionally, Algorithm 12.20 makes sure that no two messages \(\text{msg}(v, r) \) and \(\text{msg}'(v, r) \) are accepted from the same node. It can tolerate \(f < n/3 \) Byzantine nodes or \(f < n/2 \) crash failures.

Proof. Just as reliable broadcast, Algorithm 12.20 satisfies the first two properties of Theorem 12.18 by simply following the flow of messages of a correct node.

For the third property, assume again that some message originated from a byzantine node \(b \). If a correct node accepted message \(\text{msg}(b) \), this node must have received at least \(n - f \) echoes for this message in Line 10.

- Byzantine case: If at most \(f \) nodes are byzantine, at least \(n - 2f > f + 1 \) correct nodes have broadcast an echo message for \(\text{msg}(b) \).
- Crash-failure case: If at most \(f \) nodes can crash, at least \(n - f > f + 1 \) nodes have broadcast an echo message for \(\text{msg}(b) \).
In both cases, every correct node will receive these $f+1$ echoes eventually and will broadcast an echo. Thus, all $n-f$ correct nodes will have broadcast an echo for $\text{msg}(b)$ and every correct node will accept $\text{msg}(b)$.

It remains to show that at most one message will be accepted from some node v in a round r.

- **Byzantine case:** Assume that some correct node u has accepted $\text{msg}(v, r)$ in Line 12. Then, u has received $n-f$ echoes for this message, $n-2f$ of which were the first echoes of the correct nodes. Assume for contradiction that another correct node accepts $\text{msg}'(v, r)$. This node must have collected $n-f$ messages $\text{echo}(w, \text{msg}'(v, r))$. Since at least $n-2f$ of these messages must be the first echo messages sent by correct nodes, we have $2(n-2f) = 2n-4f > n-f$ (for $f < n/3$) echo messages sent by the correct nodes as their first echo. This is a contradiction.

- **Crash-failure case:** At least $n-f$ nodes must have echoed $\text{msg}(v, r)$, while other $n-f$ nodes have echoed $\text{msg}'(v, r)$. At most f of the nodes could have crashed. In total $2(n-f)-f > 2n-3f > n-f$ (for $f < n/2$) correct nodes must have echoed either of the messages, which is a contradiction.

\begin{definition}[Atomic Broadcast] \textbf{Atomic broadcast} makes sure that all messages are received in the same order by every node. That is, for any pair of nodes u, v, and for any two messages m_1 and m_2, node u receives m_1 before m_2 if and only if node v receives m_1 before m_2.
\end{definition}

\begin{remark}
- Definition 12.22 is equivalent to Definition 7.8, i.e., atomic broadcast = state replication.
- Now we have all the tools to finally solve asynchronous consensus.
\end{remark}

12.4 Blackboard with Message Passing

\begin{algorithm}[H]
\caption{Crash-Resilient Shared Coin (code for node u)}
\begin{algorithmic}[1]
\While {true}
\State Choose local coin $c_u = +1$ with probability $1/2$, else $c_u = -1$
\State FIFO-broadcast $\text{coin}(c_u, r)$ to all nodes
\State Save all received coins $\text{coin}(c_v, r)$ in a set C_u
\State Wait until accepted own $\text{coin}(c_u)$
\State Request C_v from $n-f$ nodes v, and add newly seen coins to C_u
\If {$|C_u| \geq n^2$}
\State \textbf{return} $\text{sign}(\text{sum}(C_u))$
\EndIf
\EndWhile
\end{algorithmic}
\end{algorithm}

\begin{theorem} Algorithm 12.23 solves asynchronous binary agreement for $f < n/2$ crash failures.\end{theorem}
Proof. The upper bound for the number of crash failures results from the upper bound in \[12.21\]. The idea of this algorithm is to simulate the read and write operations from Algorithm \[12.10\].

Line 3 simulates a read operation: by accepting the own coinflip, a node verifies that \(n - f \) correct nodes have received its most recent generated coinflip \(\text{coin}(c_u, r) \). At least \(n - 2f > 1 \) of these nodes will never crash and the value therefore can be considered as stored on the blackboard. While a value is not accepted and therefore not stored, node \(u \) will not generate new coinflips. Therefore, at any point of the algorithm, there is at most \(n \) additional generated coinflips next to the accepted coins.

Line 6 of the algorithm corresponds to a read operation. A node reads a value by requesting \(C_v \) from at least \(n - f \) nodes \(v \). Assume that for a coinflip \(\text{coin}(c_u, r) \), \(f \) nodes that participated in the FIFO broadcast of this message have crashed. When requesting \(n - f \) sets of coinflips, there will be at least \((n - 2f) + (n - f) = n - 2f > 1 \) sets among the requested ones containing \(\text{coin}(c_u, r) \). Therefore, a node will always read all values that were accepted so far.

