
Chapter 24

Game Theory

“Game theory is a sort of umbrella or ‘unified field’ theory for the rational side
of social science, where ‘social’ is interpreted broadly, to include human as well

as non-human players (computers, animals, plants).”

– Robert Aumann, 1987

24.1 Introduction

In this chapter we look at a distributed system from a different perspective.
Nodes no longer have a common goal, but are selfish. The nodes are not byzan-
tine (actively malicious), instead they try to benefit from a distributed system
– possibly without contributing.

Game theory attempts to mathematically capture behavior in strategic sit-
uations, in which an individual’s success depends on the choices of others.

Remarks:

• Examples of potentially selfish behavior are file sharing or TCP. If a
packet is dropped, then most TCP implementations interpret this as
a congested network and alleviate the problem by reducing the speed
at which packets are sent. What if a selfish TCP implementation will
not reduce its speed, but instead transmit each packet twice?

• We start with one of the most famous games to introduce some defi-
nitions and concepts of game theory.

24.2 Prisoner’s Dilemma

A team of two prisoners (players u and v) are being questioned by the police.
They are both held in solitary confinement and cannot talk to each other. The
prosecutors offer a bargain to each prisoner: snitch on the other prisoner to
reduce your prison sentence.
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u Player u
v Cooperate Defect

Player v Cooperate 1
1

0
3

Defect 3
0

2
2

Table 24.1: The prisoner’s dilemma game as a matrix.

• If both of them stay silent (cooperate), both will be sentenced to one year
of prison on a lesser charge.

• If both of them testify against their fellow prisoner (defect), the police has
a stronger case and they will be sentenced to two years each.

• If player u defects and the player v cooperates, then player u will go free
(snitching pays off) and player v will have to go to jail for three years; and
vice versa.

• This two player game can be represented as a matrix, see Table 24.1.

Definition 24.2 (game). A game requires at least two rational players, and
each player can choose from at least two options (strategies). In every possible
outcome (strategy profile) each player gets a certain payoff (or cost). The
payoff of a player depends on the strategies of the other players.

Definition 24.3 (social optimum). A strategy profile is called social optimum
(SO) if and only if it minimizes the sum of all costs (or maximizes payoff).

Remarks:

• The social optimum for the prisoner’s dilemma is when both players
cooperate – the corresponding cost sum is 2.

Definition 24.4 (dominant). A strategy is dominant if a player is never worse
off by playing this strategy. A dominant strategy profile is a strategy profile in
which each player plays a dominant strategy.

Remarks:

• The dominant strategy profile in the prisoner’s dilemma is when both
players defect – the corresponding cost sum is 4.

Definition 24.5 (Nash Equilibrium). A Nash Equilibrium (NE) is a strategy
profile in which no player can improve by unilaterally (the strategies of the other
players do not change) changing its strategy.
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Remarks:

• A game can have multiple Nash Equilibria.

• In the prisoner’s dilemma both players defecting is the only Nash
Equilibrium.

• If every player plays a dominant strategy, then this is by definition a
Nash Equilibrium.

• Nash Equilibria and dominant strategy profiles are so called solution
concepts. They are used to analyze a game. There are more solution
concepts, e.g. correlated equilibria or best response.

• The best response is the best strategy given a belief about the strategy
of the other players. In this game the best response to both strategies
of the other player is to defect. If one strategy is the best response to
any strategy of the other players, it is a dominant strategy.

• If two players play the prisoner’s dilemma repeatedly, it is called iter-
ated prisoner’s dilemma. It is a dominant strategy to always defect.
To see this, consider the final game. Defecting is a dominant strat-
egy. Thus, it is fixed what both players do in the last game. Now the
penultimate game is the last game and by induction always defecting
is a dominant strategy.

• Game theorists were invited to come up with a strategy for 200 iter-
ations of the prisoner’s dilemma to compete in a tournament. Each
strategy had to play against every other strategy and accumulated
points throughout the tournament. The simple Tit4Tat strategy (co-
operate in the first game, then copy whatever the other player did in
the previous game) won. One year later, after analyzing each strat-
egy, another tournament (with new strategies) was held. Tit4Tat won
again.

• We now look at a distributed system game.

