
Chapter 24

Advanced Blockchain

In this chapter we study various advanced blockchain concepts, which are pop-
ular in research.

24.1 Selsh Mining

Satoshi Nakamoto suggested that it is rational to be altruistic, e.g., by always
attaching newly found block to the longest chain. But is it true?

Denition 24.1 (Selsh Mining). A selsh miner hopes to earn the reward of a
larger share of blocks than its hardware would allow. The selsh miner achieves
this by temporarily keeping newly found blocks secret.

Algorithm 24.2 Selsh Mining

1: Idea: Mine secretly, without immediately publishing newly found blocks
2: Let dp be the depth of the public blockchain
3: Let ds be the depth of the secretly mined blockchain
4: if a new block bp is published, i.e., dp has increased by 1 then

5: if dp > ds then

6: Start mining on that newly published block bp
7: else if dp = ds then

8: Publish secretly mined block bs
9: Mine on bs and publish newly found block immediately

10: else if dp = ds − 1 then

11: Publish all secretly mined blocks
12: end if

13: end if

Theorem 24.3 (Selsh Mining). It may be rational to mine selshly, depending
on two parameters α and γ, where α is the ratio of the mining power of the selsh
miner, and γ is the share of the altruistic mining power the selsh miner can
reach in the network if the selsh miner publishes a block right after seeing a
newly published block. Precisely, the selsh miner share is

α(1− α)2(4α+ γ(1− 2α))− α3

1− α(1 + (2− α)α)
.

121



122 CHAPTER 24. ADVANCED BLOCKCHAIN

0 1 2 3 ...β

α α α α

β β
β

β

Figure 24.4: Each state of the Markov chain represents how many blocks the
selsh miner is ahead, i.e., ds − dp. In each state, the selsh miner nds a
block with probability α, and the honest miners nd a block with probability
β = 1 − α. The interesting cases are the “irregular” β arrow from state 2 to
state 0, and the β arrow from state 1 to state 0 as it will include three subcases.

Proof. We model the current state of the system with a Markov chain, see
Figure 24.4.

We can solve the following Markov chain equations to gure out the proba-
bility of each state in the stationary distribution:

p1 = αp0

βpi+1 = αpi, for all i > 1

and 1 =
∑

i

pi.

Using ρ = α/β, we express all terms of above sum with p1:

1 =
p1
α

+ p1
∑

i≥0

ρi =
p1
α

+
p1

1− ρ
, hence p1 =

2α2
− α

α2 + α− 1
.

Each state has an outgoing arrow with probability β. If this arrow is taken,
one or two blocks (depending on the state) are attached that will eventually
end up in the main chain of the blockchain. In state 0 (if arrow β is taken),
the honest miners attach a block. In all states i with i > 2, the selsh miner
eventually attaches a block. In state 2, the selsh miner directly attaches 2
blocks because of Line 11 in Algorithm 24.2.

State 1 in Line 8 is interesting. The selsh miner secretly was 1 block ahead,
but now (after taking the β arrow) the honest miners are attaching a competing
block. We have a race who attaches the next block, and where. There are three
possibilities:

• Either the selsh miner manages to attach another block to its own block,
giving 2 blocks to the selsh miner. This happens with probability α.

• Or the honest miners attach a block (with probability β) to their previous
honest block (with probability 1 − γ). This gives 2 blocks to the honest
miners, with total probability β(1− γ).

• Or the honest miners attach a block to the selsh block, giving 1 block to
each side, with probability βγ.



24.2. ETHEREUM 123

The blockchain process is just a biased random walk through these states.
Since blocks are attached whenever we have an outgoing β arrow, the total
number of blocks being attached per state is simply 1+p1+p2 (all states attach
a single block, except states 1 and 2 which attach 2 blocks each).

As argued above, of these blocks, 1− p0 + p2 + αp1 − β(1− γ)p1 are blocks
by the selsh miner, i.e., the ratio of selsh blocks in the blockchain is

1− p0 + p2 + αp1 − β(1− γ)p1
1 + p1 + p2

.

Remarks:

• If the miner is honest (altruistic), then a miner with computational
share α should expect to nd an α fraction of the blocks. For some
values of α and γ the ratio of Theorem 24.3 is higher than α.

• In particular, if γ = 0 (the selsh miner only wins a race in Line 8 if it
manages to mine 2 blocks in a row), the break even of selsh mining
happens at α = 1/3.