This shows that the read and write operations are equivalent to the same operations in Algorithm \[12.10\]. Assume now that some correct node has terminated after reading \(n^2 \) coinflips. Since each node reads the stored coinflips before generating a new one in the next round, there will be at most \(n \) additional coins accepted by any other node before termination. This setting is equivalent to Theorem \[12.12\] and the rest of the analysis is therefore analogous to the analysis in that theorem.

Remarks:

- So finally we can deal with worst-case crash failures and worst-case scheduling.

- But what about byzantine agreement? We need even more powerful methods!

12.5 Using Cryptography

Definition 12.25 (Threshold Secret Sharing). Let \(t, n \in \mathbb{N} \) with \(1 \leq t \leq n \). An algorithm that distributes a secret among \(n \) participants such that \(t \) participants need to collaborate to recover the secret is called a \((t, n)\)-threshold secret sharing scheme.

Definition 12.26 (Signature). Every node can sign its messages in a way that no other node can forge, thus nodes can reliably determine which node a signed message originated from. We denote a message \(x \) signed by node \(u \) with \(\text{msg}(x)_u \).
Algorithm 12.27 \((t,n)\)-Threshold Secret Sharing

1. Input: A secret \(s\), represented as a real number.

 Secret distribution by dealer \(d\)

2. Generate \(t - 1\) random numbers \(a_1, \ldots, a_{t-1} \in \mathbb{R}\)
3. Obtain a polynomial \(p\) of degree \(t - 1\) with \(p(x) = s + a_1x + \cdots + a_{t-1}x^{t-1}\)
4. Generate \(n\) distinct \(x_1, \ldots, x_n \in \mathbb{R} \setminus \{0\}\)
5. Distribute share \(\text{msg}(x_1, p(x_1))_d\) to node \(v_1\), \ldots, \(\text{msg}(x_n, p(x_n))_d\) to node \(v_n\)

 Secret recovery

6. Collect \(t\) shares \(\text{msg}(x_u, p(x_u))_d\) from at least \(t\) nodes
7. Use Lagrange’s interpolation formula to obtain \(p(0) = s\)

Remarks:

- Algorithm 12.27 relies on a trusted dealer, who broadcasts the secret shares to the nodes.
- Using an \((f + 1, n)\)-threshold secret sharing scheme, we can encrypt messages in such a way that byzantine nodes alone cannot decrypt them.
- Note that in practice, a finite field of prime order instead of real numbers is used.

Algorithm 12.28 Preprocessing Step for Algorithm 12.29 (code for dealer \(d\))

1. According to Algorithm 12.27, choose polynomial \(p\) of degree \(f\)
2. for \(i = 1, \ldots, n\) do
3. Choose coinflip \(c_i\), where \(c_i = 0\) with probability \(1/2\), else \(c_i = 1\)
4. Using Algorithm 12.27, generate \(n\) shares \((x_1, p(x_1)), \ldots, (x_n, p(x_n))\) for \(c_i\)
5. end for
6. Send shares \(\text{msg}(x_1, p(x_1))_d, \ldots, \text{msg}(x_n, p(x_n))_d\) to node \(u\)

Algorithm 12.29 Shared Coin using Secret Sharing (ith iteration)

1. Request correctly signed shares from at least \(f + 1\) nodes
2. Using Algorithm 12.27, let \(c_i\) be the value reconstructed from the shares
3. return \(c_i\)

Theorem 12.30. Algorithm 11.21 together with Algorithms 12.28 and 12.29 solves asynchronous byzantine agreement for \(f < n/3\) in expected 3 number of rounds.

Proof. In Line 1 of Algorithm 12.29, the nodes collect shares from \(f + 1\) nodes. Since a byzantine node cannot forge the signature of the dealer, it is restricted to either send its own share or decide to not send it at all. Therefore, each correct node will eventually be able to reconstruct secret \(c_i\) of round \(i\) correctly in Line 2 of the algorithm. The running time analysis follows then from the analysis of Theorem 12.4. \(\square\)
12.5. USING CRYPTOGRAPHY

Remarks:

- In Algorithm 12.28 we assume that the dealer generates the random bitstring. This assumption is not necessary in general.
- We showed that cryptographic assumptions can exponentially speed up asynchronous byzantine agreement.
- Algorithm 11.21 can also be implemented in the synchronous setting.
- A randomized version of a synchronous byzantine agreement algorithm can improve on the lower bound of $f + 1$ rounds for the deterministic algorithms.