24.3 Selfish Caching

Computers in a network want to access a file regularly. Each node v ∈ V , with
V being the set of nodes and n = |V |, has a demand dv for the file and wants to
minimize the cost for accessing it. In order to access the file, node v can either
cache the file locally which costs 1 or request the file from another node u which
costs cv←u. If a node does not cache the file, the cost it incurs is the minimal
cost to access the file remotely. Note that if no node caches the file, then every
node incurs cost ∞. There is an example in Figure 24.6.

Remarks:

• We will sometimes depict this game as a graph. The cost cv←u for
node v to access the file from node u is equivalent to the length of the
shortest path times the demand dv.
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• Note that in undirected graphs cu←v > cv←u if and only if du > dv.
We assume that the graphs are undirected for the rest of the chapter.

Figure 24.6: In this example we assume du = dv = dw = 1. Either the nodes u
and w cache the file. Then neither of the three nodes has an incentive to change
its behavior. The costs are 1, 1/2, and 1 for the nodes u, v, w, respectively.
Alternatively, only node v caches the file. Again, neither of the three nodes has
an incentive to change its behavior. The costs are 1/2, 1, and 3/4 for the nodes
u, v, w, respectively.

Algorithm 24.7 Nash Equilibrium for Selfish Caching
1: S = {} //set of nodes that cache the file
2: repeat
3: Let v be a node with maximum demand dv in set V
4: S = S ∪ {v}, V = V \ {v}
5: Remove every node u from V with cu←v ≤ 1
6: until V = {}

Theorem 24.8. Algorithm 24.7 computes a Nash Equilibrium for Selfish
Caching.

Proof. Let u be a node that is not caching the file. Then there exists a node v
for which cu←v ≤ 1. Hence, node u has no incentive to cache.

Let u be a node that is caching the file. We now consider any other node v
that is also caching the file. First, we consider the case where v cached the file
before u did. Then it holds that cu←v > 1 by construction.

It could also be that v started caching the file after u did. Then it holds
that du ≥ dv and therefore cu←v ≥ cv←u. Furthermore, we have cv←u > 1 by
construction. Combining these implies that cu←v ≥ cv←u > 1.

In either case, node u has no incentive to stop caching.

Definition 24.9 (Price of Anarchy). Let NE− denote the Nash Equilibrium
with the highest cost (smallest payoff). The Price of Anarchy (PoA) is defined
as

PoA =
cost(NE−)

cost(SO)
.

Definition 24.10 (Optimistic Price of Anarchy). Let NE+ denote the Nash
Equilibrium with the smallest cost (highest payoff). The Optimistic Price of
Anarchy (OPoA) is defined as

OPoA =
cost(NE+)

cost(SO)
.
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Figure 24.12: A network with a Price of Anarchy of Θ(n).

Remarks:

• The Price of Anarchy measures how much a distributed system de-
grades because of selfish nodes.

• We have PoA ≥ OPoA ≥ 1.

Theorem 24.11. The (Optimistic) Price of Anarchy of Selfish Caching can be
Θ(n).

Proof. Consider a network as depicted in Figure 24.12. Every node v has de-
mand dv = 1. Note that if any node caches the file, no other node has an
incentive to cache the file as well since the cost to access the file is at most 1−ε.
Without loss of generality, let us assume that a node v on the left caches the
file, then it is cheaper for every node on the right to access the file remotely.
Hence, the total cost of this solution is 1 + n

2 · (1 − ε). In the social optimum
one node from the left and one node from the right cache the file. This reduces
the cost to 2. Hence, the Price of Anarchy is 1+ n

2 ·(1−ε)
2 =

ε→0

1
2 + n

4 = Θ(n).

24.4 Braess’ Paradox
Consider the graph in Figure 24.13, it models a road network. Let us assume
that there are 1000 drivers (each in their own car) that want to travel from node
s to node t. Traveling along the road from s to u (or v to t) always takes 1
hour. The travel time from s to v (or u to t) depends on the traffic and increases
by 1/1000 of an hour per car, i.e., when there are 500 cars driving, it takes 30
minutes to use this road.

Lemma 24.14. Adding a super fast road (delay is 0) between u and v can
increase the travel time from s to t.

Proof. Since the drivers act rationally, they want to minimize the travel time.
In the Nash Equilibrium, 500 drivers first drive to node u and then to t and 500
drivers first to node v and then to t. The travel time for each driver is 1 + 500
/ 1000 = 1.5.
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(a) The road network without the shortcut (b) The road network with the shortcut

Figure 24.13: Braess’ Paradox, where d denotes the number of drivers using an
edge.