• If γ = 1/2 (the selsh miner learns about honest blocks very quickly
and manages to convince half of the honest miners to mine on the
selsh block instead of the slightly earlier published honest block),
already α = 1/4 is enough to have a higher share in expectation.

• And if γ = 1 (the selsh miner controls the network, and can hide any
honest block until the selsh block is published) any α > 0 justies
selsh mining.

24.2 Ethereum

Denition 24.5 (Ethereum). Ethereum is a distributed state machine. Unlike
Bitcoin, Ethereum promises to run arbitrary computer programs in a blockchain.

Remarks:

• Like the Bitcoin network, Ethereum consists of nodes that are con-
nected by a random virtual network. These nodes can join or leave
the network arbitrarily. There is no central coordinator.

• Like in Bitcoin, users broadcast cryptographically signed transactions
in the network. Nodes collate these transactions and decide on the
ordering of transactions by putting them in a block on the Ethereum
blockchain.

Denition 24.6 (Smart Contract). Smart contracts are programs deployed on
the Ethereum blockchain that have associated storage and can execute arbitrarily
complex logic.



124 CHAPTER 24. ADVANCED BLOCKCHAIN

Remarks:

• Smart Contracts are written in higher level programming languages
like Solidity, Vyper, etc. and are compiled down to EVM (Ethereum
Virtual Machine) bytecode, which is a Turing complete low level pro-
gramming language.

• Smart contracts cannot be changed after deployment. But most smart
contracts contain mutable storage, and this storage can be used to
adapt the behavior of the smart contract. With this, many smart
contracts can update to a new version.

Denition 24.7 (Account). Ethereum knows two kinds of accounts. Exter-
nally Owned Accounts (EOAs) are controlled by individuals, with a secret key.
Contract Accounts (CAs) are for smart contracts. CAs are not controlled by a
user.

Denition 24.8 (Ethereum Transaction). An Ethereum transaction is sent by
a user who controls an EOA to the Ethereum network. A transaction contains:

• Nonce: This “number only used once” is simply a counter that counts how
many transactions the account of the sender of the transaction has already
sent.

• 160-bit address of the recipient.

• The transaction is signed by the user controlling the EOA.

• Value: The amount of Wei (the native currency of Ethereum) to transfer
from the sender to the recipient.

• Data: Optional data eld, which can be accessed by smart contracts.

• StartGas: A value representing the maximum amount of computation this
transaction is allowed to use.

• GasPrice: How many Wei per unit of Gas the sender is paying. Miners
will probably select transactions with a higher GasPrice, so a high GasPrice
will make sure that the transaction is executed more quickly.

Remarks:

• There are three types of transactions.

Denition 24.9 (Simple Transaction). A simple transaction in Ethereum
transfers some of the native currency, called Wei, from one EOA to another.
Higher units of currency are called Szabo, Finney, and Ether, with 1018 Wei =
106 Szabo = 103 Finney = 1 Ether. The data eld in a simple transaction is
empty.

Denition 24.10 (Smart Contract Creation Transaction). A transaction whose
recipient address eld is set to 0 and whose data eld is set to compiled EVM
code is used to deploy that code as a smart contract on the Ethereum blockchain.
The contract is considered deployed after it has been mined in a block and is
included in the blockchain at a sucient depth.



24.2. ETHEREUM 125

Denition 24.11 (Smart Contract Execution Transaction). A transaction that
has a smart contract address in its recipient eld and code to execute a specic
function of that contract in its data eld.

Remarks:

• Smart Contracts can execute computations, store data, send Ether to
other accounts or smart contracts, and invoke other smart contracts.

• Smart contracts can be programmed to self destruct. This is the only
way to remove them again from the Ethereum blockchain.

• Each contract stores data in 3 separate entities: storage, memory, and
stack. Of these, only the storage area is persistent between transac-
tions. Storage is a key-value store of 256 bit words to 256 bit words.
The storage data is persisted in the Ethereum blockchain, like the
hard disk of a traditional computer. Memory and stack are for in-
termediate storage required while running a specic function, similar
to RAM and registers of a traditional computer. The read/write gas
costs of persistent storage is signicantly higher than those of memory
and stack.

Denition 24.12 (Gas). Gas is the unit of an atomic computation, like swap-
ping two variables. Complex operations use more than 1 Gas, e.g., ADDing two
numbers costs 3 Gas.

Remarks:

• As Ethereum contracts are programs (with loops, function calls, and
recursions), end users need to pay more gas for more computations.
In particular, smart contracts might call another smart contract as a
subroutine, and StartGas must include enough gas to pay for all these
function calls invoked by the transaction.