Definition 12.31 (Cryptographic Hash Function). A hash function $\text{hash} : U \rightarrow S$ is called cryptographic, if for a given $z \in S$ it is computationally hard to find an element $x \in U$ with $\text{hash}(x) = z$.

Remarks:

- Popular hash functions used in cryptography include the Secure Hash Algorithm (SHA) and the Message-Digest Algorithm (MD).

Algorithm 12.32 Simple Synchronous Byzantine Shared Coin (for node u)

1: Each node has a public key that is known to all nodes
2: Let hash() be a publicly known cryptographic hash function
3: Let r be the current round of Algorithm 11.21
4: Broadcast $\text{msg}(r)_u$, i.e., round number r signed by node u
5: Compute $h_v = \text{hash}(\text{msg}(r)_v)$ for all received messages $\text{msg}(r)_v$
6: Let $h_{\text{min}} = \min_v h_v$
7: return least significant bit of h_{min}

Remarks:

- In Algorithm 12.32 Line 4 each node can verify the correctness of the signed message using the public key.
- Just as in Algorithm 11.9 the decision value is the minimum of all received values. While the minimum value is received by all nodes after 2 rounds there, we can only guarantee to receive the minimum with constant probability in this algorithm.
- Hashing helps to restrict byzantine power, since a byzantine node cannot enforce having the smallest hash.

Theorem 12.33. Algorithm 12.32 plugged into Algorithm 11.21 solves synchronous byzantine agreement in expected 5 rounds.

Proof. With probability $f/n < 1/3$ the minimum hash value is generated by a byzantine node. In such a case, we can assume that not all correct nodes will receive the byzantine value and thus, different nodes might compute different values for the shared coin.
With probability $2/3$, the shared coin will be from a correct node, and with probability $1/2$ the value of the shared coin will correspond to the value which was deterministically chosen by some of the correct nodes. Therefore, with probability $1/3$ the nodes will reach consensus in the next iteration of Algorithm 11.21. The expected number of rounds is:

$$1 + \sum_{i=0}^{\infty} 2 \cdot \left(\frac{2}{3}\right)^i = 5$$

\[\square\]

Chapter Notes

Asynchronous byzantine agreement is usually considered in one out of two communication models – shared memory or message passing. The first polynomial algorithm for the shared memory model that uses a shared coin was proposed by Aspnes and Herlihy [AH90] and required exchanging $O(n^4)$ messages in total. Algorithm 12.10 is also an implementation of the shared coin in the shared memory model and it requires exchanging $O(n^3)$ messages. This variant is due to Saks, Shavit and Woll [SSW91]. Bracha and Rachman [BR92] later reduced the number of messages exchanged to $O(n^2 \log n)$. The tight lower bound of $\Omega(n^2)$ on the number of coinflips was proposed by Attiya and Censor [AC08] and improved the first non-trivial lower bound of $\Omega(n^2/\log^2 n)$ by Aspnes [Asp98].

In the message passing model, the shared coin is usually implemented using reliable broadcast. Reliable broadcast was first proposed by Srikanth and Toueg [ST87] as a method to simulate authenticated broadcast. There is also another implementation which was proposed by Bracha [Bra87]. Today, a lot of variants of reliable broadcast exist, including FIFO broadcast [AAD05], which was considered in this chapter. A good overview over the broadcast routines is given by Cachin et al. [CGR14]. A possible way to reduce message complexity is by simulating the read and write commands [ABND95] as in Algorithm 12.23. The message complexity of this method is $O(n^3)$. Alistarh et al. [AAKS14] improved the number of exchanged messages to $O(n^3 \log^2 n)$ using a binary tree that restricts the number of communicating nodes according to the depth of the tree.

It remains an open question whether asynchronous byzantine agreement can be solved in the message passing model without cryptographic assumptions. If cryptographic assumptions are however used, byzantine agreement can be solved in expected constant number of rounds. Algorithm 12.28 presents the first implementation due to Rabin [Rab83] using threshold secret sharing. This algorithm relies on the fact that the dealer provides the random bitstring. Chor et al. [CGMA85] proposed the first algorithm where the nodes use verifiable secret sharing in order to generate random bits. Later work focuses on improving resilience [CR93] and practicability [CKS00]. Algorithm 12.32 by Micali [Mic18] shows that cryptographic assumptions can also help to improve the running time in the synchronous model.

This chapter was written in collaboration with Darya Melnyk.
Bibliography