To reduce congestion, a super fast road (delay is 0) is built between nodes u
and v. This results in the following Nash Equilibrium: every driver now drives
from s to v to u to t. The total cost is now 2 > 1.5.

Remarks:

• There are physical systems which exhibit similar properties. Some
famous ones employ a spring. YouTube has some fascinating videos
about this. Simply search for “Braess Paradox Spring”.

• We will now look at another famous game that will allow us to deepen
our understanding of game theory.

24.5 Rock-Paper-Scissors

There are two players, u and v. Each player simultaneously chooses one of three
options: rock, paper, or scissors. The rules are simple: paper beats rock, rock
beats scissors, and scissors beat paper. A matrix representation of this game is
in Table 24.15.

u Player u
v Rock Paper Scissors

Player v

Rock 0
0

1
-1

-1
1

Paper -1
1

0
0

1
-1

Scissors 1
-1

-1
1

0
0

Table 24.15: Rock-Paper-Scissors as a matrix.
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Remarks:

• None of the three strategies is a Nash Equilibrium. Whatever player
u chooses, player v can always switch her strategy such that she wins.

• This is highlighted in the best response concept. The best response to
e.g. scissors is to play rock. The other player switches to paper. And
so on.

• Is this a game without a Nash Equilibrium? John Nash answered this
question in 1950. By choosing each strategy with a certain probability,
we can obtain a so called Mixed Nash Equilibrium.

Definition 24.16 (Mixed Nash Equilibrium). A Mixed Nash Equilibrium
(MNE) is a strategy profile of randomized strategies (probability distributions
of choosing strategies), for which no player can improve their expected payoff by
unilaterally changing their (randomized) strategy.

Theorem 24.17. Every game has a mixed Nash Equilibrium.

Remarks:

• The Nash Equilibrium of this game is if both players choose each
strategy with probability 1/3. The expected payoff is 0.

• Any strategy (or mix of them) is a best response to a player choosing
each strategy with probability 1/3.

• In a pure Nash Equilibrium, the strategies are chosen deterministi-
cally. Rock-Paper-Scissors does not have a pure Nash Equilibrium.

• Even though every game has a mixed Nash Equilibrium. Sometimes
such an equilibrium is computationally difficult to compute. One
should be cautious about economic assumptions such as “the market
will always find the equilibrium”.

• Unfortunately, game theory does not always model problems accu-
rately. Many real world problems are too complex to be captured by
a game. And as you may know, humans (not only politicians) are
often not rational.

• In distributed systems, players can be servers, routers, etc. Game
theory can tell us whether systems and protocols are prone to selfish
behavior.

24.6 Mechanism Design
Whereas game theory analyzes existing systems, there is a related area that
focuses on designing games – mechanism design. The task is to create a game
where nodes have an incentive to behave “nicely”.

Definition 24.18 (auction). One good is sold to a group of bidders in an auc-
tion. Each bidder vi has a secret value zi for the good and tells his bid bi to the
auctioneer. The auctioneer sells the good to one bidder for a price p.
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Remarks:

• For simplicity, we assume that no two bids are the same, and that
b1 > b2 > b3 > . . .

Algorithm 24.19 First Price Auction
1: every bidder vi submits his bid bi
2: the good is allocated to the highest bidder v1 for the price p = b1

Definition 24.20 (truthful). An auction is truthful if no player vi can gain
anything by not stating the truth, i.e., bi = zi.
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Theorem 24.21. A First Price Auction (Algorithm 24.19) is not truthful.

Proof. Consider an auction with two bidders, with bids b1 and b2. By not stating
the truth and decreasing his bid to b1 − ε > b2, player one could pay less and
thus gain more. Thus, the first price auction is not truthful.

Algorithm 24.22 Second Price Auction
1: every bidder vi submits his bid bi
2: the good is allocated to the highest bidder v1 for p = b2

Theorem 24.23. Truthful bidding is a dominant strategy in a Second Price
Auction.

Proof. Let zi be the truthful value of node vi and bi his bid. Let bmax =
maxj 6=i bj is the largest bid from other nodes but vi. The payoff for node vi is
zi − bmax if bi > bmax and 0 else. Let us consider overbidding first, i.e., bi > zi:

• If bmax < zi < bi, then both strategies win and yield the same payoff
(zi − bmax).

• If zi < bi < bmax, then both strategies lose and yield a payoff of 0.