• The product of StartGas and GasPrice is the maximum cost of the
entire transaction.

• Transactions are an all or nothing aair. If the entire transaction could
not be nished within the StartGas limit, an Out-of-Gas exception is
raised. The state of the blockchain is reverted back to its values before
the transaction. The amount of gas consumed is not returned back to
the sender.

Denition 24.13 (Block). In Ethereum, like in Bitcoin, a block is a collection
of transactions that is considered a part of the canonical history of transactions.
Among other things, a block contains: pointers to parent and up to two uncles,
the hash of the root node of a trie structure populated with each transaction of
the block, the hash of the root node of the state trie (after transactions have been
executed)



126 CHAPTER 24. ADVANCED BLOCKCHAIN

Chapter Notes

Selsh mining has already been discussed shortly after the introduction of Bit-
coin [RHo10]. A few years later, Eyal and Sirer formally analyzed selsh mining
[ES14]. If the selsh miner is two or more blocks ahead, this original research
suggested to always answer a newly published block by releasing the oldest un-
published block, so have two blocks at the same level. The idea was that honest
miners will then split their mining power between these two blocks. However,
what matters is how long it takes the honest miners to nd the next block to
extend the public blockchain. This time does not change whether the honest
miners split their eorts or not. Hence the case dp < ds − 1 is not needed in
Algorithm 24.2.

Similarly, Courtois and Bahack [CB14] study subversive mining strategies.
Nayak et al. [NKMS15] combine selsh mining and eclipse attacks. Algorithm
24.2 is not optimal for all parameters, e.g., sometimes it may be benecial to
risk even a two-block advantage. Sapirshtein et al. [SSZ15] describe and analyze
the optimal algorithm.

Vitalik Buterin introduced Ethereum in the 2013 whitepaper [But13]. In
2014, Ethereum Foundation was founded to create Ethereum’s rst implementa-
tion. An online crowd-sale was conducted to raise around 31,000 BTC (around
USD 18 million at the time) for this. In this sense, Ethereum was the rst
ICO (Initial Coin Oering). Ethereum has also attempted to write a formal
specication of its protocol in their yellow paper [Gav18]. This is in contrast
to Bitcoin, which doesn’t have a formal specication.

Bitcoin’s blockchain forms as a chain, i.e., each block (except the genesis
block) has a parent block. The longest chain with the highest diculty is
considered the main chain. GHOST [SZ15] is an alternative to the longest chain
rule for establishing consensus in PoW based blockchains and aims to alleviate
adverse impacts of stale blocks. Ethereum’s blockchain structure is a variant
of GHOST. Other systems based on DAGs have been proposed in [SLZ16],
[SZ18], [LLX+18], and [LSZ15].

Bibliography

[But13] Vitalik Buterin. A Next-Generation Smart Contract and Decentral-
ized Application Platform, 2013. Available from: https://github.
com/ethereum/wiki/wiki/White-Paper.

[CB14] Nicolas T. Courtois and Lear Bahack. On subversive miner strategies
and block withholding attack in bitcoin digital currency. CoRR,
abs/1402.1718, 2014.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data Security,
pages 436–454. Springer, 2014.

[Gav18] Gavin Wood. Ethereum: A Secure Decentralised Generalised Trans-
action Ledger, Byzantium Version, 2018. Available from: https:

//ethereum.github.io/yellowpaper/paper.pdf.



BIBLIOGRAPHY 127

[LLX+18] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih
Yao. Scaling nakamoto consensus to thousands of transactions per
second. CoRR, abs/1805.03870, 2018.

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive
block chain protocols. In Financial Cryptography and Data Security,
pages 528–547. Springer, 2015.

[NKMS15] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stub-
born mining: Generalizing selsh mining and combining with an
eclipse attack. Technical report, IACR Cryptology ePrint Archive
2015, 2015.

[RHo10] RHorning. Mining cartel attack, 2010.

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spec-
tre: A fast and scalable cryptocurrency protocol. Cryptology ePrint
Archive, Report 2016/1159, 2016. https://eprint.iacr.org/

2016/1159.

[SSZ15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal
selsh mining strategies in bitcoin. arXiv preprint arXiv:1507.06183,
2015.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction
processing in bitcoin. In Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

[SZ18] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable
blockdag protocol. Cryptology ePrint Archive, Report 2018/104,
2018. https://eprint.iacr.org/2018/104.