• If zi < bmax < bi, then overbidding wins the auction, but the payoff
(zi − bmax) is negative. Truthful bidding loses and yields a payoff of 0.

Likewise underbidding, i.e. bi < zi:

• If bmax < bi < zi, then both strategies win and yield the same payoff
(zi − bmax).

• If bi < zi < bmax, then both strategies lose and yield a payoff of 0.

• If bi < bmax < zi, then truthful bidding wins and yields a positive payoff
(zi − bmax). Underbidding loses and yields a payoff of 0.

Hence, truthful bidding is a dominant strategy for each node vi.

Remarks:

• Let us use this for Selfish Caching. We need to choose a node that is
the first to cache the file. But how? By holding an auction. Every
node says for which price it is willing to cache the file. We pay the
node with the lowest offer and pay it the second lowest offer to ensure
truthful offers.

• Since a mechanism designer can manipulate incentives, she can im-
plement a strategy profile by making all the strategies in this profile
dominant.
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Theorem 24.24. Any Nash Equilibrium of Selfish Caching can be implemented
for free.

Proof. If the mechanism designer wants the nodes from the caching set S of the
Nash Equilibrium to cache, then she can offer the following deal to every node
not in S: “If any node from set S does not cache the file, then I will ensure
a positive payoff for you.” Thus, all nodes not in S prefer not to cache since
this is a dominant strategy for them. Consider now a node v ∈ S. Since S is a
Nash Equilibrium, node v incurs cost of at least 1 if it does not cache the file.
For nodes that incur cost of exactly 1, the mechanism designer can even issue a
penalty if the node does not cache the file. Thus, every node v ∈ S caches the
file.

Remarks:

• Mechanism design assumes that the players act rationally and want to
maximize their payoff. In real-world distributed systems some players
may be not selfish, but actively malicious (byzantine).

• What about P2P file sharing? To increase the overall experience,
BitTorrent suggests that peers offer better upload speed to peers who
upload more. This idea can be exploited. By always claiming to have
nothing to trade yet, the BitThief client downloads without uploading.
In addition to that, it connects to more peers than the standard client
to increase its download speed.

• Many techniques have been proposed to limit such free riding behavior,
e.g., tit-for-tat trading: I will only share something with you if you
share something with me. To solve the bootstrap problem (“I don’t
have anything yet”), nodes receive files or pieces of files whose hash
match their own hash for free. One can also imagine indirect trading.
Peer u uploads to peer v, who uploads to peer w, who uploads to peer
u. Finally, one could imagine using virtual currencies or a reputation
system (a history of who uploaded what). Reputation systems suffer
from collusion and Sybil attacks. If one node pretends to be many
nodes who rate each other well, it will have a good reputation.

Chapter Notes
Game theory was started by a proof for mixed-strategy equilibria in two-person
zero-sum games by John von Neumann [Neu28]. Later, von Neumann and Mor-
genstern introduced game theory to a wider audience [NM44]. In 1950 John
Nash proved that every game has a mixed Nash Equilibrium [Nas50]. However,
in general computing this mixed Nash Equilibrium is hard [DGP06]. The Pris-
oner’s Dilemma was first formalized by Flood and Dresher [Flo52]. The iterated
prisoner’s dilemma tournament was organized by Robert Axelrod [AH81]. The
Price of Anarchy definition is from Koutsoupias and Papadimitriou [KP99]. This
allowed the creation of the Selfish Caching Game [CCW+04], which we used as
a running example in this chapter. Braess’ paradox was discovered by Dietrich
Braess in 1968 [Bra68]. A generalized version of the second-price auction is
the VCG auction, named after three successive papers from first Vickrey, then
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Clarke, and finally Groves [Vic61, Cla71, Gro73]. One popular example of self-
ishness in practice is BitThief – a BitTorrent client that successfully downloads
without uploading [LMSW06]. Using game theory economists try to understand
markets and predict crashes. Apart from John Nash, the Sveriges Riksbank
Prize (Nobel Prize) in Economics has been awarded many times to game theo-
rists. For example in 2007 Hurwicz, Maskin, and Myerson received the prize for
“for having laid the foundations of mechanism design theory”. There is a consid-
erable amount of work on mixed adversarial models with byzantine, altruistic,
and rational (“BAR”) players, e.g., [AAC+05, ADGH06, MSW06]. Daskalakis
et al. [DGP09] showed that computing a Nash Equilibrium may not be trivial.

This chapter was written in collaboration with Philipp Brandes.
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